Tests of the L-Functions Ratios Conjecture.

Steven J Miller
Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/go/math/sjmiller/

Maine - Québec Number Theory Conference October 3rd, 2009

History

- Farmer (1993): Considered

$$
\int_{0}^{T} \frac{\zeta(s+\alpha) \zeta(1-s+\beta)}{\zeta(s+\gamma) \zeta(1-s+\delta)} d t
$$

conjectured (for appropriate values)

$$
T \frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta} \frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)}
$$

History

- Farmer (1993): Considered

$$
\int_{0}^{T} \frac{\zeta(s+\alpha) \zeta(1-s+\beta)}{\zeta(s+\gamma) \zeta(1-s+\delta)} d t
$$

conjectured (for appropriate values)

$$
T \frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta} \frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)} .
$$

- Conrey-Farmer-Zirnbauer (2007): conjecture formulas for averages of products of L-functions over families:

$$
\boldsymbol{R}_{\mathcal{F}}=\sum_{f \in \mathcal{F}} \omega_{f} \frac{L\left(\frac{1}{2}+\alpha, f\right)}{L\left(\frac{1}{2}+\gamma, f\right)} .
$$

Uses of the Ratios Conjecture

- Applications:
$\diamond n$-level correlations and densities;
\diamond mollifiers;
\diamond moments;
\diamond vanishing at the central point;
- Advantages:
\diamond RMT models often add arithmetic ad hoc; \diamond predicts lower order terms, often to square-root level.

Inputs for 1-level density

- Approximate Functional Equation:

$$
L(s, f)=\sum_{m \leq x} \frac{a_{m}}{m^{s}}+\epsilon \mathbb{X}_{L}(s) \sum_{n \leq y} \frac{a_{n}}{n^{1-s}} ;
$$

$\diamond \epsilon$ sign of the functional equation,
$\diamond \mathbb{X}_{L}(S)$ ratio of Γ-factors from functional equation.

Inputs for 1-level density

- Approximate Functional Equation:

$$
L(s, f)=\sum_{m \leq x} \frac{a_{m}}{m^{s}}+\epsilon \mathbb{X}_{L}(s) \sum_{n \leq y} \frac{a_{n}}{n^{1-s}} ;
$$

$\diamond \epsilon$ sign of the functional equation,
$\diamond \mathbb{X}_{L}(s)$ ratio of Γ-factors from functional equation.

- Explicit Formula: g Schwartz test function,

$$
\begin{aligned}
& \sum_{f \in \mathcal{F}} \omega_{f} \sum_{\gamma} g\left(\gamma \frac{\log N_{f}}{2 \pi}\right)=\frac{1}{2 \pi i} \int_{(c)}-\int_{(1-c)} R_{\mathcal{F}}^{\prime}(\cdots) g(\cdots) \\
& \diamond R_{\mathcal{F}}^{\prime}(r)=\left.\frac{\partial}{\partial \alpha} R_{\mathcal{F}}(\alpha, \gamma)\right|_{\alpha=\gamma=r} .
\end{aligned}
$$

Procedure (Recipe)

- Use approximate functional equation to expand numerator.

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$
\frac{1}{L(s, f)}=\sum_{h} \frac{\mu_{f}(h)}{h^{s}}
$$

where $\mu_{f}(h)$ is the multiplicative function equaling 1 for $h=1,-\lambda_{f}(p)$ if $n=p, \chi_{0}(p)$ if $h=p^{2}$ and 0 otherwise.

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$
\frac{1}{L(s, f)}=\sum_{h} \frac{\mu_{f}(h)}{h^{s}},
$$

where $\mu_{f}(h)$ is the multiplicative function equaling 1 for $h=1,-\lambda_{f}(p)$ if $n=p, \chi_{0}(p)$ if $h=p^{2}$ and 0 otherwise.

- Execute the sum over \mathcal{F}, keeping only main (diagonal) terms.

