Galois groups of unramified 3-extensions of imaginary quadratic fields

Michael Bush
Smith College

October 3, 2009

Some background

p prime number.
K / \mathbb{Q} finite extension.
$\mathcal{O}_{K}=$ ring of integers of $K=$ integral closure of \mathbb{Z} in K.

Hilbert class tower of K :

$$
K=K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n} \subseteq \ldots
$$

where $K_{n+1}=$ maximal unramified abelian extension of K_{n}.

One way in which towers first arose was in connection with the following:

Embedding Problem

Does there always exist a finite extension L / K such that \mathcal{O}_{L} is a UFD?
It can be shown that:
$\exists L / K$ finite with \mathcal{O}_{L} a UFD \Leftrightarrow Hilbert class tower of K is finite.

One way in which towers first arose was in connection with the following:

Embedding Problem

Does there always exist a finite extension L / K such that \mathcal{O}_{L} is a UFD?
It can be shown that:
$\exists L / K$ finite with \mathcal{O}_{L} a UFD \Leftrightarrow Hilbert class tower of K is finite.

Golod-Shafarevich (1964) - Answered NO to embedding problem by giving examples of K with infinite p-class towers.

Key ideas

Consider $K^{u r, p}=\cup_{n \geq 0} K_{n}$ and $G=G_{K, p}=\operatorname{Gal}\left(K^{u r, p} / K\right)$.
G is a pro- p group - compact, totally disconnected topological group whose finite quotients are p-groups.

Key ideas

Consider $K^{u r, p}=\cup_{n \geq 0} K_{n}$ and $G=G_{K, p}=\operatorname{Gal}\left(K^{u r, p} / K\right)$.
G is a pro- p group - compact, totally disconnected topological group whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology
Generator rank: $d=\operatorname{dim} H^{1}\left(G, \mathbb{F}_{p}\right)$
Relation rank: $r=\operatorname{dim} H^{2}\left(G, \mathbb{F}_{p}\right)$

Key ideas

Consider $K^{u r, p}=\cup_{n \geq 0} K_{n}$ and $G=G_{K, p}=\operatorname{Gal}\left(K^{u r, p} / K\right)$.
G is a pro- p group - compact, totally disconnected topological group whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology
Generator rank: $d=\operatorname{dim} H^{1}\left(G, \mathbb{F}_{p}\right)$
Relation rank: $r=\operatorname{dim} H^{2}\left(G, \mathbb{F}_{p}\right)$
Theorem (Golod-Shafarevich; refined by Gaschutz-Vinberg)

$$
G \text { finite } p \text {-group } \Rightarrow r>\frac{d^{2}}{4} .
$$

Galois cohomology:

$$
0 \leq r-d \leq r_{1}+r_{2}-\delta
$$

where $r_{1}=$ number of real embeddings; $r_{2}=$ number of conjugate pairs of complex embeddings;
$\delta= \begin{cases}0, & \text { if } K \text { contains } p \text { th root of unity; } \\ 1, & \text { otherwise }\end{cases}$

Galois cohomology:

$$
0 \leq r-d \leq r_{1}+r_{2}-\delta
$$

where $r_{1}=$ number of real embeddings;
$r_{2}=$ number of conjugate pairs of complex embeddings;
$\delta= \begin{cases}0, & \text { if } K \text { contains } p \text { th root of unity; } \\ 1, & \text { otherwise }\end{cases}$
p odd prime, K imaginary quadratic $\left(\neq \mathbb{Q}\left(\zeta_{3}\right)\right.$ if $\left.p=3\right)$:
$r_{1}=0, r_{2}=1, \delta=1$.

$$
\begin{gathered}
0 \leq r-d \leq 0+1-1=0 \text { thus } r=d . \\
G_{K, p} \text { finite } \Rightarrow d=r>\frac{d^{2}}{4} \Rightarrow d<4
\end{gathered}
$$

Thus $d \geq 4 \Rightarrow G_{K, p}$ infinite.
$p=2, K$ imaginary quadratic:

$$
r_{1}=0, r_{2}=1, \delta=0 .
$$

$$
0 \leq r-d \leq 0+1-0=0 \quad \text { thus } \quad r \leq d+1
$$

$$
G_{K, 2} \text { finite } \Rightarrow d+1 \geq r>\frac{d^{2}}{4} \Rightarrow d<2 \sqrt{2}+2
$$

