Binary Theta Series and CM Modular Forms

1. Introduction

Let $r_n(q) = \{(x, y) \in \mathbb{Z}^2 : q(x, y) = n\}$ denote the number of representations of $n \in \mathbb{Z}$ by the positive definite binary quadratic form

$$q(x,y) = ax^2 + bxy + cy^2, \quad a, b, c \in \mathbb{Z}, \ a > 0.$$

Fermat, Euler, Lagrange, Gauss: When is $r_n(q) > 0$?

Dirichlet(1839), Weber(1882): If gcd(a, b, c) = 1, i.e. if q is primitive, then \exists_{∞} primes $p : r_p(q) > 0$. — Study:

$$Z_q(s) = \sum_{n \ge 1} r_n(q) n^{-s}.$$

Following Jacobi, Hermite, Kronecker, Weber, consider the closely related binary theta series

$$\vartheta_q(z) = \sum_{x,y \in \mathbb{Z}} e^{2\pi i q(x,y)z} = \sum_{n \ge 0} r_n(q) e^{2\pi i nz}$$

Theorem 0 (a) Weber(1893): Let $D = \Delta(q) = b^2 - 4ac$ denote the discriminant of q and $\psi_D = \left(\frac{D}{\cdot}\right)$. Then

$$\vartheta_q\left(\frac{az+b}{cz+d}\right) = \psi_D(d)(cz+d)\vartheta_q(z), \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(|D|).$$

(b) Hecke(1926), Schoeneberg(1939): ϑ_q is holomorphic at the cusps, so $\vartheta_q \in M_1(|D|, \psi_D)$.

Fix: a discriminant D < 0. Thus:

 $D = f_D^2 d_K$, where $K = \mathbb{Q}(\sqrt{D}), d_K = \operatorname{disc}(K)$, and $f_D \ge 1$ is some integer. Let

 $\Theta_D := \langle \vartheta_q : q \in Q_D \rangle_{\mathbb{C}} \text{ and } \Theta(D) := \langle \vartheta_q : q \in Q(D) \rangle_{\mathbb{C}}$ be the \mathbb{C} -subspaces generated by the theta-series, where $Q(D) = \{q = (a, b, c) \in \mathbb{Z}^2 : a > 0, \Delta(q) = D/t^2\},\$ $Q_D = \{q = (a, b, c) \in Q(D) : \gcd(a, b, c) = 1, \Delta(q) = D\}.$

Thus

$$\Theta_D \subset \Theta(D) \subset M_1(|D|, \psi_D).$$

Questions: 1) How large are the spaces Θ_D and $\Theta(D)$?

What is the dimension of the subspaces of cusp forms, i.e. of

 $\Theta_D^S = \Theta_D \cap S_1(|D|, \psi_D)$ and $\Theta(D)^S = \Theta(D) \cap S_1(|D|, \psi_D)?$

Hecke (1926): $\Theta(D) \neq M_1(|D|, \psi_D)$, for many D's.

2) How can a binary theta series ϑ_q be expressed in terms of the (extended) Atkin-Lehner basis of $M_1(|D|, \psi_D)$?

3) Is there an intrinsic characterization of these spaces?

2. Some Observations

1) The group $\operatorname{GL}_2(\mathbb{Z})$ acts on the sets Q_D and Q(D), and

 $\vartheta_{q'} = \vartheta_q$, for all $q' \in q \operatorname{GL}_2(\mathbb{Z})$.

By using the Dirichlet/Weber result, one can show that the set $\{\vartheta_q : q \in Q_D / \operatorname{GL}_2(\mathbb{Z})\}$ is a basis of Θ_D . In particular,

 $\dim \Theta_D = \overline{h}_D := |Q_D / \operatorname{GL}_2(D)|$

2) By Gauss's theory of composition of forms, the set

 $\operatorname{Cl}(D) = Q_D / \operatorname{SL}_2(\mathbb{Z})$

has the structure of an abelian group. If $h_D := |\operatorname{Cl}(D)|$, then

$$\overline{h}_D = \frac{1}{2}(g_D + h_D), \text{ where } g_D = [\operatorname{Cl}(D) : \operatorname{Cl}(D)^2]$$

denotes the number of genera of forms of discriminant D.