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$
\frac{1}{L(s, f)}=\sum_{h} \frac{\mu_{f}(h)}{h^{s}}
$$

where $\mu_{f}(h)$ is the multiplicative function equaling 1 for $h=1,-\lambda_{f}(p)$ if $n=p, \chi_{0}(p)$ if $h=p^{2}$ and 0 otherwise.

- Execute the sum over \mathcal{F}, keeping only main (diagonal) terms.
- Extend the m and n sums to infinity (complete the products).

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$
\frac{1}{L(s, f)}=\sum_{h} \frac{\mu_{f}(h)}{h^{s}}
$$

where $\mu_{f}(h)$ is the multiplicative function equaling 1 for $h=1,-\lambda_{f}(p)$ if $n=p, \chi_{0}(p)$ if $h=p^{2}$ and 0 otherwise.

- Execute the sum over \mathcal{F}, keeping only main (diagonal) terms.
- Extend the m and n sums to infinity (complete the products).
- Differentiate with respect to the parameters.

Sympletic Results

Symplectic Families

- Fundamental discriminants: d square-free and 1 modulo 4 , or $d / 4$ square-free and 2 or 3 modulo 4.
- Associated character χ_{d} : $\diamond \chi_{d}(-1)=1$ say d even;
$\diamond \chi_{d}(-1)=-1$ say d odd.
\diamond even (resp., odd) if $d>0$ (resp., $d<0$).

Will study following families:

\diamond even fundamental discriminants at most X;
$\diamond\{8 d: 0<d \leq X, d$ an odd, positive square-free fundamental discriminant $\}$.

Prediction from Ratios Conjecture

$$
\begin{aligned}
& \frac{1}{X^{*}} \sum_{d \leq X} \sum_{\gamma_{d}} g\left(\gamma_{d} \frac{\log X}{2 \pi}\right)=\frac{1}{X^{*} \log X} \int_{-\infty}^{\infty} g(\tau) \sum_{d \leq X}\left[\log \frac{d}{\pi}+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4} \pm \frac{i \pi \tau}{\log X}\right)\right] d \tau \\
& +\frac{2}{X^{*} \log X} \sum_{d \leq X} \int_{-\infty}^{\infty} g(\tau)\left[\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{4 \pi i \tau}{\log X}\right)+A_{D}^{\prime}\left(\frac{2 \pi i \tau}{\log X} ; \frac{2 \pi i \tau}{\log X}\right)\right. \\
& \left.-e^{-2 \pi i \tau \log (d / \pi) / \log X} \frac{\Gamma\left(\frac{1}{4}-\frac{\pi i \tau}{\log X}\right)}{\Gamma\left(\frac{1}{4}+\frac{\pi i \tau}{\log X}\right)} \zeta\left(1-\frac{4 \pi i \tau}{\log X}\right) A_{D}\left(-\frac{2 \pi i \tau}{\log X} ; \frac{2 \pi i \tau}{\log X}\right)\right] d \tau+O\left(X^{-\frac{1}{2}+\epsilon}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
A_{D}(-r, r) & =\prod_{p}\left(1-\frac{1}{(p+1) p^{1-2 r}}-\frac{1}{p+1}\right) \cdot\left(1-\frac{1}{p}\right)^{-1} \\
A_{D}^{\prime}(r ; r) & =\sum_{p} \frac{\log p}{(p+1)\left(p^{1+2 r}-1\right)} .
\end{aligned}
$$

Prediction from Ratios Conjecture

Main term is

$$
\begin{aligned}
& \frac{1}{X^{*}} \sum_{d \leq x} \sum_{\gamma_{d}} g\left(\gamma_{d} \frac{\log X}{2 \pi}\right)=\int_{-\infty}^{\infty} g(x)\left(1-\frac{\sin (2 \pi x)}{2 \pi x}\right) d x \\
& +O\left(\frac{1}{\log X}\right)
\end{aligned}
$$

which is the 1 -level density for the scaling limit of $\mathrm{USp}(2 N)$. If $\operatorname{supp}(\widehat{g}) \subset(-1,1)$, then the integral of $g(x)$ against $-\sin (2 \pi x) / 2 \pi x$ is $-g(0) / 2$.