Thus $d \geq 5 \Rightarrow G_{K, 2}$ infinite.
$p=2, K$ imaginary quadratic:

$$
r_{1}=0, r_{2}=1, \delta=0 .
$$

$$
\begin{aligned}
& 0 \leq r-d \leq 0+1-0=0 \quad \text { thus } \quad r \leq d+1 . \\
& G_{K, 2} \text { finite } \Rightarrow d+1 \geq r>\frac{d^{2}}{4} \Rightarrow d<2 \sqrt{2}+2 .
\end{aligned}
$$

Thus $d \geq 5 \Rightarrow G_{K, 2}$ infinite.

Finding K with p-class group of large rank leads to examples with infinite p-class towers.

Example:

$p=2, K=\mathbb{Q}(\sqrt{-2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13})$ has infinite 2-class tower.

What happens when d is smaller than the given bounds?
Two types of result:
(i) $G_{K, p}$ infinite via indirect application of Golod-Shafarevich Theorem.
(ii) Various finiteness results. eg. $C_{2}(K) \cong C_{2} \times C_{2} \Rightarrow G_{K, 2}$ finite.

Group theoretic restrictions often play an important role.

Schur σ-groups

If K imaginary quadratic, p odd prime, then $G=G_{K, p}$ satisfies:

- $d=r$.
- $G^{a b}:=G /[G, G]$ is finite abelian.
- There exists an automorphism $\sigma: G \rightarrow G$ with $\sigma^{2}=1$ and such that $\bar{\sigma}: G^{a b} \rightarrow G^{a b}$ maps $\bar{x} \rightarrow \bar{x}^{-1}$.
Such a group is called a Schur σ-group.

Schur σ-groups

If K imaginary quadratic, p odd prime, then $G=G_{K, p}$ satisfies:

- $d=r$.
- $G^{a b}:=G /[G, G]$ is finite abelian.
- There exists an automorphism $\sigma: G \rightarrow G$ with $\sigma^{2}=1$ and such that $\bar{\sigma}: G^{a b} \rightarrow G^{a b}$ maps $\bar{x} \rightarrow \bar{x}^{-1}$.
Such a group is called a Schur σ-group.
Using this additional structure one can refine Golod-Shafarevich's bound.
Theorem (Koch-Venkov, 1975)
K imaginary quadratic, p odd prime.

$$
d \geq 3 \Rightarrow G_{K, p} \text { infinite. }
$$

Finite Schur σ-groups

$$
G_{K, p} \text { finite } \Rightarrow\left\{\begin{array}{l}
d=1, \text { cyclic group; } \\
d=2
\end{array}\right.
$$

Finite nonabelian Schur σ-groups must satisfy $d=2$. What sort of groups can arise?

Finite Schur σ-groups

$$
G_{K, p} \text { finite } \Rightarrow\left\{\begin{array}{l}
d=1, \text { cyclic group } ; \\
d=2
\end{array}\right.
$$

Finite nonabelian Schur σ-groups must satisfy $d=2$. What sort of groups can arise?

One approach to finding such groups is to try "random" presentations: $G=\left\langle x, y \mid w_{1}, w_{2}\right\rangle$.

Finite Schur σ-groups

$$
G_{K, p} \text { finite } \Rightarrow\left\{\begin{array}{l}
d=1, \text { cyclic group; } \\
d=2
\end{array}\right.
$$

Finite nonabelian Schur σ-groups must satisfy $d=2$. What sort of groups can arise?

One approach to finding such groups is to try "random" presentations: $G=\left\langle x, y \mid w_{1}, w_{2}\right\rangle$.

Relations w_{1} and w_{2} can be selected so that the map $\sigma: F \rightarrow F$ (where F free on $\{x, y\}$) defined

$$
\begin{aligned}
& x \mapsto x^{-1} \\
& y \mapsto y^{-1}
\end{aligned}
$$

induces a σ-automorphism on G.
For example, take $w_{i}=w^{-1} \sigma(w)$ or $w \sigma(w)$ for some $w \in F$.

For each group G we check whether it is finite (as a pro- p group) - Take abstract f.p. group and compute p-quotients. Stabilization implies finiteness.

