Galois groups of rational functions with non-trivial automorphisms

Rafe Jones

College of the Holy Cross

October 3, 2009

イロン イヨン イヨン イヨン

æ

Galois representations from elliptic curves Dynamical analogues Dynamical complex multiplication

Galois representations from elliptic curves

A classic problem: let E be an elliptic curve defined over \mathbb{Q} , and consider the extension \mathcal{K}_{∞} of \mathbb{Q} obtained by adjoining the torsion points $E[p^n]$ for all $n \ge 1$.

Let G_{∞} be the Galois group of K_{∞} over \mathbb{Q} .

Because $E[p^n] \cong (\mathbb{Z}/p\mathbb{Z})^2$, we have $G_{\infty} \hookrightarrow \mathrm{GL}_2(\mathbb{Z}_p)$.

Problem: What is $[\operatorname{GL}_2(\mathbb{Z}_p) : G_{\infty}]$?

Now suppose that *E* has complex multiplication, i.e. there is an endomorphism α of *E* that is not [m] for any *m*.

Then \mathcal{G}_{∞} must commute with α , and thus injects into either

a Borel subgroup
$$\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$$
 or a Cartan subgroup $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$

(assuming we replace \mathbb{Q} by the CM field of *E*, conjugate appropriately, and possibly allow the coefficients to live in the ring of integers of a quadratic extension of \mathbb{Q}_p)

In fact, for all but finitely many p, G_{∞} injects into a Cartan subgroup C.

イロン イヨン イヨン イヨン

Problem: What is $[C : G_{\infty}]$?

Answer: (Serre 1972) If *E* has no CM, then $[\operatorname{GL}_2(\mathbb{Z}_p) : G_\infty] < \infty$. If *E* has CM and $G_\infty \hookrightarrow C$, then $[C : G_\infty] < \infty$. Moreover, in either case for all but finitely many *p* the index is 1.

・ロン ・回 と ・ ヨ と ・ ヨ と

Galois representations from elliptic curves Dynamical analogues Dynamical complex multiplication

Dynamical analogues

In the previous setup, we could have defined K_{∞} to be obtained from \mathbb{Q} by adjoining all preimages of O under iteration of the map [p] on E.

Let's replace E by \mathbb{P}^1 , and replace [p] by a rational map $\phi \in \mathbb{Q}(x)$.

Let
$$K_n = \mathbb{Q}(\phi^{-n}(0), K_\infty = \bigcup_n K_n, G_\infty = \operatorname{Gal}(K_\infty/\mathbb{Q}).$$

Unlike the elliptic curves case, $\phi^{-n}(0)$ has no group structure, but $T_0 := \bigcup_n \phi^{-n}(0)$ has a natural tree structure. So $G_{\infty} \hookrightarrow \operatorname{Aut}(T_0)$.

Galois problems Theorems for quadratic rational functions Galois representations from elliptic curves Dynamical analogues Dynamical complex multiplication

First two levels of preimage tree T_0 for $\phi(x) = \frac{x^2+1}{x}$, initial point 0.

Problem: Is $[Aut(T_0) : G_\infty] < \infty$?

Even restricting to quadratic polynomials, there are very few results. It is known that $[Aut(T_0) : G_{\infty}] < \infty$ for

(日) (四) (王) (王) (王)

Dynamical complex multiplication

When ϕ commutes with another map $\alpha \in \mathbb{Q}(x)$ fixing 0, then the action of G_{∞} on T_0 must commute with the action of α on T_0 .

Ritt (1922): except for very unusual $\phi,\,\alpha$ must have degree 1, and thus be a Mobius transformation.

Let $\operatorname{Aut}(\phi)$ be the group of Mobius transformations commuting with $\phi.$

・ロト ・回ト ・ヨト ・ヨト

Dynamical complex multiplication, quadratic case

If deg $\phi = 2$, then apart from two exceptional maps, either $#Aut(\phi) = 1$ or $#Aut(\phi) = 2$.

The Galois group of $\mathbb{Q}(\bigcup_n \phi^{-n}(b))$ over \mathbb{Q} is determined by the $\mathrm{PGL}_2(\mathbb{Q})$ -conjugacy class of the pair (ϕ, b) .

Proposition

Let (ϕ, b) consist of a quadratic rational function ϕ and basepoint $b \in \mathbb{P}^1(\mathbb{Q})$ such that ϕ commutes with a Mobius transformation α of order 2 and $\alpha(b) = b$. Then (ϕ, b) is conjugate to

$$\left(\frac{k(x^2+m)}{cx},0\right)$$

for some $k, m, c \in \mathbb{Z}$.