Prediction from Ratios Conjecture

Assuming RH for $\zeta(s)$, for $\operatorname{supp}(\widehat{g}) \subset(-\sigma, \sigma) \subset(-1,1)$:

$$
=-\frac{g(0)}{2}+O\left(X^{-\frac{3}{4}(1-\sigma)+\epsilon}\right) ;
$$

the error term may be absorbed into the $O\left(X^{-1 / 2+\epsilon}\right)$ error if $\sigma<1 / 3$.

Main Results

Theorem (M- 07)

Let $\operatorname{supp}(\widehat{g}) \subset(-\sigma, \sigma)$, assume $R H$ for $\zeta(s)$. 1-Level Density agrees with prediction from Ratios Conjecture

- up to $O\left(X^{-(1-\sigma) / 2+\epsilon}\right)$ for the family of quadratic Dirichlet characters with even fundamental discriminants at most X;
- up to $O\left(X^{-1 / 2}+X^{-\left(1-\frac{3}{2} \sigma\right)+\epsilon}+X^{\left.-\frac{3}{4}(1-\sigma)+\epsilon\right)}\right.$ for our sub-family. If $\sigma<1 / 3$ then agrees up to $O\left(X^{-1 / 2+\epsilon}\right)$.

Numerics (J. Stopple): 1,003,083 negative fundamental

 discriminants $-d \in\left[10^{12}, 10^{12}+3.3 \cdot 10^{6}\right]$

Histogram of normalized zeros ($\gamma \leq 1$, about 4 million).
\diamond Red: main term. \diamond Blue: includes $O(1 / \log X)$ terms. \diamond Green: all lower order terms.

Orthogonal Results

Background

Study $L(s, f)=\sum \lambda_{f}(n) n^{-s}$ with f ranging over cuspidal newforms of weight k and prime level $N \rightarrow \infty$.

Iwaniec-Luo-Sarnak calculated 1-level density if $\operatorname{supp}(\widehat{\phi}) \subset(-2,2)$.

Key ingredient: averaging $\lambda_{f}(n)$'s over family by the Petersson formula.

Petersson Formula

Let

$$
\Delta_{k, N}(m, n)=\sum_{f \in \mathcal{B}_{k}(N)} \omega_{f}(N) \lambda_{f}(m) \lambda_{f}(n) .
$$

We have
$\Delta_{k, N}(m, n)=\delta(m, n)+2 \pi i^{k} \sum_{c \equiv 0 \bmod N} \frac{S(m, n ; c)}{c} J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c}\right)$
where $\delta(m, n)$ is the Kronecker symbol

$$
S(m, n ; c)=\sum_{d \bmod c}^{*} \exp \left(2 \pi i \frac{m d+n \bar{d}}{c}\right)
$$

is the classical Kloosterman sum ($d \bar{d} \equiv 1 \bmod c$), and $J_{k-1}(x)$ is a Bessel function.

Consequences of the Petersson Formula

The Bessel-Kloosterman piece contributes an error term if $\sigma<1$ and a main term otherwise.

The 'diagonal' piece does not include the Bessel-Kloosterman term, which we know contributes!

Possible danger: Ratios Conjecture says only to keep diagonal or main terms, and dropping a smaller ocntribution which becomes quite large!

Main Results: Test for family $\mathcal{F}=H_{k}^{ \pm}(N)$

This family is an important test: the non-diagonal terms that are dropped contribute to the main term!