For each group G we check whether it is finite (as a pro-p group) - Take abstract f.p. group and compute p-quotients. Stabilization implies finiteness.

Such experimentation lead to the following family of pro-3 groups:

$$
G_{n}=\left\langle x, y \mid r_{n}^{-1} \sigma\left(r_{n}\right), t^{-1} \sigma(t)\right\rangle
$$

where

$$
\begin{aligned}
t & =y x y x^{-1} y \\
r_{n} & =x^{3} y^{-3^{n}} \quad \text { for } n \geq 1
\end{aligned}
$$

Theorem (Bartholdi-B.)

For $n \geq 1$,

- G_{n} is a finite 3-group of order $3^{3 n+2}$.
- G_{n} is nilpotent of class $2 n+1$.
- G_{n} has derived length $\left\lfloor\log _{2}(3 n+3)\right\rfloor$.

If these groups could be realized as Galois groups $G_{K, p}$ it would imply the existence of arbitrarily large finite p-class towers (open problem).

Sketch of proof:

Let $H_{n}=\left\langle x, y \mid x^{3}, y^{3^{n}}, t^{-1} \sigma(t)\right\rangle$.
Can show:

$$
1 \rightarrow C \rightarrow G_{n} \rightarrow H_{n} \rightarrow 1
$$

with C central, cyclic of order 3 .
The groups H_{n} form an inverse system.

$$
\lim _{\leftrightarrows} H_{n}=H \cong\left\langle x, y \mid x^{3}, t^{-1} \sigma(t)\right\rangle
$$

Key Lemma

Let $\alpha \in \mathbb{Z}_{3}$ satisfy $\alpha^{2}=-2$. The map $\rho: H \rightarrow P \subseteq \operatorname{SL}_{2}\left(\mathbb{Z}_{3}\right)$, given by

$$
x \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right), \quad y \mapsto \alpha\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & -1
\end{array}\right),
$$

is an isomorphism between H and a pro-3 Sylow subgroup P of $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.

With this explicit realization of H it is now possible to compute properties of the groups H_{n} and then for G_{n}.

A different approach to finding examples

Rather than picking random presentations, one could try to search systematically through finite p-groups with $d=2$ generators. (This sort of approach first used by Boston and Leedham-Green in 2002.)

A different approach to finding examples

Rather than picking random presentations, one could try to search systematically through finite p-groups with $d=2$ generators. (This sort of approach first used by Boston and Leedham-Green in 2002.)

This can be done using the p-group generation algorithm (E. O‘Brien, 1990). Groups with fixed generator rank d are arranged in a tree structure. The algorithm takes a group and computes the (finite) list of descendants.

Starting from the root $\prod_{k=1}^{d} C_{p}$ one can (in theory) compute the tree down to any level. Every d-generated group occurs somewhere in this tree.

Tree structure for d-generated p-groups

Lower p-central series:

$$
G=P_{0}(G) \geq P_{1}(G) \geq P_{2}(G) \geq \ldots
$$

where $P_{n}(G)=P_{n-1}(G)^{p}\left[G, P_{n-1}(G)\right]$ for each $n \geq 1$.

Tree structure for d-generated p-groups

Lower p-central series:

$$
G=P_{0}(G) \geq P_{1}(G) \geq P_{2}(G) \geq \ldots
$$

where $P_{n}(G)=P_{n-1}(G)^{p}\left[G, P_{n-1}(G)\right]$ for each $n \geq 1$.
If $P_{n-1}(G) \neq 1$ and $P_{n}(G)=1$ then we say G has p-class n.

Tree structure for d-generated p-groups

Lower p-central series:

$$
G=P_{0}(G) \geq P_{1}(G) \geq P_{2}(G) \geq \ldots
$$

where $P_{n}(G)=P_{n-1}(G)^{p}\left[G, P_{n-1}(G)\right]$ for each $n \geq 1$.
If $P_{n-1}(G) \neq 1$ and $P_{n}(G)=1$ then we say G has p-class n.

Vertices at level n :
d-generated p-groups of p-class n.

Edges between vertices at level n and $n-1$:
If G has p-class n and H has p-class $n-1$ then we have an edge

$$
G \rightarrow H \quad \Leftrightarrow \quad G / P_{n-1}(G) \cong H .
$$

We are interested in Schur σ-groups.
Possession of a σ-automorphism is an inherited property. While generating the tree, whenever we encounter a group without a σ-automorphism we can ignore it and its descendants (we "prune the tree").

