# Heights of Divisors of $x^{n}-1$ 

Lola Thompson<br>Dartmouth College

October 4, 2009

## Introduction

## Definition

We define the height of a polynomial with integer coefficients to be the largest coefficient in absolute value.

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, i.e.

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

## Introduction

## Definition

We define the height of a polynomial with integer coefficients to be the largest coefficient in absolute value.

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, i.e.

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

- $\Phi_{1}(x), \Phi_{2}(x), \ldots, \Phi_{100}(x)$ all have height 1, i.e. all of the coefficients are in the set $\{0, \pm 1\}$. Based on this observation, it may be tempting to conjecture that "all cyclotomic polynomials have height 1 ."


## Introduction

## Definition

We define the height of a polynomial with integer coefficients to be the largest coefficient in absolute value.

Let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial, i.e.

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{t h} \text { root of } 1}}(x-\zeta)
$$

- $\Phi_{1}(x), \Phi_{2}(x), \ldots, \Phi_{100}(x)$ all have height 1, i.e. all of the coefficients are in the set $\{0, \pm 1\}$. Based on this observation, it may be tempting to conjecture that "all cyclotomic polynomials have height 1 ."
- However, the pattern breaks down at $\Phi_{105}(x)$, which has height 2 .


## Introduction

The fact that $\Phi_{n}(x)$ has height 1 when $n \leq 104$ and $\Phi_{105}(x)$ has height 2 leads to some natural questions:
(1) Can the height of $\Phi_{n}(x)$ get larger than 2? How large can it get?
(2) How quickly does the height of $\Phi_{n}(x)$ grow? Can we find an upper bound for it?
(3) What is the normal height of $\Phi_{n}(x)$ ? What is it on average?

## Introduction

The fact that $\Phi_{n}(x)$ has height 1 when $n \leq 104$ and $\Phi_{105}(x)$ has height 2 leads to some natural questions:
(1) Can the height of $\Phi_{n}(x)$ get larger than 2? How large can it get?
(2) How quickly does the height of $\Phi_{n}(x)$ grow? Can we find an upper bound for it?
(3) What is the normal height of $\Phi_{n}(x)$ ? What is it on average?

- The answer to (1) is known. The height can get arbitrarily large.


## Introduction

The fact that $\Phi_{n}(x)$ has height 1 when $n \leq 104$ and $\Phi_{105}(x)$ has height 2 leads to some natural questions:
(1) Can the height of $\Phi_{n}(x)$ get larger than 2? How large can it get?
(2) How quickly does the height of $\Phi_{n}(x)$ grow? Can we find an upper bound for it?
(3) What is the normal height of $\Phi_{n}(x)$ ? What is it on average?

- The answer to (1) is known. The height can get arbitrarily large.
- In this talk, we'll answer (2) and give a generalization of this result to a larger family of polynomials.


## Introduction

The fact that $\Phi_{n}(x)$ has height 1 when $n \leq 104$ and $\Phi_{105}(x)$ has height 2 leads to some natural questions:
(1) Can the height of $\Phi_{n}(x)$ get larger than 2? How large can it get?
(2) How quickly does the height of $\Phi_{n}(x)$ grow? Can we find an upper bound for it?
(3) What is the normal height of $\Phi_{n}(x)$ ? What is it on average?

- The answer to (1) is known. The height can get arbitrarily large.
- In this talk, we'll answer (2) and give a generalization of this result to a larger family of polynomials.
- The answer to (3) is not known. However, the theorems that we will discuss in this talk go a long way towards answering this question.


## Outline

(1) Introduction
(2) Bounding the Height of $\Phi_{n}(x)$
(3) Maier's Upper and Lower Bounds
(4) A Generalization of Maier's Upper Bound
(5) Further Directions

## Bounding the Height of $\Phi_{n}(x)$

Let $A(n)$ denote the height of $\Phi_{n}(x)$.
Finding "good" upper and lower bounds for $A(n)$ has been of interest for some time.

