Selectivity in Quaternion Algebras

Benjamin Linowitz

Dartmouth College

Outline

- Orders in quaternion algebras
- Type numbers
- A few embedding theorems
- Determining when an order is selective

Let F be a field.

A quaternion algebra over F is a central simple F-algebra of dimension 4.

By Wedderburn's theorem, every quaternion algebra is either a division *F*-algebra or isomorphic to $M_2(F)$

If $char(F) \neq 2$ then every quaternion algebra \mathfrak{A} over F has an F-basis $\{1, i, j, ij\}$ satisfying

$$i^2 = a$$
 $j^2 = b$ $ij = -ji$ $a, b \in F^*$.

Conversely, such an *F*-basis completely determines a quaternion algebra, typically denoted $\left(\frac{a,b}{F}\right)$.

Example If $F = \mathbb{R}$, a = b = -1 then we have \mathbb{H} , Hamilton's quaternions.

Let K be a number field with ring of integers \mathcal{O}_K .

Let \mathfrak{A} be a quaternion algebra over K and \mathfrak{p} a prime (possibly infinite) of K.

Then $\mathfrak{A}_{\mathfrak{p}} := \mathfrak{A} \otimes_K K_{\mathfrak{p}}$ is a quaternion algebra over $K_{\mathfrak{p}}$.

If $\mathfrak{A}_p \cong M_2(K_\mathfrak{p})$ then \mathfrak{p} splits in \mathfrak{A} . Otherwise \mathfrak{p} ramifies in \mathfrak{A} .

Fact Only a finite, even number of primes ramify in \mathfrak{A} .

Example Every prime \mathfrak{p} of K splits in the matrix algebra $M_2(K)$.

The quaternionic case of a classical theorem:

Theorem (Albert-Brauer-Hasse-Noether). Let \mathfrak{A} be a quaternion algebra over a number field K and let L be a quadratic field extension of K. Then there is an embedding of L into \mathfrak{A} over F if and only if no prime of K which ramifies in \mathfrak{A} splits in L.

If \mathfrak{A} is a quaternion algebra over a number field K, then an **order** $\mathcal{R} \subset \mathfrak{A}$ is a subring of \mathfrak{A} which is a rank 4 \mathcal{O}_K -module and satisfies $\mathcal{R} \otimes K \cong \mathfrak{A}$.

Example $M_2(\mathcal{O}_K)$ is an order in the algebra $M_2(K)$.

Local Theory If \mathcal{R} is an order of \mathfrak{A} and \mathfrak{p} is a finite prime, then its **local factor** $\mathcal{R}_{\mathfrak{p}} := \mathcal{R} \otimes_{\mathcal{O}_K} \mathcal{O}_{K_{\mathfrak{p}}}$ is an order of $\mathfrak{A}_{\mathfrak{p}}$.

Local-Global Principle Suppose that for every finite Kprime \mathfrak{p} we have an order $\mathcal{R}_{\mathfrak{p}}$ of $\mathfrak{A}_{\mathfrak{p}}$. If there exists an order of \mathfrak{A} whose local factors are almost always equal to $\mathcal{R}_{\mathfrak{p}}$, then there exists a *unique* order \mathcal{R} of \mathfrak{A} whose local factors are always $\mathcal{R}_{\mathfrak{p}}$.

3 Classes of Orders

- 1. An order is **maximal** if it is maximal with respect to inclusion.
- 2. An order is **Eichler** if it is the intersection of two maximal orders.
- 3. An order is **primitive** if it contains the ring of integers of a maximal subfield of \mathfrak{A} .

Type numbers

Note From this point on, we assume that there exists an infinite prime which is split in \mathfrak{A} (i.e. \mathfrak{A} satisfies the **Eichler** condition).

Two orders $\mathcal{R}, \mathcal{S} \subset \mathfrak{A}$ are of the same **genus** if $\mathcal{R}_{\mathfrak{p}} \cong \mathcal{S}_{\mathfrak{p}}$ for all finite primes \mathfrak{p} .

The **type number** $t(\mathcal{R})$ is the number of isomorphism (conjugacy) classes in the genus of \mathcal{R} .

Fact The type number $t(\mathcal{R})$ is always finite.