We are interested in Schur σ-groups.
Possession of a σ-automorphism is an inherited property. While generating the tree, whenever we encounter a group without a σ-automorphism we can ignore it and its descendants (we "prune the tree").

For those groups that remain we compute cohomology to determine when the condition $d=r$ is satisfied.

Current status of computation: $p=3, d=2$

Have computed the top levels of the tree when $p=3$ and $d=2$ using Magma.

Currently there are 1429 vertices. They split into three types:

- 797 Dead vertices - groups that do not have a σ-automorphism.
- 219 Internal vertices - groups that have a σ-automorphism and whose descendants have been computed.
- 413 Leaves - groups where only partial information is available.

Current status of computation: $p=3, d=2$

Have computed the top levels of the tree when $p=3$ and $d=2$ using Magma.

Currently there are 1429 vertices. They split into three types:

- 797 Dead vertices - groups that do not have a σ-automorphism.
- 219 Internal vertices - groups that have a σ-automorphism and whose descendants have been computed.
- 413 Leaves - groups where only partial information is available.

Of the 413 leaves, 323 possess a σ-automorphism but descendants have not been computed. For the remaining 90, finding a σ-automorphism has not been attempted (size issues).

Current status of computation: $p=3, d=2$

Have computed the top levels of the tree when $p=3$ and $d=2$ using Magma.

Currently there are 1429 vertices. They split into three types:

- 797 Dead vertices - groups that do not have a σ-automorphism.
- 219 Internal vertices - groups that have a σ-automorphism and whose descendants have been computed.
- 413 Leaves - groups where only partial information is available.

Of the 413 leaves, 323 possess a σ-automorphism but descendants have not been computed. For the remaining 90, finding a σ-automorphism has not been attempted (size issues).

Of the $219+323=542$ groups that possess a σ-automorphism, only 31 satisfy the additional constraint $d=r$.

Figure: The 219 Internal Vertices.

Figure: Subtree generated by the 31 Schur σ-groups.

Some new families

The following presentations appear to describe two new families:

$$
\begin{aligned}
& G_{1, n}=\left\langle x, y \mid r_{1, n}^{-1} \sigma\left(r_{1, n}\right), t^{-1} \sigma(t)\right\rangle \\
& G_{2, n}=\left\langle x, y \mid r_{2, n}^{-1} \sigma\left(r_{2, n}\right), t^{-1} \sigma(t)\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
t & =y x y x^{-1} y \\
r_{1, n} & =y x^{2} y x^{5} y x^{3^{n}-7} \\
r_{2, n} & =y x y x y x^{3^{n}-2}
\end{aligned}
$$

for $n \geq 1$.

From their positions in the tree one would expect both $G_{1, n}$ and $G_{2, n}$ to be descendants of quotients of the same pro-3 group.

This group would appear to be

$$
H=\left\langle x, y \mid r_{\infty}^{-1} \sigma\left(r_{\infty}\right), t^{-1} \sigma(t)\right\rangle
$$

where t is as before, and

$$
r_{\infty}=y x^{2} y x^{5} y x^{-7} \text { or } y x y x y x^{-2}
$$

From their positions in the tree one would expect both $G_{1, n}$ and $G_{2, n}$ to be descendants of quotients of the same pro-3 group.

This group would appear to be

$$
H=\left\langle x, y \mid r_{\infty}^{-1} \sigma\left(r_{\infty}\right), t^{-1} \sigma(t)\right\rangle
$$

where t is as before, and

$$
r_{\infty}=y x^{2} y x^{5} y x^{-7} \text { or } y x y x y x^{-2}
$$

Although similar these two families are less interesting than the previous example in one respect. Their derived lengths appear constant $(=2)$ in each case.

Things to do:

- Find other families (especially with increasing derived length).

Things to do:

- Find other families (especially with increasing derived length).
- Replace computational conjectures with proofs.

Things to do:

- Find other families (especially with increasing derived length).
- Replace computational conjectures with proofs.
- $p>3$?

Things to do:

- Find other families (especially with increasing derived length).
- Replace computational conjectures with proofs.
- $p>3$?
- Realization of abstract groups as Galois groups $G_{K, p}$.