- In 1946, P. Erdös stated that $\log A(n) \leq n^{(1+o(1)) \log 2 / \log \log n}$. He held back its proof because of how complicated it was. Vaughan showed in 1975 that this inequality can be reversed for infinitely many $n$.


## Bounding the Height of $\Phi_{n}(x)$

Let $A(n)$ denote the height of $\Phi_{n}(x)$.
Finding "good" upper and lower bounds for $A(n)$ has been of interest for some time.

- In 1946, P. Erdös stated that $\log A(n) \leq n^{(1+o(1)) \log 2 / \log \log n}$. He held back its proof because of how complicated it was. Vaughan showed in 1975 that this inequality can be reversed for infinitely many $n$.
- In 1949, P.T. Bateman gave a simple argument that if $k$ is a given positive integer then $A(n) \leq n^{2^{k-1}}$ if $n$ has exactly $k$ distinct prime factors.


## Bounding the Height of $\Phi_{n}(x)$

Let $A(n)$ denote the height of $\Phi_{n}(x)$.
Finding "good" upper and lower bounds for $A(n)$ has been of interest for some time.

- In 1946, P. Erdös stated that $\log A(n) \leq n^{(1+o(1)) \log 2 / \log \log n}$. He held back its proof because of how complicated it was. Vaughan showed in 1975 that this inequality can be reversed for infinitely many $n$.
- In 1949, P.T. Bateman gave a simple argument that if $k$ is a given positive integer then $A(n) \leq n^{2^{k-1}}$ if $n$ has exactly $k$ distinct prime factors.
- This result was improved upon by P.T. Bateman, C. Pomerance and R.C. Vaughan in 1981, who showed that $A(n) \leq n^{2^{k-1} / k-1}$. They also showed that $A(n) \geq n^{2^{k-1} / k-1} /(5 \log n)^{2^{k-1}}$ holds for infinitely many $n$ with exactly $k$ distinct odd prime factors.


## Maier's Upper Bound for $A(n)$

H. Maier took a different approach to bounding $A(n)$. Rather than finding an upper bound for integers $n$ with a fixed number of prime factors, he sought to find an upper bound that holds "for almost all n," i.e. except for a set with density 0 .

## Theorem (H. Maier)

Let $\psi(n)$ be any function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $A(n)$ denote the height of $\Phi_{n}(x)$. Then $A(n) \leq n^{\psi(n)}$ for almost all $n$.

Maier proved that this upper bound is "best possible" for $A(n)$. In other words, if we tried to make the upper bound any smaller, there would be a positive proportion of integers $n$ with $A(n)$ outside of the bound.

## Maier's Lower Bound for $A(n)$

Maier used the same techniques to give a lower bound for $A(n)$ :

## Theorem (H. Maier)

Let $\varepsilon(n)$ be any function defined for all positive integers such that $\varepsilon(n) \rightarrow 0$ for $n \rightarrow \infty$. Let $A(n)$ denote the height of $\Phi_{n}(x)$. Then $A(n) \geq n^{\varepsilon(n)}$ for almost all $n$.

## Bounding the Height of Any Divisor of $x^{n}-1$

Let $B(n)$ denote the maximal height over all polynomial divisors of $x^{n}-1$.

Since $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$ then we can think of $B(n)$ as the maximal height over all products of $\Phi_{d}(x)$ where $d \mid n$. Thus, $B(n)$ is, in some sense, a generalization of $A(n)$.

Much less is known about $B(n)$ than $A(n)$.
In 2005, C. Pomerance and N. Ryan proved that as $n \rightarrow \infty$, $\log B(n) \leq n^{(\log 3+o(1)) / \log \log n}$. They also showed that this inequality can be reversed for infinitely many $n$.

## A Generalization of Maier's Upper Bound

The following gives a generalization of Maier's upper bound:

## Theorem (T.)

Let $\psi(n)$ be any function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $\tau(n)$ denote the number of positive divisors of $n$. Then $B(n) \leq n^{\tau(n) \psi(n)}$ for almost all $n$.

