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History

Farmer (1993): Considered
∫ T

0

�(s + �)�(1 − s + �)

�(s + )�(1 − s + �)
dt ,

conjectured (for appropriate values)

T
(� + �)(� + )

(� + �)( + �)
− T 1−�−� (� − �)( − �)

(�+ �)( + �)
.
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History

Farmer (1993): Considered
∫ T

0

�(s + �)�(1 − s + �)

�(s + )�(1 − s + �)
dt ,

conjectured (for appropriate values)

T
(� + �)(� + )

(� + �)( + �)
− T 1−�−� (� − �)( − �)

(�+ �)( + �)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

Rℱ =
∑

f∈ℱ

!f
L
(

1
2 + �, f

)

L
(

1
2 + , f

) .
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Uses of the Ratios Conjecture

Applications:
⋄ n-level correlations and densities;
⋄ mollifiers;
⋄ moments;
⋄ vanishing at the central point;

Advantages:
⋄ RMT models often add arithmetic ad hoc;
⋄ predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ �XL(s)

∑

n≤y

an

n1−s
;

⋄ � sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ �XL(s)

∑

n≤y

an

n1−s
;

⋄ � sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,

∑

f∈ℱ

!f

∑



g
(


log Nf

2�

)
=

1
2�i

∫

(c)
−
∫

(1−c)
R′

ℱ(⋅ ⋅ ⋅ )g (⋅ ⋅ ⋅ )

⋄ R′
ℱ(r) =

∂
∂�

Rℱ (�, )
∣∣∣
�==r

.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

�f (h)
hs

,

where �f (h) is the multiplicative function equaling 1
for h = 1, −�f (p) if n = p, �0(p) if h = p2 and 0
otherwise.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

�f (h)
hs

,

where �f (h) is the multiplicative function equaling 1
for h = 1, −�f (p) if n = p, �0(p) if h = p2 and 0
otherwise.
Execute the sum over ℱ , keeping only main
(diagonal) terms.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

�f (h)
hs

,

where �f (h) is the multiplicative function equaling 1
for h = 1, −�f (p) if n = p, �0(p) if h = p2 and 0
otherwise.
Execute the sum over ℱ , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

�f (h)
hs

,

where �f (h) is the multiplicative function equaling 1
for h = 1, −�f (p) if n = p, �0(p) if h = p2 and 0
otherwise.
Execute the sum over ℱ , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Sympletic Results
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Symplectic Families

Fundamental discriminants: d square-free and 1
modulo 4, or d/4 square-free and 2 or 3 modulo 4.
Associated character �d :
⋄ �d(−1) = 1 say d even;
⋄ �d(−1) = −1 say d odd.
⋄ even (resp., odd) if d > 0 (resp., d < 0).

Will study following families:

⋄ even fundamental discriminants at most X ;
⋄ {8d : 0 < d ≤ X , d an odd, positive square-free
fundamental discriminant}.
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Prediction from Ratios Conjecture

1

X∗

∑

d≤X

∑

d

g
(

d
log X

2�

)

=
1

X∗ log X

∫

∞

−∞
g(�)

∑

d≤X

[

log
d

�
+

1

2

Γ′

Γ

(

1

4
±

i��

log X

)]

d�

+
2

X∗ log X

∑

d≤X

∫

∞

−∞
g(�)

[

�′

�

(

1 +
4�i�

log X

)

+ A′
D

(

2�i�

log X
;

2�i�

log X

)

− e−2�i� log(d/�)/ log X
Γ
(

1
4 − �i�

log X

)

Γ
(

1
4 + �i�

log X

) �

(

1 −
4�i�

log X

)

AD

(

−
2�i�

log X
;

2�i�

log X

)]

d� + O(X− 1
2 +�

),

with

AD(−r , r) =
∏

p

(
1 − 1

(p + 1)p1−2r
− 1

p + 1

)
⋅
(

1 − 1
p

)−1

A′
D(r ; r) =

∑

p

log p
(p + 1)(p1+2r − 1)

