Rational Points and Hypergeometric Functions

Adriana Salerno

October 4, 2009

The Goal

Motivation- Igusa's result
Background
Definitions
Koblitz's Theorem
The Gross-Koblitz Formula
The main result
A familiar example
Work in progress

The Goal

Let X_{λ} be the family of varieties defined by

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$ and $\lambda \in \mathbb{F}_{q}$.

Let $N_{\mathbb{F}_{q}}(\lambda)$ be the number of \mathbb{F}_{q}-points on X_{λ}.

The Goal

Let X_{λ} be the family of varieties defined by

$$
x_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$ and $\lambda \in \mathbb{F}_{q}$.

Let $N_{\mathbb{F}_{q}}(\lambda)$ be the number of \mathbb{F}_{q}-points on X_{λ}.
Objective: Find an explicit relation between the function $N_{\mathbb{F}_{q}}(\lambda)$ and hypergeometric functions.

Motivation - Igusa's result

It is known that for the Legendre family of elliptic curves:

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

we get that

$$
N_{\mathbb{F}_{p}}(\lambda) \equiv(-1)^{\frac{p-1}{2}}\left[{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid \lambda\right)\right]_{0}^{\frac{p-1}{2}} \bmod p
$$

We also know that ${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid \lambda\right)$ is the only holomorphic solution around 0 of the Picard-Fuchs differential equation satisfied by the periods of E_{λ}.

The generalized hypergeometric function

Let $A, B \in \mathbb{N}$. A hypergeometric function is a function on \mathbb{C} of the form:

$$
\begin{aligned}
{ }_{A} F_{B}(\alpha ; \beta \mid z) & ={ }_{A} F_{B}\left(\alpha_{1}, \ldots, \alpha_{A} ; \beta_{1}, \ldots, \beta_{B} \mid z\right) \\
& =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{A}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{B}\right)_{k} k!} z^{k}
\end{aligned}
$$

where $\alpha \in \mathbb{Q}^{A}$ are numerator parameters, $\beta \in \mathbb{Q}^{B}$ are denominator parameters, and the Pochhammer notation is defined by:

$$
(x)_{k}=x(x+1) \cdots(x+k-1)=\frac{\Gamma(x+k)}{\Gamma(x)}
$$

Outline
The Goal

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.
- For $s \in \frac{1}{(q-1)} \mathbb{Z} / \mathbb{Z}$ we let $g(s)$ denote the Gauss sum

$$
g(s)=\sum_{x \in \mathbb{F}_{q}} \chi_{s}(x) \psi(x)
$$

A large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

A large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.

A large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.
- Let Δ be the diagonal elements of μ_{d}^{n}, i.e. elements of the form (ξ, \cdots, ξ).

A large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.
- Let Δ be the diagonal elements of μ_{d}^{n}, i.e. elements of the form (ξ, \cdots, ξ).
The varieties X_{λ} allow a faithful action of the group

$$
G=\left\{\xi \in \mu_{d}^{n} \mid \xi^{h}=1\right\} / \Delta
$$

by $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ taking the point $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(\xi_{1} x_{1}, \ldots, \xi_{n} x_{n}\right)$.

A large group action

$$
\operatorname{char}(G) \leftrightarrow W,
$$

where

$$
W=\left\{\left(w_{1}, \ldots, w_{n}\right) \mid 0 \leq w_{i}<d, \sum w_{i} \equiv 0 \bmod d\right\}
$$

and $w^{\prime} \sim w$ if $w-w^{\prime}$ is a multiple $(\bmod d)$ of h. Here

$$
\chi_{w}(\xi):=\chi\left(\xi^{w}\right), \quad \xi^{w}=\xi_{1}^{w_{1}} \cdots \xi_{n}^{w_{n}}
$$

and χ is a fixed primitive character of μ_{d}, which we can get for example by restricting $\chi_{1 /(q-1)}$ to μ_{d}.

Koblitz's result

Assume $d \mid q-1$.
Theorem (Koblitz)

$$
N_{\mathbb{F}_{q}}(\lambda)=N_{\mathbb{F}_{q}}(0)+\frac{1}{q-1} \sum_{\substack{s \in \frac{d}{q-1} \mathbb{Z} / \mathbb{Z} \\ w \in W}} \frac{g\left(\frac{w+s h}{d}\right)}{g(s)} \chi_{s}(d \lambda),
$$

where we denote $g\left(\frac{w+s h}{d}\right)=\prod_{i} g\left(\frac{w_{i}+s h_{i}}{d}\right)$.

Outline

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.
We want to find an explicit relation between $N_{\mathbb{F}_{p}}(\lambda) \bmod p$ and generalized hypergeometric functions. We use

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.
We want to find an explicit relation between $N_{\mathbb{F}_{p}}(\lambda) \bmod p$ and generalized hypergeometric functions. We use

Theorem (Gross-Koblitz)
For $s \in \frac{1}{p-1} \mathbb{Z} / \mathbb{Z}$, we have

$$
g(s)=-(-p)^{s} \Gamma_{p}(s) .
$$

Here, Γ_{p} is the p-adic analog of the Gamma function.

The 0-dimensional family

Study $N_{\mathbb{F}_{p}}(\lambda) \bmod p$ for the family

$$
Z_{\lambda}: x_{1}^{d}+x_{2}^{d}-d \lambda x_{1} x_{2}^{d-1}=0 .
$$

Assume p is a prime such that $d \mid p-1$.