## Challenges In Generalizing Maier's Result

There are two ways in which the generalized version of Maier's result is more complicated than the original:

## Challenges In Generalizing Maier's Result

There are two ways in which the generalized version of Maier's result is more complicated than the original:

- (1) In Maier's paper, we are given the polynomial whose height we were trying to bound.

In the new scenario, we have to look over all possible products of $\Phi_{d}(x)$ where $d \mid n$ without knowing which one has maximal height.

## Challenges In Generalizing Maier's Result

There are two ways in which the generalized version of Maier's result is more complicated than the original:

- (1) In Maier's paper, we are given the polynomial whose height we were trying to bound.

In the new scenario, we have to look over all possible products of $\Phi_{d}(x)$ where $d \mid n$ without knowing which one has maximal height.

- (2) In Maier's paper, it suffices to assume that $n$ is a product of distinct prime factors, since primes occurring to exponents greater than 1 in the factorization of $n$ do not affect the height of $\Phi_{n}(x)$ (for example, $A(6)=A(12)=A(48)$ ).

However, the same cannot be said for $B(n)$ (for example, $B(6)=2, B(12)=3, B(48)=6)$. So, in bounding $B(n)$, we also have to consider the case where the prime factors of $n$ are not distinct.

## Proof Sketch

## Theorem (T.)

Let $\psi(n)$ be a function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $\tau(n)$ denote the number of positive divisors of $n$. Then $B(n) \leq n^{\tau(n) \psi(n)}$ for almost all $n$.

- To prove the generalization, we use a result (due to Pomerance and Ryan) that, for any $n, B(n) \leq n^{\tau(n)} \prod_{d \mid n} A(d)$.


## Proof Sketch

## Theorem (T.)

Let $\psi(n)$ be a function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $\tau(n)$ denote the number of positive divisors of $n$. Then $B(n) \leq n^{\tau(n) \psi(n)}$ for almost all $n$.

- To prove the generalization, we use a result (due to Pomerance and Ryan) that, for any $n, B(n) \leq n^{\tau(n)} \prod_{d \mid n} A(d)$.
- Let $A_{0}(n)=\max _{d \mid n} A(d)$. Then, from the inequality above, $d \mid n$
$B(n) \leq n^{\tau(n)} A_{0}(n)^{\tau(n)}$.


## Proof Sketch

## Theorem (T.)

Let $\psi(n)$ be a function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $\tau(n)$ denote the number of positive divisors of $n$. Then $B(n) \leq n^{\tau(n) \psi(n)}$ for almost all $n$.

- To prove the generalization, we use a result (due to Pomerance and Ryan) that, for any $n, B(n) \leq n^{\tau(n)} \prod_{d \mid n} A(d)$.
- Let $A_{0}(n)=\max _{d \mid n} A(d)$. Then, from the inequality above, $B(n) \leq n^{\tau(n)} A_{0}^{d n}(n)^{\tau(n)}$.
- The result will follow if we can show that $A_{0}(n) \leq n^{\psi(n)}$ for almost all n.


## Key Lemma

## Lemma (T.)

Let $\psi(n)$ be a function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $A_{0}(n)=\max _{d \mid n} A(d)$. Then $A_{0}(n) \leq n^{\psi(n)}$ for almost all $n$.

The proof proceeds in a manner similar to Maier's proof, with the following modifications:

- (1) Maier shows that $\log A(n) \ll \sum_{k=1}^{\omega(n)} 2^{k} \log p_{k}$ for all square-free integers $n$, where $p_{k}$ is the $k^{\text {th }}$ largest prime factor of $n$. We had to prove that $\log A_{0}(n) \ll \sum_{k=1}^{\omega(n)} 2^{k} \log p_{k}$ holds for all $n$, redefining $p_{k}$ to be the $k^{\text {th }}$ largest distinct prime factor of $n$.


## Key Lemma

## Lemma (T.)

Let $\psi(n)$ be a function defined for all positive integers such that $\psi(n) \rightarrow \infty$ for $n \rightarrow \infty$. Let $A_{0}(n)=\max _{d \mid n} A(d)$. Then $A_{0}(n) \leq n^{\psi(n)}$ for almost all $n$.