3) For a character $\chi \in \operatorname{Cl}(D)^*$ on $\operatorname{Cl}(D)$, put

$$\vartheta_{\chi}(z) := \frac{1}{w_D} \sum_{q \in \operatorname{Cl}(D)} \chi(q) \vartheta_q(z) = \sum_{n \ge 0} a_n(\chi) e^{2\pi i n z} \in \Theta_D,$$

where $w_D = 2$ for D < -4 and $w_{-3} = 6$, $m_{-4} = 4$.

It is immediate that $\{\vartheta_{\chi}\}_{\chi \in \operatorname{Cl}(D)^*}$ generates Θ_D and hence by 1) forms a basis of Θ_D (subject to the identification $\vartheta_{\overline{\chi}} = \vartheta_{\chi}$).

Note: It turns out (cf. Theorem 1) that the coefficients $a_n(\chi)$ are multiplicative in n, and that hence ϑ_{χ} is a Hecke eigenfunction w.r.t. to the Hecke algebra $\mathbb{T}(D)$ generated by the Hecke operators T_p with (p, D) = 1.

4) The *L*-function associated to the form ϑ_{χ} is

$$L(s,\chi) = L(s,\vartheta_{\chi}) = \sum_{n\geq 1} a_n(\chi) n^{-s}.$$

This function is frequently found in the literature (e.g., in Lang, *Elliptic Functions*, 1^{st} ed.), and was recently studied in detail by Z.-H. Sun and K. S. Williams (2006).

5) If D is a fundamental discriminant, i.e. if $D = d_K$, then it is well-known that each ϑ_{χ} is a primitive form (newform) and hence in this case the ϑ_{χ} 's are part of the canonical Atkin-Lehner basis of $M_1(|D|, \psi_D)$.

However, in the general case this is no longer true for every $\chi \in \operatorname{Cl}(D)^*$ because some of the characters $\chi \in \operatorname{Cl}(D)^*$ are not primitive, i.e. they are lifts

 $\chi = \chi' \circ \pi$ of characters $\chi' \in \operatorname{Cl}(D')^*$

of some "lower level" D'|D (where $\frac{D}{D'} = t^2 > 1$) via the canonical map

 $\pi = \pi_{D,D'} : \operatorname{Cl}(D) \to \operatorname{Cl}(D').$

3. Main Results

Theorem 1: The space Θ_D is a $\mathbb{T}(D)$ -submodule of $M_1(|D|, \psi_D)$ of multiplicity one, and has a canonical basis $\{\vartheta_{\chi}\}$ consisting of normalized $\mathbb{T}(D)$ -eigenforms. Furthermore, ϑ_{χ} is a cusp form if and only if χ is not a quadratic character.

Theorem 2: We have $\Theta_D = \Theta_D^E \oplus \Theta_D^S$, where

 $\Theta_D^E = \Theta_D \cap E_1(|D|, \psi_D)$ denotes the Eisenstein space part and $\Theta_D^S = \Theta_D \cap S_1(|D|, \psi)$ denotes the cusp space part of Θ_D , and

(1) $\dim \Theta_D^E = g_D$ and $\dim \Theta_D^S = \frac{1}{2}(h_D - g_D).$

Remark: Thus $\Theta_D^S = 0 \Leftrightarrow h_D = g_D \stackrel{def}{\Leftrightarrow} D$ is an idoneal discriminant. (This implies a result of Kitaoka (1971).)

Theorem 3: Let $\chi \in \operatorname{Cl}(D)^*$, where $D = f_D^2 d_K$.

(a) $\exists !$ divisor $f_{\chi} | f_D$ and a unique primitive character $\chi_{pr} \in Cl(D_{\chi})$, where $D_{\chi} = f_{\chi}^2 d_K$, such that $\chi = \chi_{pr} \circ \overline{\pi}_{D,D_{\chi}}$. (b) The form $\vartheta_{\chi_{pr}} \in \Theta_{D_{\chi}}$ is a primitive form (newform) of level $|D_{\chi}|$. Moreover, there exist constants $c_n(\chi) \in \mathbb{R}$ such that

(2)
$$\vartheta_{\chi}(z) = \sum_{n \mid \bar{f}_{\chi}^2} c_n(\chi) \vartheta_{\chi_{pr}}(nz),$$

where $\bar{f}_{\chi} = f_D/f_{\chi}$. Furthermore, the function $n \mapsto c_n(\chi)$ is multiplicative and has generating function

(3)
$$C(s,\chi) := \sum_{n \mid \bar{f}_{\chi}^2} c_n(\chi) n^{-s} = L(s,\vartheta_{\chi})/L(s,\vartheta_{\chi pr}).$$

Remark: While $L(s, \vartheta_{\chi_{pr}})$ is a classical Hecke *L*-function associated to a Hecke character and hence is well-understood, the *L*-function $L(s, \vartheta_{\chi})$ is more complicated and is, in fact, unknown in general.