Theorem: Ratios Conjecture Prediction

With $\chi(s)=\prod_{p}\left(1+\frac{1}{(p-1) p^{s}}\right)$, the 1 -level density is

$$
\begin{aligned}
& \sum_{p} \frac{2 \log p}{p \log R} \widehat{\phi}\left(\frac{2 \log p}{\log R}\right) \\
& \mp 2 \lim _{\epsilon \backslash 0} \int_{-\infty}^{\infty} X_{L}\left(\frac{1}{2}+2 \pi i x\right) \chi(\epsilon+4 \pi i x) \phi(t \log R) d t \\
& -\int_{-\infty}^{\infty} \frac{X_{L}^{\prime}}{X_{L}}\left(\frac{1}{2}+2 \pi i t\right) \phi(t \log R) d t+O\left(N^{-1 / 2+\epsilon}\right),
\end{aligned}
$$

Main Results: Test for family $\mathcal{F}=H_{k}^{ \pm}(N)$

This family is an important test: the non-diagonal terms that are dropped contribute to the main term!

Theorem: Agreement with Number Theory

Assume GRH for $\zeta(s)$, Dirichlet L-functions, and $L(s, f)$. For ϕ such that $\operatorname{supp}(\widehat{\phi}) \subset(-1,1)$, the 1 -level density agrees with the ratios conjecture prediction up to $O\left(N^{-1 / 2+\epsilon}\right)$, and get agreement up to a power savings in N if $\operatorname{supp}(\widehat{\phi}) \subset(-2,2)$.

Sketch of Symplectic Proofs

Ratios Calculation

Hardest piece to analyze is
$\begin{aligned} R(g ; X)=- & \frac{2}{X^{*} \log X} \sum_{d \leq X} \int_{-\infty}^{\infty} g(\tau) e^{-2 \pi i \tau \frac{\log (d / \pi)}{\log X}} \frac{\Gamma\left(\frac{1}{4}-\frac{\pi i \tau}{\log X}\right)}{\Gamma\left(\frac{1}{4}+\frac{\pi i \tau}{\log X}\right)} \\ & \cdot \zeta\left(1-\frac{4 \pi i \tau}{\log X}\right) A_{D}\left(-\frac{2 \pi i \tau}{\log X} ; \frac{2 \pi i \tau}{\log X}\right) d \tau, \\ A_{D}(-r, r)= & \prod_{p}\left(1-\frac{1}{(p+1) p^{1-2 r}}-\frac{1}{p+1}\right) \cdot\left(1-\frac{1}{p}\right)^{-1} .\end{aligned}$
Proof: shift contours, keep track of poles of ratios of Γ and zeta functions.

Ratios Calculation: Weaker result for $\operatorname{supp}(\widehat{g}) \subset(-1,1)$.

- d-sum is $X^{*} e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau}\left(1-\frac{2 \pi i \tau}{\log X}\right)^{-1}+O\left(X^{1 / 2}\right)$;

Ratios Calculation: Weaker result for $\operatorname{supp}(\widehat{g}) \subset(-1,1)$.

- d-sum is $X^{*} e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau}\left(1-\frac{2 \pi i \tau}{\log X}\right)^{-1}+O\left(X^{1 / 2}\right)$;
- decay of g restricts τ-sum to $|\tau| \leq \log X$, Taylor expand everything but g : small error term and

$$
\begin{aligned}
& \int_{|\tau| \leq \log X} g(\tau) \sum_{n=-1}^{N} \frac{a_{n}}{\log ^{n} X}(2 \pi i \tau)^{n} e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau} d \tau \\
= & \sum_{n=-1}^{N} \frac{a_{n}}{\log ^{n} X} \int_{|\tau| \leq \log X}(2 \pi i \tau)^{n} g(\tau) e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau} d \tau ;
\end{aligned}
$$

Ratios Calculation: Weaker result for $\operatorname{supp}(\widehat{g}) \subset(-1,1)$.