.
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Prediction from Ratios Conjecture

Main term is

1
X ∗

∑

d≤X

∑

d

g
(
d

log X
2�

)
=

∫ ∞

−∞

g(x)
(

1 − sin(2�x)
2�x

)
dx

+ O
(

1
log X

)
,

which is the 1-level density for the scaling limit of
USp(2N). If supp(ĝ) ⊂ (−1, 1), then the integral of g(x)
against − sin(2�x)/2�x is −g(0)/2.
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Prediction from Ratios Conjecture

Assuming RH for �(s), for supp(ĝ) ⊂ (−�, �) ⊂ (−1, 1):

−2

X∗ log X

∑

d≤X

∫

∞

−∞
g(�) e

−2�i�
log(d/�)

log X
Γ
(

1
4 − �i�

log X

)

Γ
(

1
4 + �i�

log X

) �

(

1 −
4�i�

log X

)

AD

(

−
2�i�

log X
;

2�i�

log X

)

d�

= −g(0)
2

+ O(X− 3
4 (1−�)+�);

the error term may be absorbed into the O(X−1/2+�) error
if � < 1/3.
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Main Results

Theorem (M– ’07)

Let supp(ĝ) ⊂ (−�, �), assume RH for �(s). 1-Level
Density agrees with prediction from Ratios Conjecture

up to O(X−(1−�)/2+�) for the family of quadratic
Dirichlet characters with even fundamental
discriminants at most X;
up to O(X−1/2 + X−(1− 3

2�)+� + X− 3
4 (1−�)+�) for our

sub-family. If � < 1/3 then agrees up to O(X−1/2+�).
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012,1012 + 3.3 ⋅ 106]

Histogram of normalized zeros ( ≤ 1, about 4 million).
⋄ Red: main term. ⋄ Blue: includes O(1/ log X ) terms.

⋄ Green: all lower order terms.
18
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Orthogonal Results
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Background

Study L(s, f ) =
∑

�f (n)n−s with f ranging over cuspidal
newforms of weight k and prime level N → ∞.

Iwaniec-Luo-Sarnak calculated 1-level density if
supp(�̂) ⊂ (−2, 2).

Key ingredient: averaging �f (n)’s over family by the
Petersson formula.
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Petersson Formula

Let

Δk ,N(m, n) =
∑

f∈ℬk (N)

!f (N)�f (m)�f (n).

We have

Δk ,N(m, n) = �(m, n) + 2�ik
∑

c≡0 mod N

S(m, n; c)
c

Jk−1

(
4�

√
mn

c

)

where �(m, n) is the Kronecker symbol

S(m, n; c) =
∑∗

d mod c

exp

(
2�i

md + nd
c

)

is the classical Kloosterman sum (dd ≡ 1 mod c), and
Jk−1(x) is a Bessel function.
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Consequences of the Petersson Formula

The Bessel-Kloosterman piece contributes an error term if
� < 1 and a main term otherwise.

The ‘diagonal’ piece does not include the
Bessel-Kloosterman term, which we know contributes!

Possible danger: Ratios Conjecture says only to keep
diagonal or main terms, and dropping a smaller
ocntribution which becomes quite large!
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Main Results: Test for family ℱ = H±
k (N)

This family is an important test: the non-diagonal terms
that are dropped contribute to the main term!

Theorem: Ratios Conjecture Prediction

With �(s) =
∏

p

(
1 + 1

(p−1)ps

)
, the 1-level density is

∑

p

2 log p
p log R

�̂

(
2 log p
log R

)

∓2 lim
�↓0

∫ ∞

−∞

XL

(
1
2
+ 2�ix

)
�(�+ 4�ix)�(t log R)dt

−
∫ ∞

−∞

X ′
L

XL

(
1
2
+ 2�it

)
�(t log R)dt + O(N−1/2+�),
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Main Results: Test for family ℱ = H±
k (N)

This family is an important test: the non-diagonal terms
that are dropped contribute to the main term!