Thus, (3) does not help in determining the constants $c_n(\chi)$. However, $C(s,\chi)$ can be computed directly by using facts about ideals in quadratic orders.

As a consequence, we thus obtain an explicit expression for the *L*-function $L(s, \chi) = L(s, \vartheta_{\chi})$:

Corollary: If $\chi \in Cl(D)^*$, then $L(s, \chi)$ has the Euler product

(4)
$$L(s,\chi) = \prod_{p} L_{p}(s,\chi)$$

where for $p \nmid \bar{f}_{\chi}$ the *p*-Euler factor $L_p(s, \chi)$ is given by

$$L_p(s,\chi) = \left(1 - a_p(\chi)p^{-s} + \psi_D(p)p^{-2s}\right)^{-1} \\ = \left(1 - a_p(\chi_{pr})p^{-s} + \psi_{D_{\chi}}(p)p^{-2s}\right)^{-1},$$

whereas for $p \mid \bar{f}_{\chi}$ (and $p^{\bar{e}_p} \mid |\bar{f}_{\chi}$), it is given by

$$L_p(s,\chi) = \frac{1 - p^{(1-2s)\bar{e}_p}}{1 - p^{1-2s}} + \frac{\left(1 - \frac{1}{p}\psi_{D_\chi}(p)\right)p^{(1-2s)\bar{e}_p}}{1 - a_p(\chi_{pr})p^{-s} + \psi_{D_\chi}(p)p^{-2s}}$$

Remark: This generalizes the work of Sun and Williams (2006) (for D < 0), who obtained a formula for the *p*-Euler factors of $L(s, \chi)$ in the case that the class group $\operatorname{Cl}(D)$ is cyclic. **Definition:** Let $f \in M_k(N, \psi)$ be a $\mathbb{T}(N)$ -eigenfunction with eigencharacter $\lambda_f : \mathbb{T}(D) \to \mathbb{C}$. We say that f has CM (complex multiplication) by a Dirichlet character θ if

$$\lambda_f(T_p)\theta(p) = \lambda_f(T_p), \text{ for all } p \nmid N \text{cond}(\theta),$$

or, equivalently, if

$$\lambda_f(T_p) = 0$$
 for all $p \nmid N \operatorname{cond}(\theta)$ with $\theta(p) \neq 1$.

We let $M_k^{CM}(N, \psi; \theta)$ denote the space generated by all T(N)eigenfunctions $f \in M_k(N, \psi)$ which have CM by θ .

Theorem 4: For every discriminant D < 0 we have that

(5)
$$\Theta(D) = M_1^{CM}(|D|, \psi_D) := M_1^{CM}(|D|, \psi_D; \psi_D).$$

Corollary:

(6)
$$\dim \Theta(D) = \dim M_1^{CM}(|D|, \psi_D) = \sum_{f|f_D} 2^{\omega(f)} \overline{h}_{D/f^2},$$

where $\omega(f)$ denotes the number of distinct prime divisors of f. Moreover, the dimensions of the Eisenstein part and of the cuspidal part of $M_1^{CM}(|D|, \psi_D)$ are given by

$$\dim E_1^{CM}(|D|, \psi_D) = \sum_{f|f_D} 2^{\omega(f)} g_{D/f^2},$$
$$\dim S_1^{CM}(|D|, \psi_D) = \sum_{f|f_D} 2^{\omega(f)} (f_{D/f^2} - g_{D/f^2}).$$

Remark: There is no (known) formula for dim $M_1(|D|, \psi_D)$.

