# Galois groups of rational functions with non-trivial automorphisms 

Rafe Jones<br>College of the Holy Cross

October 3, 2009

## Galois representations from elliptic curves

A classic problem: let $E$ be an elliptic curve defined over $\mathbb{Q}$, and consider the extension $K_{\infty}$ of $\mathbb{Q}$ obtained by adjoining the torsion points $E\left[p^{n}\right]$ for all $n \geq 1$.

Let $G_{\infty}$ be the Galois group of $K_{\infty}$ over $\mathbb{Q}$.
Because $E\left[p^{n}\right] \cong(\mathbb{Z} / p \mathbb{Z})^{2}$, we have $G_{\infty} \hookrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$.
Problem: What is $\left[\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right): G_{\infty}\right]$ ?

Now suppose that $E$ has complex multiplication, i.e. there is an endomorphism $\alpha$ of $E$ that is not $[m$ ] for any $m$.

Then $G_{\infty}$ must commute with $\alpha$, and thus injects into either

$$
\text { a Borel subgroup }\left[\begin{array}{cc}
* & * \\
0 & *
\end{array}\right] \quad \text { or a Cartan subgroup }\left[\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right]
$$

(assuming we replace $\mathbb{Q}$ by the CM field of $E$, conjugate appropriately, and possibly allow the coefficients to live in the ring of integers of a quadratic extension of $\mathbb{Q}_{p}$ )

In fact, for all but finitely many $p, G_{\infty}$ injects into a Cartan subgroup $C$.

Problem: What is [ $C: G_{\infty}$ ]?
Answer: (Serre 1972) If $E$ has no CM, then $\left[\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right): G_{\infty}\right]<\infty$. If $E$ has $C M$ and $G_{\infty} \hookrightarrow C$, then $\left[C: G_{\infty}\right]<\infty$. Moreover, in either case for all but finitely many $p$ the index is 1 .

## Dynamical analogues

In the previous setup, we could have defined $K_{\infty}$ to be obtained from $\mathbb{Q}$ by adjoining all preimages of $O$ under iteration of the map [ $p$ ] on $E$.
Let's replace $E$ by $\mathbb{P}^{1}$, and replace $[p]$ by a rational map $\phi \in \mathbb{Q}(x)$.
Let $K_{n}=\mathbb{Q}\left(\phi^{-n}(0), K_{\infty}=\bigcup_{n} K_{n}, G_{\infty}=\operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right)\right.$.
Unlike the elliptic curves case, $\phi^{-n}(0)$ has no group structure, but $T_{0}:=\bigcup_{n} \phi^{-n}(0)$ has a natural tree structure. So $G_{\infty} \hookrightarrow \operatorname{Aut}\left(T_{0}\right)$.

$$
-\sqrt{\frac{-3-\sqrt{5}}{2}}
$$

$\sqrt{\frac{-3+\sqrt{5}}{2}}$

$$
-\sqrt{\frac{-3+\sqrt{5}}{2}}
$$

$$
\sqrt{\frac{-3-\sqrt{5}}{2}}
$$


$-i$


0
First two levels of preimage tree $T_{0}$ for $\phi(x)=\frac{x^{2}+1}{x}$, initial point 0.

## Problem: Is $\left[\operatorname{Aut}\left(T_{0}\right): G_{\infty}\right]<\infty$ ?

Even restricting to quadratic polynomials, there are very few results. It is known that $\left[\operatorname{Aut}\left(T_{0}\right): G_{\infty}\right]<\infty$ for

- $\phi(x)=x^{2}+a$, for $a>0, a \equiv 1,2 \bmod 4$ and $a<0, a \equiv 0 \bmod 4$ (Stoll 1992),
- $\phi(x)=x^{2}-a x+a, a \in \mathbb{Z}$ $\phi(x)=x^{2}+a x-1, a \in \mathbb{Z} \backslash\{0,2\}(R J$ 2008).


## Dynamical complex multiplication

When $\phi$ commutes with another map $\alpha \in \mathbb{Q}(x)$ fixing 0 , then the action of $G_{\infty}$ on $T_{0}$ must commute with the action of $\alpha$ on $T_{0}$.

Ritt (1922): except for very unusual $\phi, \alpha$ must have degree 1 , and thus be a Mobius transformation.

Let $\operatorname{Aut}(\phi)$ be the group of Mobius transformations commuting with $\phi$.

## Dynamical complex multiplication, quadratic case

If $\operatorname{deg} \phi=2$, then apart from two exceptional maps, either $\# \operatorname{Aut}(\phi)=1$ or $\# \operatorname{Aut}(\phi)=2$.

The Galois group of $\mathbb{Q}\left(\bigcup_{n} \phi^{-n}(b)\right)$ over $\mathbb{Q}$ is determined by the $\mathrm{PGL}_{2}(\mathbb{Q})$-conjugacy class of the pair $(\phi, b)$.

## Proposition

Let $(\phi, b)$ consist of a quadratic rational function $\phi$ and basepoint $b \in \mathbb{P}^{1}(\mathbb{Q})$ such that $\phi$ commutes with a Mobius transformation $\alpha$ of order 2 and $\alpha(b)=b$. Then $(\phi, b)$ is conjugate to

$$
\left(\frac{k\left(x^{2}+m\right)}{c x}, 0\right)
$$

for some $k, m, c \in \mathbb{Z}$.

