New Percolation Crossing

Formulas and Second-order

Modular Forms

Nikolaos Diamantis School of Mathematical Sciences University of Nottingham

Peter Kleban LASST and Department of Physics and Astronomy, University of Maine

This work was supported in part by National Science Foundation Grant No. DMR-0536927

PERCOLATION

Definition

Crossing Probabilities

MODULAR PROPERTIES OF CROSSING PROBABILITIES

NEW CROSSING FORMULAS

THEIR MODULAR PROPERTIES

First of all, what <u>IS</u> percolation?

Imagine a large square lattice of points, with (green) bonds — between neighboring points put in place with (independent) probability p. A given configuration might look like this:

The occupied bonds form clusters. It is the geometric properties of these clusters that are of interest.

When p is small (near 0), the lattice will be mostly empty (for the great majority of configurations). When p is large (near 1), it will be mostly full. If we let the lattice get very large, there is rigorously known to be a phase transition (at $p = p_c = 1/2$ for the bond model shown). The results discussed here are all at p_c .

At p_c, on a large lattice clusters are quite ramified (fractal). Here is a single cluster:

CROSSING PROBABILITIES

- For a large, rectangular lattice of aspect ratio r, the crossing probabilities:
 - $\Pi_{h}(r)$, the probability of a horizontal crossing (a cluster
 - connecting the two vertical sides), and
 - $\Pi_{hv}(r)$, the probability of connecting all four sides of the
 - rectangle (horizontal-vertical).

It is convenient to define Π_{hnv} , the probability of a horizontal but not vertical crossing $\Pi_{hv} = \Pi_{h} - \Pi_{hnv}$

Understanding the phase transition:

For $p < p_c$, clusters are a.s. small, so $\prod_h(r) = 0$. For $p > p_c$, they are a.s. large, so $\prod_h(r) = 1$. Only for $p = p_c$ is \prod_h a non-trivial function of r. Explicit formulas for the crossing probabilities were first found by physicists using conformal field theory. Cardy's formula for the rectangle:

$$\Pi_h(r) = \frac{2\pi\sqrt{3}}{\Gamma(1/3)^3} \lambda^{1/3} \,_2F_1(1/3, 2/3; 4/3; \lambda).$$

Here the aspect ratio r enters via the cross-ratio $\lambda(r)$ of the image points in the upper half plane of the four corners under a conformal map.

A rigorous derivation on the triangular lattice was given later by Smirnov, this year's Fields medalist.

Some years ago, Bob Ziff noticed that

$$\label{eq:prod} \begin{split} \Pi_h'(\lambda(r)) &= -4\sqrt{3}\,C\,\eta(ir)^4 \\ & \text{with} \end{split}$$

$$C := \frac{2^{1/3} \pi^2}{3 \, \Gamma(1/3)^3},$$

and η the Dedekind function. Thus, Π'_h is a modular form of weight 2 (on the full modular group).

Modular properties require a function to have certain simple transformation properties under S: $z \rightarrow -1/z$ (with z = ir) and T: $z \rightarrow z+1$

(or combinations of these operations). Here, the behavior under S follows directly from the physical symmetries of the problem, but the T behavior comes from the structure of the crossing formulas themselves and has no obvious physical origin.

Explicitly

 $z^{-2} \prod'_{h}(-1/z) =: \prod'_{h}(z)|_{2}S = -\prod'_{h}(z)$ $\prod'_{h}(z)|T^{2} = e^{2\pi i/3} \prod'_{h}(z)$

while

 $\Pi'_{hnv}(z)I_2S = \Pi'_{hnv}(z) - C \Pi'_{h}(z)$ $\Pi'_{hnv}(z)IT^2 = \Pi'_{hnv}(z)$

The operations S and T² generate the theta-group Γ_{θ} .

(PK and Don Zagier)

The unusual modular behavior of $\prod'_{hnv}(r)$ leads to the definition of a new modular object, the *nth-order* modular form. Further, $\prod'_{h}(r)$ is completely determined by a simple modular argument that assumes its physical symmetry and generic behavior under T. These modular properties are surprising, since they occur on a rectangle, which lacks the apparently required symmetry.