4. Ingredients

1) Dedekind's Isomorphism:

 $\lambda_D : \operatorname{Cl}(D) \xrightarrow{\sim} \operatorname{Pic}(\mathfrak{O}_D),$

where $\mathfrak{O}_D = \mathbb{Z} + \mathbb{Z} \frac{D + \sqrt{D}}{2} \subset \mathfrak{O}_K$ is the order of discriminant D (and/or of conductor f_D in K).

2) A classification of the invertible ideals of \mathfrak{O}_D :

 $\Rightarrow \text{ the multiplicativity of } a_n(\chi),$ the value of $c_n(\chi)$ for n|D, etc.

3) A study of the conductor of $\chi \in \operatorname{Cl}(D)^*$: via the isomorphism

 $I_K(f_D\mathfrak{O}_K)/P_{K,\mathbb{Z}}(f_D) \xrightarrow{\sim} \operatorname{Pic}(\mathfrak{O}_D),$

one can identify each $\chi \in \operatorname{Cl}(D)^*$ with a Hecke character $\tilde{\chi}$ on the group $I_K(f_D \mathfrak{O}_K)$ of fractional ideals prime to the ideal $f_D \mathfrak{O}_K$. A key fact is:

 χ is primitive on $\operatorname{Cl}(D) \Leftrightarrow \tilde{\chi}$ is primitive mod $f_D \mathfrak{O}_K$.

- 4) Genus theory (Gauss/Kronecker/Weber): this identifies quadratic characters $\chi \in \operatorname{Cl}(D)^*$ with certain Dirichlet characters.
- 5) Extended Atkin-Lehner theory: this describes:

1) the characters $\lambda \in \mathbb{T}(N)^* = \text{Hom}(\mathbb{T}(N), \mathbb{C})$ of the Hecke algebra $\mathbb{T}(N) \subset \text{End}(M_k(N, \psi))$ in terms of primitive eigenfunctions (newforms);

2) the structure of the $\mathbb{T}(N)$ -eigenspace associated to λ :

 $M_k(N,\psi)[\lambda] = \{ f \in M_k(N,\psi) : f|_k T_n = \lambda(T_n)f, \forall (n,N) = 1 \}$

For Theorem 4, we also need:

6) (a) The Deligne/Serre theory of Galois representations

 $\rho_f: G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$

attached to $\mathbb{T}(N)$ -eigenfunctions $f \in M_1(N, \psi)$.

(b) A characterization of characters of ring class fields via (strongly) dihedral Galois representations of $G_{\mathbb{Q}}$ (= reinterpretation of a result of Bruckner (1966)).

(c) A characterization of CM forms via their associated Galois representations (\rightarrow Theorem 5 below).

5. Galois representations

Deligne/Serre (1974): If $f \in M_1(N, \psi)$ is a normalized $\mathbb{T}(N)$ eigenfunction, then \exists ! Galois representation

$$\rho_f: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{C})$$

such that for all primes $p \nmid N$

$$\operatorname{tr}(\rho_f(Fr_p)) = \lambda_f(T_p) = a_p(f), \\ \det(\rho_f(Fr_p)) = \psi(p).$$

Furthermore, ρ_f is irreducible $\Leftrightarrow f$ is a cusp form.

Definition: An Galois representation $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{C})$ is called strongly dihedral if $\operatorname{Im}(\rho) \simeq D_n$ is a dihedral group $(n \ge 3)$. Moreover, ρ is said to be of dihedral type if $\operatorname{Im}(\rho)/Z(\operatorname{Im}(\rho)) \simeq D_n$ is a dihedral group $(n \ge 2)$.

Theorem 5: Let $f \in S_1(N, \psi)$ be a newform.

- (a) f has CM by some character $\theta \Leftrightarrow \rho_f$ is of dihedral type.
- (b) f has CM by $\psi \Leftrightarrow \rho_f$ is strongly dihedral.

Theorem 6: Let $\rho : G \to \operatorname{GL}_2(\mathbb{C})$ be Galois representation.

(a) (Hecke, Weil, Deligne/Serre) If ρ is of dihedral type and is odd, then $\rho = \rho_f$ for some $f \in S_1(N, \psi)$.

(b) (Bruckner, 1966) ρ is strongly dihedral if and only if the field $Fix(Ker(\rho))$ is contained in some ring class field.

Remark: Theorems 3, 5, $6 \Rightarrow$ Theorem 4.