Fix
$$\phi = \frac{k(x^2+m)}{cx}$$
 and $\alpha(x) = -x$.

Then $G_{\infty} \hookrightarrow C(\alpha)$, where $C(\alpha)$ is the centralizer in $Aut(T_0)$ of the involution induced by α .

Remark

Let $T_{0,n}$ be the truncation of T_0 to the first *n* levels only, and define $C_n(\alpha)$ similarly. Then $C_n(\alpha)$ contains a subgroup of index two that is isomorphic to $\operatorname{Aut}(T_{0,n-1})$.

Galois problems Theorems for quadratic rational functions Dynamical analogues Dynamical complex multiplication

 $C_2(\alpha) = \{e, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

Theorems for quadratic rational functions

Theorem (RJ-Michelle Manes)

Let $\phi = \frac{k(x^2+1)}{x}$ for $k \in \mathbb{Z}$, and define $p_n(x)$ to be the numerator of $\phi^n(x)$. Suppose that for all $n \ge 2$, $kp_n(1)$ is not a square in \mathbb{Z} . Then $[C(\alpha) : G_{\infty}] < \infty$.

Remark: $p_n(1)$ is the numerator of the *n*th term of the orbit of 1, which is a critical point of ϕ (the other is -1).

Example

If k = 1, then $p_n(1)$ is the left coordinate in the recurrence given by $(r_0, s_0) = (1, 1)$, $(r_n, s_n) = (r_{n-1}^2 + s_{n-1}^2, r_{n-1}s_{n-1})$, which proceeds

 $(1, 1), (2, 1), (5, 2), (29, 10), (941, 290), \ldots$

One can check that in the above example, $p_n(1) \equiv 2 \mod 3$ for all $n \ge 2$, so the Theorem applies.

Corollary

Suppose that $\phi = \frac{k(x^2+1)}{x}$ and $k \mod 24 \notin \{2, 6, 8, 12, 14, 18, 20\}$. Then $[C(\alpha) : G_{\infty}] < \infty$.

Proof: Find p such that for k satisfying certain congruences mod p, $p_n(1)$ is a fixed non-square mod p for all $n \ge 2$.

イロン イ部ン イヨン イヨン 三日

Theorem (RJ-Michelle Manes)

Let $\phi = \frac{k(x^2+1)}{x}$ for $k \in \mathbb{Z}$, and suppose that $p_n(1)$ is not a square for all $n \ge 2$. Let v_p denote the p-adic valuation, and assume in addition that $v_p(k) = 0$ for all primes p dividing some $p_j(1)$ for $\psi = (x^2 + 1)/x$. Then $G_{\infty} \cong C(\alpha)$.

So $G_{\infty} \cong C(\alpha)$ for $k = 1, 3, 7, 9, 11, 13, 17, 19, 21, \ldots$

Remark: Recall that $p_j(1)$ for $\psi = (x^2 + 1)/x$ is given by the left coordinate in the recurrence $(r_0, s_0) = (1, 1)$, $(r_n, s_n) = (r_{n-1}^2 + s_{n-1}^2, r_{n-1}s_{n-1})$. Thus a prime dividing some $p_j(1)$ must be the sum of two squares, and therefore is 1 mod 4.

Moreover, one can show the natural density of the set of primes dividing some $p_j(1)$ is zero.

Proof strategy:

- 1. Show that if there exists a prime $p \in \mathbb{Z}$ that ramifies in $K_n := K(\phi^{-n}(0))$ but not in $K_{n-1} := K(\phi^{-(n-1)}(0))$, then $\operatorname{Gal}(K_n/K_{n-1}) \cong (\ker C_n(\alpha) \to C_{n-1}(\alpha)).$
- 2. Show that Disc p_n is divisible only by primes dividing $kp_n(1)$ (c.f. talk of John Cullinan).
- 3. Use the fact that $gcd(kp_i(1), kp_j(1))$ is a power of k (since $\phi(0) = \infty$ and $\phi(\infty) = \infty$) to show that if δ_n is not a square, then apart from finitely many exceptional n, there is some p with $v_p(kp_n(1))$ odd and $v_p(kp_i(1)) = 0$ for i < n. This proves the finite index theorem.
- 4. Assume that $v_q(k) = 0$ for all q dividing $p_j(1)$ for $\psi = (x^2 + 1)/x$. Show that in this case $kp_n(1)$ is divisible to an odd power by a prime not dividing k, for all n.