NEW CROSSING PROBABILITIES

More recently, Jake Simmons, Bob Ziff, and PK have found three new crossing-type probabilities. We consider the probability density $p_{nb}(\lambda(r))$ of a cluster that connects the upper left and upper right points of the rectangle, with no lower horizontal crossing, but is conditioned to <u>not</u> connect to the bottom.

 $(\prod_{hnv} can be written as a double integral of p_{nb}(x).)$

Conformal field theory gives

$$p_{nb}(\lambda(r)) = \frac{(1+\lambda)_2 F_1(1, 4/3; 5/3; \lambda) + 2}{4\sqrt{3}\pi(1-\lambda)}$$

(and similar results for two related quantities). We have proven two theorems:

I. $p_{nb}(z)$ is a weakly holomorphic second-order modular form on $\Gamma(2)$ of weight 0 and type (1,X).

What does this mean?

<u>Weakly holomorphic</u>: $p_{nb}(z)$ is allowed to diverge exponentially at the cusps. Its leading terms are $(1,q^{-5/6},q^{2/3})$ at $(\infty,0,-1)$, respectively.

Second-order of weight 0 and type (1,X): Under any elements γ and δ of $\Gamma(2)$,

 $p_{nb}(z)|_{0,1}(\gamma - 1)|_{0,X}(\delta - 1) = 0.$

Here X is the character of η^4 . $\Gamma(2)$ is the group of matrices in SL₂(**Z**) congruent to I mod(2).

To state the next (Hamburger-type) theorem, we first need to define a conformal block (of dimension one). For our purposes, this is just a holomorphic function P(z) with power series expansion
 P(z) = Σ_{n=0} a_n e^{πi(n+1)z}
 with a₀ ≠ 0.

Set

$$\tilde{P}(z) = P(z) + \frac{1}{4\sqrt{3}} \frac{\lambda'}{\lambda} \left(\frac{\lambda \Pi'_h}{\lambda'}\right)'$$

and suppose $\tilde{P}|_4 g_2 = \tilde{P}$

along some curve in the upper half-plane, where $g_2 := ST^{-2}S^{-1}$ can be taken as a generator of the group $\Gamma(2)$. Further suppose that P(-1+i/r) and P(i/r) are bounded as $r \rightarrow \infty$.

Then

 $P(z) = \frac{(\lambda'(z))^2}{\lambda(z)} p_{nb}(z)$

Remarks:

<u>A</u>. If we let z = ir/(1+2ir), r > 0 be the curve in the condition, then the lhs of the equation is in the physical region, i.e. z = ir.

B. The only physical input here is ∏'_h. The other two new crossing-type quantities can be characterized with similar theorems. Hence all three can be obtained with only ∏'_h as physical input. This suggests some unknown connection between the physical quantities.

There is another interesting result showing the interconnection of these quantities. Define

$$\phi(z) = \frac{C}{2} \frac{(\Pi_{hnv}(\lambda(z))')}{(\Pi_h(\lambda(z))')}$$

(φ is in fact a weakly holomorphic second-order modular form of weight 0 and type (1,X*)). One can show that φ depends only on λ:

$$\phi(z) = \frac{1}{2^{8/3}} \lambda(z)^{2/3} {}_2F_1(1/3, 2/3; 5/3; \lambda(z))$$

and further that

$$p_{nb}(z) = \frac{2^{2/3}}{\sqrt{3}\pi} \frac{1+\lambda(z)}{\lambda(z)^{2/3} (1-\lambda(z))^{5/3}} \phi(z) + \frac{1}{2\sqrt{3}\pi} \frac{1}{1-\lambda(z)}$$

i.e., is linear in ϕ with coefficients rational in $\lambda^{1/3}$ and $(1-\lambda)^{1/3}$. The other two crossing-type quantities can be expressed similarly.

SUMMARY

An interesting and surprising connection between physics and modular forms arises in examining crossing and crossing-type formulas in percolation.

REFERENCES

Peter Kleban and Don Zagier, *Crossing Probabilities and Modular Forms*, Journal of Statistical Physics, p. 431, vol. 113, (2003).

N. Diamantis and P. Kleban, *New percolation crossing formulas and second-order modular forms*, Communications in Number Theory and Physics, p. 1, vol. 3, (2009).