- d-sum is $X^{*} e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau}\left(1-\frac{2 \pi i \tau}{\log X}\right)^{-1}+O\left(X^{1 / 2}\right)$;
- decay of g restricts τ-sum to $|\tau| \leq \log X$, Taylor expand everything but g : small error term and

$$
\begin{aligned}
& \int_{|\tau| \leq \log X} g(\tau) \sum_{n=-1}^{N} \frac{a_{n}}{\log ^{n} X}(2 \pi i \tau)^{n} e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau} d \tau \\
= & \sum_{n=-1}^{N} \frac{a_{n}}{\log ^{n} X} \int_{|\tau| \leq \log X}(2 \pi i \tau)^{n} g(\tau) e^{-2 \pi i\left(1-\frac{\log \pi}{\log X}\right) \tau} d \tau ;
\end{aligned}
$$

- from decay of g can extend the τ-integral to \mathbb{R} (essential that N is fixed and finite!), for $n \geq 0$ get the Fourier transform of $g^{(n)}$ (the $n^{\text {th }}$ derivative of g) at $1-\frac{\pi}{\log X}$, vanishes if $\operatorname{supp}(\widehat{g}) \subset(-1,1)$.

Number Theory Sums

$$
\begin{aligned}
& S_{\text {ceve }}=-\frac{2}{X^{*}} \sum_{d \leq X} \sum_{\ell=1}^{\infty} \sum_{p} \frac{\chi_{d}(p)^{2} \log p}{p^{\ell} \log X} \hat{g}\left(\frac{2 \log p^{\ell}}{\log X}\right) \\
& S_{\text {odd }}=-\frac{2}{X^{*}} \sum_{d \leq X} \sum_{\ell=0}^{\infty} \sum_{p} \frac{\chi_{d}(p) \log p}{p^{(2 \ell+1) / 2} \log X} \hat{g}\left(\frac{\log p^{2 \ell+1}}{\log X}\right) .
\end{aligned}
$$

Number Theory Sums

Lemma

Let $\operatorname{supp}(\widehat{g}) \subset(-\sigma, \sigma) \subset(-1,1)$. Then
$S_{\text {even }}=-\frac{g(0)}{2}+\frac{2}{\log X} \int_{-\infty}^{\infty} g(\tau) \frac{\zeta^{\prime}}{\zeta}\left(1+\frac{4 \pi i \tau}{\log X}\right) d \tau$

$$
+\frac{2}{\log X} \int_{-\infty}^{\infty} g(\tau) A_{D}^{\prime}\left(\frac{2 \pi i \tau}{\log X} ; \frac{2 \pi i \tau}{\log X}\right)+O\left(X^{-\frac{1}{2}+\epsilon}\right)
$$

$$
S_{\text {odd }}=O\left(X^{-\frac{1-\sigma}{2}} \log ^{6} X\right)
$$

If instead we consider the family of characters $\chi_{8 d}$ for odd, positive square-free $d \in(0, X)$ (d a fundamental discriminant), then

$$
S_{\text {odd }}=O\left(X^{-1 / 2+\epsilon}+X^{-\left(1-\frac{3}{2} \sigma\right)+\epsilon}\right) .
$$

Analysis of $S_{\text {even }}$

$\chi_{d}(p)^{2}=1$ except when $p \mid d$. Replace $\chi_{d}(p)^{2}$ with 1 , and subtract off the contribution from when $p \mid d$:

$$
\begin{aligned}
S_{\text {even }}= & -2 \sum_{\ell=1}^{\infty} \sum_{p} \frac{\log p}{p^{\ell} \log X} \widehat{g}\left(2 \frac{\log p^{\ell}}{\log X}\right) \\
& +\frac{2}{X^{*}} \sum_{d \leq X} \sum_{\ell=1}^{\infty} \sum_{p \mid d} \frac{\log p}{p^{\ell} \log X} \widehat{g}\left(2 \frac{\log p^{\ell}}{\log X}\right) \\
= & S_{\text {even } ;}+S_{\text {even } ; 2} .
\end{aligned}
$$

Lemma (Perron's Formula)

$$
S_{\mathrm{even} ; 1}=-\frac{g(0)}{2}+\frac{2}{\log X} \int_{-\infty}^{\infty} g(\tau) \frac{\zeta^{\prime}}{\zeta}\left(1+\frac{4 \pi i \tau}{\log X}\right) d \tau .
$$

Analysis of $S_{\text {even }}: S_{\text {even:2 }}$

This piece gives us $\int g(\tau) A_{D}^{\prime}(-\cdots, \cdots)$.