The 0-dimensional family

Study $N_{\mathbb{F}_{p}}(\lambda) \bmod p$ for the family

$$
Z_{\lambda}: x_{1}^{d}+x_{2}^{d}-d \lambda x_{1} x_{2}^{d-1}=0 .
$$

Assume p is a prime such that $d \mid p-1$. We use the following: Formula (S)

$$
N_{\mathbb{F}_{p}}(\lambda)=N_{\mathbb{F}_{p}}(0)+\frac{-1}{p-1} \sum_{a=0}^{p-2} \frac{(-p)^{\eta(a)} \Gamma_{p}\left(\frac{a}{p-1}\right) \Gamma_{p}\left(\left\{\frac{(d-1) a}{p-1}\right\}\right)}{\Gamma_{p}\left(\left\{\frac{d a}{p-1}\right\}\right)} \omega(d \lambda)^{-d a}
$$

where $\eta(a)=\left(\frac{a}{p-1}+\left\{\frac{(d-1) a}{p-1}\right\}-\left\{\frac{d a}{p-1}\right\}\right)$.
Notation
$\omega: \mathbb{F}_{p}^{*} \rightarrow \mathbb{C}_{p}^{*}$ - Teichmüller character. $(\omega(x) \equiv x \bmod p)$

- $\{x\}=x-[x]$, fractional part of x.

The 0-dimensional family

Theorem (S)
Let $\alpha^{(0)}=\left(\frac{1}{d}, \ldots, \frac{d-1}{d}\right), \beta^{(0)}=\left(\frac{1}{d-1}, \ldots, \frac{d-2}{d-1}\right)$.

$$
\begin{aligned}
& N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \\
& \equiv \sum_{i=0}^{d-2}\left[{ }_{d} F_{d-1}\left(\alpha^{(i)} ; \beta^{(i)} \mid(d-1)^{-(d-1)} \lambda^{-d}\right)\right]_{\frac{(i(p-1)}{d-1}}^{\frac{(i+1)(p-1)}{d}}-1 \\
& \operatorname{incd} p,
\end{aligned}
$$

where $\alpha^{(i)}=\left(\frac{1}{d}+1, \ldots, \frac{i}{d}+1, \frac{i+1}{d}, \ldots, \frac{d-1}{d}\right)$, and
$\beta^{(i)}=\left(\frac{1}{d-1}+1, \ldots, \frac{i}{d-1}+1, \frac{i+1}{d-1}, \ldots, \frac{d-2}{d-1}\right)$.
$[u(z)]_{i}^{j}$ denotes the polynomial which is the truncation of a series $u(z)$ from $n=i$ to j.

The 0-dimensional family

So for example in the case $d=3$ we get that

$$
\begin{aligned}
N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \equiv & {\left[{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; \frac{1}{2} \left\lvert\, \frac{1}{2^{2} \lambda^{3}}\right.\right)\right]_{0}^{\frac{p-1}{3}-1} } \\
& +\left[2 F_{1}\left(\frac{4}{3}, \frac{2}{3} ; \frac{3}{2} \left\lvert\, \frac{1}{2^{2} \lambda^{3}}\right.\right)\right]_{\frac{p-1}{2}}^{\frac{2(p-1)}{3}-1} \bmod p .
\end{aligned}
$$

The Dwork family with $d=4$

$$
Y_{\lambda}: x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}-4 \lambda x_{1} x_{2} x_{3} x_{4}=0 .
$$

The set W is made up of 64 vectors, but we can split them up into 16 equivalence classes, and of those there are only three "types".
These are

$$
\begin{aligned}
& (0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3) \\
& (0,1,1,2),(1,2,2,3),(2,3,3,0),(3,0,0,1) \\
& (0,0,2,2),(1,1,3,3),(2,2,0,0),(3,3,1,1)
\end{aligned}
$$

The rest are permutations of these. So there is one class of the first type, 12 classes of the second type, and 3 classes of the third type.

The Dwork family with $d=4$

$$
\begin{align*}
& N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0)=\frac{1}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{4}}{g(4 s)} \chi_{4 s}(4 \lambda) \tag{1}\\
& +\frac{12}{p-1} \sum_{s \in \frac{1}{p-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s) g\left(s+\frac{1}{4}\right)^{2} g\left(s+\frac{1}{2}\right)}{g(4 s)} \chi_{4 s}(4 \lambda) \tag{2}\\
& \quad+\frac{3}{p-1} \sum_{s \in \frac{1}{p-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{2} g\left(s+\frac{1}{2}\right)^{2}}{g(4 s)} \chi_{4 s}(4 \lambda) . \tag{3}
\end{align*}
$$

The Dwork family with $d=4$

Using Gross-Koblitz and taking mod p leaves only $\left(S_{1}\right)$, so

$$
N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \equiv\left[3 F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 1,1 \mid \lambda^{-4}\right)\right]_{0}^{\frac{p-1}{4}-1} \bmod p
$$

What's Next

- Extend the results for \mathbb{F}_{p} points to \mathbb{F}_{q}.

What's Next

- Extend the results for \mathbb{F}_{p} points to \mathbb{F}_{q}.
- Prove a similar result for general families of the form X_{λ}.

What's Next

- Extend the results for \mathbb{F}_{p} points to \mathbb{F}_{q}.
- Prove a similar result for general families of the form X_{λ}.
- Relate the number of points to eigenvalues of Frobenius.

Thanks!

Thanks for the invitation!