We can say more then just $t(\mathcal{R}) < \infty$. It turns out that $t(\mathcal{R})$ is a power of 2.

To show this, one proves that there is a bijection between the representatives of orders in the genus of ${\cal R}$ and the quotient

$I_K/H_{\mathcal{R}}$

where $H_{\mathcal{R}}$ is a subgroup of I_K containing I_K^2 and $P_{K,\infty}$, the principal ideals of I_K whose generators are positive at the elements of $Ram_{\infty}(\mathfrak{A})$.

The proof of this bijection makes critical use of the assumption that $\mathfrak A$ satisfies the Eichler condition.

Let $K(\mathcal{R})$ be the class field corresponding to the above quotient. Then $[K(\mathcal{R}) : K] = t(\mathcal{R})$.

Recall the ABHN Theorem:

Theorem (Albert-Brauer-Hasse-Noether). Let \mathfrak{A} be a quaternion algebra over a number field K and let L be a quadratic field extension of K. Then there is an embedding of L into \mathfrak{A} over F if and only if no prime of K which ramifies in \mathfrak{A} splits in L.

Chinburg and Friedman proved an integral refinement of this theorem by considering when an order $\Omega \subset L$ embeds into a maximal order of \mathfrak{A} . It is assumed that an embedding of L into \mathfrak{A} exists.

Theorem (Chinburg and Friedman) Assumptions as above, an order $\Omega \subset L$ can be embedded into either all maximal orders of \mathfrak{A} or into those belonging to exactly half of the isomorphism classes of maximal orders. This generalizes to arbitrary orders $\mathcal{R} \subset \mathfrak{A}$.

Theorem (L.) The proportion of the genus of \mathcal{R} into which an order $\Omega \subset L$ can be embedded is $0, \frac{1}{2}$ or 1.

In the maximal case, Ω is always contained in a maximal order.

If \mathcal{R} is not a maximal order, then it is possible to have an embedding of Ω into \mathfrak{A} but not into the genus of \mathcal{R} .

Example Let \mathcal{R} be any order which is not primitive. If L is any quadratic extension field of K contained in \mathfrak{A} then \mathcal{O}_L embeds into \mathfrak{A} but not into the genus of \mathcal{R} by definition of primitivity.

We now have two questions to answer:

(1) When does Ω embed into an order in the genus of \mathcal{R} ?

(2) If Ω does embed into the genus of \mathcal{R} , when is it selective?

(1) When does Ω embed into the genus of \mathcal{R} ?

An **optimal embedding** of Ω into \mathcal{R} is an embedding

 $\varphi: L \longrightarrow \mathfrak{A} \qquad \qquad \varphi(\Omega) = \varphi(L) \cap \mathcal{R}.$

Proposition 1 Ω embeds into the genus of \mathcal{R} if and only if there is an overorder Ω^* of Ω and an optimal embedding of Ω^* into the genus of \mathcal{R} .

Proposition 2 There is an overorder Ω^* of Ω and an optimal embedding of Ω^* into the genus of \mathcal{R} if and only if, for all K-primes \mathfrak{p} , there is an overorder $\Omega^*_{\mathfrak{p}}$ of $\Omega_{\mathfrak{p}}$ which optimally embeds into $\mathcal{R}_{\mathfrak{p}}$.

These propositions reduce (1) to local optimal embedding theory, which exists for Eichler and primitive orders.

(2) If Ω does embed into the genus of \mathcal{R} , when is it selective?

In the maximal case,

Theorem (Chinburg and Friedman) Ω is selective for maximal orders in \mathfrak{A} if and only if the following conditions hold:

- 1. The extension L/K and the algebra \mathfrak{A} are unramified at all finite primes and ramify at exactly the same real primes.
- 2. All prime ideals of K dividing the relative discriminant ideal d_{Ω/\mathcal{O}_K} of Ω split in L/K.

If $\mathcal{R} \subset \mathfrak{A}$ is an arbitrary order,

Theorem (L.) Ω is selective for \mathcal{R} if and only if the following conditions hold:

1. There is a containment of fields $L \subset K(\mathcal{R})$.

2. All prime ideals of K dividing the relative discriminant ideal d_{Ω/\mathcal{O}_K} of Ω split in L/K.