Analysis of $S_{\text {even }}: S_{\text {even:2 }}$

This piece gives us $\int g(\tau) A_{D}^{\prime}(-\cdots, \cdots)$.

- Main ideas:
\diamond Restrict to $p \leq X^{1 / 2}$.

Analysis of $S_{\text {even }}: S_{\text {even:2 }}$

This piece gives us $\int g(\tau) A_{D}^{\prime}(-\cdots, \cdots)$.

- Main ideas:
\diamond Restrict to $p \leq X^{1 / 2}$.
\diamond For $p<X^{1 / 2}: \sum_{d \leq X, p \mid d} 1=\frac{X^{*}}{p+1}+O\left(X^{1 / 2}\right)$.

Analysis of $S_{\text {even }}: S_{\text {even:2 }}$

This piece gives us $\int g(\tau) A_{D}^{\prime}(-\cdots, \cdots)$.

- Main ideas:
\diamond Restrict to $p \leq X^{1 / 2}$.
\diamond For $p<X^{1 / 2}: \sum_{d \leq x, p \mid d} 1=\frac{X^{*}}{p+1}+O\left(X^{1 / 2}\right)$.
\diamond Use Fourier Transform to expand \widehat{g}.

Analysis of $S_{\text {odd }}$

$$
S_{\mathrm{odd}}=-\frac{2}{X^{*}} \sum_{\ell=0}^{\infty} \sum_{p} \frac{\log p}{p^{(2 \ell+1) / 2} \log X} \widehat{g}\left(\frac{\log p^{2 \ell+1}}{\log X}\right) \sum_{d \leq X} \chi_{d}(p) .
$$

Analysis of $S_{\text {odd }}$

$$
S_{\mathrm{odd}}=-\frac{2}{X^{*}} \sum_{\ell=0}^{\infty} \sum_{p} \frac{\log p}{p^{(2 \ell+1) / 2} \log X} \widehat{g}\left(\frac{\log p^{2 \ell+1}}{\log X}\right) \sum_{d \leq X} \chi_{d}(p) .
$$

Jutila's bound

$$
\sum_{\substack{1<n \leq N \\ n \text { non-Suluare }}}\left|\sum_{\substack{0<d \leq x \\ d \text { find. dise. }}} \chi_{d}(n)\right|^{2} \ll N X \log ^{10} N .
$$

Analysis of $S_{\text {odd }}$

$$
S_{\mathrm{odd}}=-\frac{2}{X^{*}} \sum_{\ell=0}^{\infty} \sum_{p} \frac{\log p}{p^{(2 \ell+1) / 2} \log X} \widehat{g}\left(\frac{\log p^{2 \ell+1}}{\log X}\right) \sum_{d \leq X} \chi_{d}(p) .
$$

Jutila's bound

Proof: Cauchy-Schwarz and Jutila: $p^{2 \ell+1}$ non-square:

$$
\left(\sum_{\ell=0}^{\infty} \sum_{p^{(22+1) / 2} \leq X^{\sigma}}\left|\sum_{d \leq X} \chi_{d}(p)\right|^{2}\right)^{1 / 2} \ll X^{\frac{1+\sigma}{2}} \log ^{5} X
$$

Analysis of $S_{\text {odd }}$: Extending Support

More technical, replace Jutila's bound by applying Poisson Summation to character sums.

Lemma

Let $\operatorname{supp}(\widehat{g}) \subset(-\sigma, \sigma) \subset(-1,1)$. For family $\{8 d: 0<d \leq X, d$ an odd, positive square-free fundamental discriminant $\}, S_{\text {odd }}=O\left(X^{-\frac{1}{2}+\epsilon}+X^{-\left(1-\frac{3}{2} \sigma\right)+\epsilon}\right)$. In particular, if $\sigma<1 / 3$ then $S_{\text {odd }}=O\left(X^{-1 / 2+\epsilon}\right)$.