Theorem: Agreement with Number Theory

Assume GRH for �(s), Dirichlet L-functions, and L(s, f ).
For � such that supp(�̂) ⊂ (−1, 1), the 1-level density
agrees with the ratios conjecture prediction up to
O(N−1/2+�), and get agreement up to a power savings in
N if supp(�̂) ⊂ (−2, 2).
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Sketch of
Symplectic Proofs
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Ratios Calculation

Hardest piece to analyze is

R(g;X ) = − 2
X ∗ log X

∑

d≤X

∫ ∞

−∞

g(�)e−2�i� log(d/�)
log X

Γ
(

1
4 − �i�

log X

)

Γ
(

1
4 + �i�

log X

)

⋅ �
(

1 − 4�i�
log X

)
AD

(
− 2�i�

log X
;

2�i�
log X

)
d�,

AD(−r , r) =
∏

p

(
1 − 1

(p + 1)p1−2r
− 1

p + 1

)
⋅
(

1 − 1
p

)−1

.

Proof: shift contours, keep track of poles of ratios of Γ and
zeta functions.
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Ratios Calculation: Weaker result for supp(ĝ) ⊂ (−1,1).

d-sum is X ∗e−2�i(1− log �
log X )�

(
1 − 2�i�

log X

)−1
+ O(X 1/2);
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Ratios Calculation: Weaker result for supp(ĝ) ⊂ (−1,1).

d-sum is X ∗e−2�i(1− log �
log X )�

(
1 − 2�i�

log X

)−1
+ O(X 1/2);

decay of g restricts � -sum to ∣� ∣ ≤ log X , Taylor
expand everything but g: small error term and

∫

∣� ∣≤log X
g(�)

N∑

n=−1

an

logn X
(2�i�)ne−2�i(1− log�

log X )�d�

=

N∑

n=−1

an

logn X

∫

∣� ∣≤log X
(2�i�)ng(�)e−2�i(1− log �

log X )�d� ;
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Ratios Calculation: Weaker result for supp(ĝ) ⊂ (−1,1).

d-sum is X ∗e−2�i(1− log �
log X )�

(
1 − 2�i�

log X

)−1
+ O(X 1/2);

decay of g restricts � -sum to ∣� ∣ ≤ log X , Taylor
expand everything but g: small error term and

∫

∣� ∣≤log X
g(�)

N∑

n=−1

an

logn X
(2�i�)ne−2�i(1− log�

log X )�d�

=

N∑

n=−1

an

logn X

∫

∣� ∣≤log X
(2�i�)ng(�)e−2�i(1− log �

log X )�d� ;

from decay of g can extend the � -integral to ℝ

(essential that N is fixed and finite!), for n ≥ 0 get the
Fourier transform of g(n) (the nth derivative of g) at
1 − �

log X , vanishes if supp(ĝ) ⊂ (−1, 1).
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Number Theory Sums

Seven = − 2
X ∗

∑

d≤X

∞∑

ℓ=1

∑

p

�d(p)2 log p
pℓ log X

ĝ
(

2
log pℓ

log X

)

Sodd = − 2
X ∗

∑

d≤X

∞∑

ℓ=0

∑

p

�d(p) log p
p(2ℓ+1)/2 log X

ĝ
(

log p2ℓ+1

log X

)
.
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Number Theory Sums

Lemma

Let supp(ĝ) ⊂ (−�, �) ⊂ (−1, 1). Then

Seven = −g(0)
2

+
2

log X

∫ ∞

−∞

g(�)
� ′

�

(
1 +

4�i�
log X

)
d�

+
2

log X

∫ ∞

−∞

g(�)A′
D

(
2�i�
log X

;
2�i�
log X

)
+ O(X− 1

2+�)

Sodd = O(X− 1−�
2 log6 X ).