The proof proceeds in a manner similar to Maier's proof, with the following modifications:

- (2) Maier shows that if $2<\eta<e$ then there is a constant $c(\eta)>0$ such that for all natural numbers $k<\log \log x / \log \eta$, the set $\left\{n \leq x: \mu(n) \neq 0, \log p_{k}>\eta^{-k} \log x, k \geq k_{0}\right\}$ has asymptotic density 0 if $k_{0}$ is sufficiently large.

We are able to remove the restriction that $\mu(n) \neq 0$ (ie. that $n$ is square-free).

## Further Directions

As mentioned earlier, much less is known about $B(n)$ than $A(n)$. Here are some possible areas for further research:

- H. Maier was able to show that his upper bound for $A(n)$ is "best possible." I am currently trying to determine whether the same holds for the upper bound for $B(n)$.


## Further Directions

As mentioned earlier, much less is known about $B(n)$ than $A(n)$. Here are some possible areas for further research:

- H. Maier was able to show that his upper bound for $A(n)$ is "best possible." I am currently trying to determine whether the same holds for the upper bound for $B(n)$.
- H. Maier gave a lower bound of $n^{\varepsilon(n)}$ for $A(n)$ that holds for almost all integers $n$. It's certainly true that $n^{\varepsilon(n)} \leq A(n) \leq B(n)$, but can we find a better lower bound? Is it the case that $n^{\overline{\tau(n) \varepsilon(n)}} \leq B(n)$ for almost all $n$ ?


## Further Directions

As mentioned earlier, much less is known about $B(n)$ than $A(n)$. Here are some possible areas for further research:

- H. Maier was able to show that his upper bound for $A(n)$ is "best possible." I am currently trying to determine whether the same holds for the upper bound for $B(n)$.
- H. Maier gave a lower bound of $n^{\varepsilon(n)}$ for $A(n)$ that holds for almost all integers $n$. It's certainly true that $n^{\varepsilon(n)} \leq A(n) \leq B(n)$, but can we find a better lower bound? Is it the case that $n^{\tau(n) \varepsilon(n)} \leq B(n)$ for almost all $n$ ?
- Define $B_{k}(n)$ to be the maximal height over all products of at most $k$ cyclotomic polynomials dividing $x^{n}-1$. Can we find a lower bound for $B_{k}(n)$ ?


## Further Directions

As mentioned earlier, much less is known about $B(n)$ than $A(n)$. Here are some possible areas for further research:

- H. Maier was able to show that his upper bound for $A(n)$ is "best possible." I am currently trying to determine whether the same holds for the upper bound for $B(n)$.
- H. Maier gave a lower bound of $n^{\varepsilon(n)}$ for $A(n)$ that holds for almost all integers $n$. It's certainly true that $n^{\varepsilon(n)} \leq A(n) \leq B(n)$, but can we find a better lower bound? Is it the case that $n^{\tau(n) \varepsilon(n)} \leq B(n)$ for almost all $n$ ?
- Define $B_{k}(n)$ to be the maximal height over all products of at most $k$ cyclotomic polynomials dividing $x^{n}-1$. Can we find a lower bound for $B_{k}(n)$ ?
- What is the normal order of $B(n)$ ? What is $B(n)$ on average?


## References

[1] J. Suzuki, On Coefficients of Cyclotomic Polynomials.
[2] Y. Gallot, P. Moree and H. Hommerson, Value Distribution of Cyclotomic Polynomial Coefficients.
[3] P. Erdös, On the Coefficients of the Cyclotomic Polynomial.
[4] P.T. Bateman, Note on the Coefficients of the Cyclotomic Polynomial.
[5] P.T. Bateman, C. Pomerance, and R.C. Vaughan, On the Size of the Coefficients of the Cyclotomic Polynomial.
[6] H. Maier, The Size of Coefficients of Cyclotomic Polynomials.
[7] C. Pomerance, N. Ryan, Maximal Height of Divisors of $x^{n}-1$.