Conclusions

Conclusions

- Ratios Conjecture gives detailed predictions (up to $\left.X^{1 / 2+\epsilon}\right)$.
- Number Theory agrees with predictions for suitably restricted test functions.
- Numerics quite good.

References

M. V. Berry, Semiclassical formula for the number variance of the Riemann zeros, Nonlinearity 1 (1988), 399-407.
(T) M. V. Berry and J. P. Keating, The Riemann zeros and eigenvalue asymptotics, Siam Review 41 (1999), no. 2, 236-266.
E. E. Bogomolny, O. Bohigas, P. Leboeuf and A. G. Monastra, On the spacing distribution of the Riemann zeros: corrections to the asymptotic result, Journal of Physics A: Mathematical and General 39 (2006), no. 34, 10743-10754.
E. B. Bogomolny and J. P. Keating, Gutzwiller's trace formula and spectral statistics: beyond the diagonal approximation, Phys. Rev. Lett. 77 (1996), no. 8, 1472-1475.
B. Conrey and D. Farmer, Mean values of L-functions and symmetry, Internat. Math. Res. Notices 2000, no. 17, 883-908.

兰
B．Conrey，D．Farmer，P．Keating，M．Rubinstein and N．Snaith， Integral moments of L－functions，Proc．London Math．Soc．（3） 91 （2005），no．1，33－104．

围 J．B．Conrey，D．W．Farmer and M．R．Zirnbauer，Autocorrelation of ratios of L－functions，preprint．
http：／／arxiv．org／abs／0711．0718
回 J．B．Conrey，D．W．Farmer and M．R．Zirnbauer，Howe pairs， supersymmetry，and ratios of random characteristic polynomials for the classical compact groups，preprint．
http：／／arxiv．org／abs／math－ph／0511024
围 J．B．Conrey and N．C．Snaith，Applications of the L－functions Ratios Conjecture，Proc．Lon．Math．Soc． 93 （2007），no 3， 594－646．
（iv J．B．Conrey and N．C．Snaith，Triple correlation of the Riemann zeros，preprint．http：／／arxiv．org／abs／math／0610495
(i) H. Davenport, Multiplicative Number Theory, 2nd edition, Graduate Texts in Mathematics 74, Springer-Verlag, New York, 1980, revised by H. Montgomery.
E. Dueñez, D. K. Huynh, J. P. Keating, S. J. Miller and N. C. Snaith, work in progress.
E. Dueñez and S. J. Miller, The low lying zeros of a GL(4) and a GL(6) family of L-functions, Compositio Mathematica 142 (2006), no. 6, 1403-1425.
E. E. Dueñez and S. J. Miller, The effect of convolving families of L-functions on the underlying group symmetries, preprint. http://arxiv.org/abs/math/0607688
(A. Erdélyi and F. G. Tricomi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), no. 1, 133-142.E. Fouvry and H. Iwaniec, Low-lying zeros of dihedral L-functions, Duke Math. J. 116 (2003), no. 2, 189-217.
P. Gao, N-level density of the low-lying zeros of quadratic Dirichlet L-functions, Ph. D thesis, University of Michigan, 2005.
: A. Güloğlu, Low-Lying Zeros of Symmetric Power L-Functions, Internat. Math. Res. Notices 2005, no. 9, 517-550.

國 G. Hardy and E. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, Clarendon Press, Oxford, 1995.
D. Hejhal, On the triple correlation of zeros of the zeta function, Internat. Math. Res. Notices 1994, no. 7, 294-302.
C. Hughes and S. J. Miller, Low-lying zeros of L-functions with orthogonal symmtry, Duke Math. J., 136 (2007), no. 1, 115-172.
R. Hughes and Z. Rudnick, Linear Statistics of Low-Lying Zeros of L-functions, Quart. J. Math. Oxford 54 (2003), 309-333.
D. K. Huynh, J. P. Keating and N. C. Snaith, work in progress.
H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math. 91, 2000, 55-131.