Fix $\phi=\frac{k\left(x^{2}+m\right)}{c x}$ and $\alpha(x)=-x$.
Then $G_{\infty} \hookrightarrow C(\alpha)$, where $C(\alpha)$ is the centralizer in $\operatorname{Aut}\left(T_{0}\right)$ of the involution induced by $\alpha$.

## Remark

Let $T_{0, n}$ be the truncation of $T_{0}$ to the first $n$ levels only, and define $C_{n}(\alpha)$ similarly. Then $C_{n}(\alpha)$ contains a subgroup of index two that is isomorphic to $\operatorname{Aut}\left(T_{0, n-1}\right)$.

$$
-\sqrt{\frac{-3-\sqrt{5}}{2}} \sqrt{\frac{-3+\sqrt{5}}{2}} \quad-\sqrt{\frac{-3+\sqrt{5}}{2}} \quad \sqrt{\frac{-3-\sqrt{5}}{2}}
$$

$$
C_{2}(\alpha)=\{e,(12)(34),(13)(24),(14)(23)\}
$$

## Theorems for quadratic rational functions

Theorem (RJ-Michelle Manes)
Let $\phi=\frac{k\left(x^{2}+1\right)}{x}$ for $k \in \mathbb{Z}$, and define $p_{n}(x)$ to be the numerator of $\phi^{n}(x)$. Suppose that for all $n \geq 2, k p_{n}(1)$ is not a square in $\mathbb{Z}$. Then $\left[C(\alpha): G_{\infty}\right]<\infty$.

Remark: $p_{n}(1)$ is the numerator of the $n$th term of the orbit of 1 , which is a critical point of $\phi$ (the other is -1 ).

## Example

If $k=1$, then $p_{n}(1)$ is the left coordinate in the recurrence given by $\left(r_{0}, s_{0}\right)=(1,1),\left(r_{n}, s_{n}\right)=\left(r_{n-1}^{2}+s_{n-1}^{2}, r_{n-1} s_{n-1}\right)$, which proceeds

$$
(1,1),(2,1),(5,2),(29,10),(941,290), \ldots
$$

One can check that in the above example, $p_{n}(1) \equiv 2 \bmod 3$ for all $n \geq 2$, so the Theorem applies.

## Corollary

Suppose that $\phi=\frac{k\left(x^{2}+1\right)}{x}$ and $k \bmod 24 \notin\{2,6,8,12,14,18,20\}$. Then $\left[C(\alpha): G_{\infty}\right]<\infty$.

Proof: Find $p$ such that for $k$ satisfying certain congruences $\bmod p, p_{n}(1)$ is a fixed non-square $\bmod p$ for all $n \geq 2$.

## Theorem (RJ-Michelle Manes)

Let $\phi=\frac{k\left(x^{2}+1\right)}{x}$ for $k \in \mathbb{Z}$, and suppose that $p_{n}(1)$ is not a square for all $n \geq 2$. Let $v_{p}$ denote the $p$-adic valuation, and assume in addition that $v_{p}(k)=0$ for all primes $p$ dividing some $p_{j}(1)$ for $\psi=\left(x^{2}+1\right) / x$. Then $G_{\infty} \cong C(\alpha)$.

So $G_{\infty} \cong C(\alpha)$ for $k=1,3,7,9,11,13,17,19,21, \ldots$.
Remark: Recall that $p_{j}(1)$ for $\psi=\left(x^{2}+1\right) / x$ is given by the left coordinate in the recurrence $\left(r_{0}, s_{0}\right)=(1,1)$, $\left(r_{n}, s_{n}\right)=\left(r_{n-1}^{2}+s_{n-1}^{2}, r_{n-1} s_{n-1}\right)$. Thus a prime dividing some $p_{j}(1)$ must be the sum of two squares, and therefore is $1 \bmod 4$.

Moreover, one can show the natural density of the set of primes dividing some $p_{j}(1)$ is zero.

## Proof strategy:

1. Show that if there exists a prime $p \in \mathbb{Z}$ that ramifies in $K_{n}:=K\left(\phi^{-n}(0)\right)$ but not in $K_{n-1}:=K\left(\phi^{-(n-1)}(0)\right)$, then $\operatorname{Gal}\left(K_{n} / K_{n-1}\right) \cong\left(\operatorname{ker} C_{n}(\alpha) \rightarrow C_{n-1}(\alpha)\right)$.
2. Show that Disc $p_{n}$ is divisible only by primes dividing $k p_{n}(1)$ (c.f. talk of John Cullinan).
3. Use the fact that $\operatorname{gcd}\left(k p_{i}(1), k p_{j}(1)\right)$ is a power of $k$ (since $\phi(0)=\infty$ and $\phi(\infty)=\infty)$ to show that if $\delta_{n}$ is not a square, then apart from finitely many exceptional $n$, there is some $p$ with $v_{p}\left(k p_{n}(1)\right)$ odd and $v_{p}\left(k p_{i}(1)\right)=0$ for $i<n$. This proves the finite index theorem.
4. Assume that $v_{q}(k)=0$ for all $q$ dividing $p_{j}(1)$ for $\psi=\left(x^{2}+1\right) / x$. Show that in this case $k p_{n}(1)$ is divisible to an odd power by a prime not dividing $k$, for all $n$.