If instead we consider the family of characters �8d for odd,
positive square-free d ∈ (0,X ) (d a fundamental
discriminant), then

Sodd = O(X−1/2+� + X−(1− 3
2�)+�).
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Analysis of Seven

�d(p)2 = 1 except when p∣d . Replace �d(p)2 with 1, and
subtract off the contribution from when p∣d :

Seven = −2
∞∑

ℓ=1

∑

p

log p
pℓ log X

ĝ
(

2
log pℓ

log X

)

+
2

X ∗

∑

d≤X

∞∑

ℓ=1

∑

p∣d

log p
pℓ log X

ĝ
(

2
log pℓ

log X

)

= Seven;1 + Seven;2.

Lemma (Perron’s Formula)

Seven;1 = −g(0)
2

+
2

log X

∫ ∞

−∞

g(�)
� ′

�

(
1 +

4�i�
log X

)
d�.
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Analysis of Seven: Seven;2

This piece gives us
∫

g(�)A′
D(− ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ).
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Analysis of Seven: Seven;2

This piece gives us
∫

g(�)A′
D(− ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ).

Main ideas:
⋄ Restrict to p ≤ X 1/2.
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Analysis of Seven: Seven;2

This piece gives us
∫

g(�)A′
D(− ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ).

Main ideas:
⋄ Restrict to p ≤ X 1/2.
⋄ For p < X 1/2:

∑
d≤X ,p∣d 1 = X∗

p+1 + O(X 1/2).
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Analysis of Seven: Seven;2

This piece gives us
∫

g(�)A′
D(− ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ).

Main ideas:
⋄ Restrict to p ≤ X 1/2.
⋄ For p < X 1/2:

∑
d≤X ,p∣d 1 = X∗

p+1 + O(X 1/2).
⋄ Use Fourier Transform to expand ĝ.
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Analysis of Sodd

Sodd = − 2
X ∗

∞∑

ℓ=0

∑

p

log p
p(2ℓ+1)/2 log X

ĝ
(

log p2ℓ+1

log X

)∑

d≤X

�d(p).
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Analysis of Sodd

Sodd = − 2
X ∗

∞∑

ℓ=0

∑

p

log p
p(2ℓ+1)/2 log X

ĝ
(

log p2ℓ+1

log X

)∑

d≤X

�d(p).

Jutila’s bound

∑

1<n≤N
n non−square

∣∣∣∣∣∣

∑

0<d≤X
d fund. disc.

�d(n)

∣∣∣∣∣∣

2

≪ NX log10 N.
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Analysis of Sodd

Sodd = − 2
X ∗

∞∑

ℓ=0

∑

p

log p
p(2ℓ+1)/2 log X

ĝ
(

log p2ℓ+1

log X

)∑

d≤X

�d(p).

Jutila’s bound

∑

1<n≤N
n non−square

∣∣∣∣∣∣

∑

0<d≤X
d fund. disc.

�d(n)

∣∣∣∣∣∣

2

≪ NX log10 N.

Proof: Cauchy-Schwarz and Jutila: p2ℓ+1 non-square:
⎛
⎝

∞∑

ℓ=0

∑

p(2ℓ+1)/2≤X�

∣∣∣∣∣
∑

d≤X

�d(p)

∣∣∣∣∣

2
⎞
⎠

1/2

≪ X
1+�

2 log5 X .
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Analysis of Sodd: Extending Support

More technical, replace Jutila’s bound by applying
Poisson Summation to character sums.

Lemma

Let supp(ĝ) ⊂ (−�, �) ⊂ (−1, 1). For family
{8d : 0 < d ≤ X , d an odd, positive square-free
fundamental discriminant}, Sodd = O(X− 1

2+� + X−(1− 3
2�)+�).

In particular, if � < 1/3 then Sodd = O(X−1/2+�).
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Conclusions
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Conclusions

Ratios Conjecture gives detailed predictions (up to
X 1/2+�).

Number Theory agrees with predictions for suitably
restricted test functions.

Numerics quite good.
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