R M. Jutila, On character sums and class numbers, Journal of Number Theory 5 (1973), 203-214.
(in M. Jutila, On mean values of Dirichlet polynomials with real characters, Acta Arith. 27 (1975), 191-198.

五
M．Jutila，On the mean value of $L(1 / 2, \chi)$ for real characters， Analysis 1 （1981），no．2，149－161．

目 N．Katz and P．Sarnak，Random Matrices，Frobenius Eigenvalues and Monodromy，AMS Colloquium Publications 45，AMS， Providence， 1999.

N．Katz and P．Sarnak，Zeros of zeta functions and symmetries， Bull．AMS 36，1999， 1 － 26.

圊 J．P．Keating，Statistics of quantum eigenvalues and the Riemann zeros，in Supersymmetry and Trace Formulae：Chaos and Disorder，eds．I．V．Lerner，J．P．Keating \＆D．E Khmelnitskii （Plenum Press），1－15．

五 J．P．Keating and N．C．Snaith，Random matrix theory and $\zeta(1 / 2+i t)$ ，Comm．Math．Phys． 214 （2000），no．1，57－89．

国
J. P. Keating and N. C. Snaith, Random matrix theory and L-functions at $s=1 / 2$, Comm. Math. Phys. 214 (2000), no. 1, 91-110.
R J. P. Keating and N. C. Snaith, Random matrices and L-functions, Random matrix theory, J. Phys. A 36 (2003), no. 12, 2859-2881.
R. J. Miller, 1-and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 104 (2004), 952-992.

固 S. J. Miller, Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111-120.
S. J. Miller, Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, preprint.
http://arxiv.org/abs/0704.0924

目 D. Montague and S. J. Miller, The L-function Ratios Conjecture for orthogonal families split by sign (with David Montague), in preparation.

宣
H. Montgomery, The pair correlation of zeros of the zeta function, Analytic Number Theory, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, 1973, 181 - 193.
A. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), no. 177, 273-308.

E A. Odlyzko, The 10^{22}-nd zero of the Riemann zeta function, Proc. Conference on Dynamical, Spectral and Arithmetic Zeta-Functions, M. van Frankenhuysen and M. L. Lapidus, eds., Amer. Math. Soc., Contemporary Math. series, 2001, http://www.research.att.com/~amo/doc/zeta.html.
A. E. Özlük and C. Snyder, Small zeros of quadratic L-functions, Bull. Austral. Math. Soc. 47 (1993), no. 2, 307-319.
A. E. Özlük and C. Snyder, On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis, Acta Arith. 91 (1999), no. 3, 209-228.
R. Ricotta and E. Royer, Statistics for low-lying zeros of symmetric power L-functions in the level aspect, preprint. http://arxiv.org/abs/math/0703760
(R. Royer, Petits zéros de fonctions L de formes modulaires, Acta Arith. 99 (2001), no. 2, 147-172.
(M. Rubinstein, Low-lying zeros of L-functions and random matrix theory, Duke Math. J. 109, (2001), 147-181.
(M. Rubinstein, Computational methods and experiments in analytic number theory. Pages 407-483 in Recent Perspectives in Random Matrix Theory and Number Theory, ed. F. Mezzadri and N. C. Snaith editors, 2005.

R Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81, 1996, 269 - 322.

家
K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at $s=1 / 2$, Ann. of Math. (2) 152 (2000), 447-488.
(1) J. Stopple, The quadratic character experiment, preprint. http://arxiv.org/abs/0802.4255
(1) M. Young, Lower-order terms of the 1-level density of families of elliptic curves, Internat. Math. Res. Notices 2005, no. 10, 587-633.
1 M. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2006), no. 1, 205-250.

