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Introduction

Let χ be a 1-dimensional Artin character over a number field F . The values of the
Artin L-function L(χ, s) at negative integers 1 − n for n ≥ 2 are trivial unless F
is totally real and χ has parity (−1)n, i.e. the field Fχ := F̄ ker χ is totally real for
even n and a CM-field for odd n. In these cases the values are non-zero algebraic
numbers contained in Q(χ), the field obtained by adjoining to Q the values of χ.

In these lectures we discuss the arithmetic meaning of these values. The ap-
proach is via Iwasawa theory, p-adic L-functions and the Main Conjecture in Iwa-
sawa theory (proved by Wiles), which provides a p-adic interpretation of the values
for each prime p. In the case of the trivial character we will describe the relation
to the Birch-Tate Conjecture (the case where F is real and n = 2) as well as to
the more general Lichtenbaum Conjectures. For most of the part we will ignore
the prime 2, which causes technical problems, and for which the results are less
complete.

The arithmetic interpretations for a fixed prime p are in terms of étale co-
homology groups attached to the ring o′F = oF [1/p] of p-integers of F . We will
discuss two ”global” interpretations in terms of algebraic K-groups and in terms of
motivic cohomology groups, which in some cases differ by non-trivial powers of 2.
The known results for p = 2 suggest that in general motivic cohomology contains
the ”correct” number-theoretic information.

Finally, we will discuss a conjecture of Coates-Sinnott – the analog of Stick-
elberger’s Theorem – about annihilation of higher algebraic K-theory groups in
relative abelian extensions. The conjecture can be approached prime by prime, and
we sketch the proof of the cohomological version of the p-part of this conjecture
for odd primes p not dividing the order of the Galois group of the relative abelian
extension (the ”semi-simple case”).
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LECTURE 1

Iwasawa theory and cohomology

1. The classical Main Conjecture

Let F be a number field and let p be a prime number. A Galois extension F∞/F is
called a Zp-extension, if Γ := Gal(F∞/F ) ∼= Zp. Since the closed subgroups of Zp
are of the form 0 or pnZp, we have for each n ≥ 0 a unique subfield Fn of degree
pn over F and Gal(Fn/F ) ∼= Z/pnZ. Hence we obtain a tower

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞,

such that [Fn : F ] = pn and F∞ = ∪n≥0Fn.

A typical example of a Zp-extension F∞/F is the so-called cyclotomic Zp-
extension, which is constructed as follows: Let L∞ = F (µp∞). Then Gal(L∞/F ) ∼=
Zp ×∆, where ∆ is finite. Now take F∞ = L∆

∞.

Let γ denote a topological generator of Γ, and let Γn = Gal(Fn/F ). Passing
to the inverse limit over the group rings Zp[Γn] we obtain the Iwasawa-algebra
Zp[[Γ]] := lim←−Zp[Γn]. The group rings Zp[Γn] are generally quite complicated, but
the Iwasawa-algebra has a rather simple structure, it is isomorphic to the power
series ring Λ := Zp[[T ]], the isomorphism being induced by γ 7→ 1 + T .

In the following we have to allow slightly more general coefficients: Let O
denote a finite extension of Zp, let π be a uniformizer for O, let v denote the discrete
valuation on O, normalized so that v(π) = 1, and let | |v denote the corresponding
absolute value with |a|v = p−f ·v(a), where f denotes the residue degree.

We now consider Λ := O[[T ]] ∼= O[[Γ]]. This is a two-dimensional Noetherian
local Krull domain, and the structure of finitely generated Λ-modules is known up
to pseudo-isomorphism (cf. [6], Chapter VII,4, Theorem 5). If M and N are finitely
generated Λ-modules, then we write M ∼ N if there exists a pseudo-isomorphism
f : M → N , i.e., a module homomorphism with finite kernel and cokernel. The
structure theorem for finitely generated Λ-modules now says that for every finitely
generated Λ-module M there is a pseudo-isomorphism

M ∼ Λr ⊕
m⊕
i=1

Λ/pnii .

Here pi are height 1 prime ideals of Λ, hence they are either equal to (π) or to
(F (T )), where F (T ) is an irreducible distinguished polynomial, i.e., , of the form

F (T ) = Tn + bn−1T
n−1 + · · ·+ b0

with π|bi for all i. The prime ideals pi and the integers r ≥ 0,m ≥ 0 and ni ≥ 1
are uniquely determined by M . The ideal

∏m
i=1 pnii is the characteristic ideal of M ,
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6 MANFRED KOLSTER, SPECIAL VALUES OF L-FUNCTIONS

which has a unique generator of the form

f(T ) = πµ · f∗(T )

where f∗(T ) is a distinguished polynomial. f∗(T ) is the characteristic polynomial
of M . The exponent µ is the µ-invariant of M and λ := deg f∗(T ) is called the
λ-invariant of M .

The characteristic polynomial is in fact a characteristic polynomial in the sense
of linear algebra: Let Qp denote an algebraic closure of Qp, and let V = M ⊗O Qp.
This is a Qp-vectorspace of rank λ and f∗(T ) is the characteristic polynomial of
the endomorphism γ − 1 acting on V .

The following result is extremely useful: Assume that M is a finitely gener-
ated Λ-torsion module with characteristic polynomial f∗(T ). Let µ denote the
µ-invariant of M and let f(T ) = πµ · f∗(T ). We denote by MΓ the invariants of M
under Γ and by MΓ = M/(γ − 1)M the coinvariants of M .

Lemma 1.1 ((cf. [27]). The following statements are equivalent :

(a) MΓ is finite
(b) MΓ is finite
(c) f(0) 6= 0.

If these conditions are satisfied, then

|MΓ|
|MΓ|

= |f(0)|v.

Let us assume now that F∞/F is the cyclotomic Zp-extension. Let G∞ =
Gal(F (µp∞)/F ) ∼= Γ × ∆, where ∆ ∼= Gal(F (ζ2p)/F ). G∞ acts on µp∞ and this
action gives rise to the cyclotomic character

ρ : G∞ → Z∗p
defined by

ζσ = ζρ(σ)

for all σ ∈ G∞ and all ζ ∈ µp∞ . We denote by κ the restriction of ρ to Γ and by ω
the restriction of ρ to ∆. ω is the Teichmüller character.

Let M be a Zp-module with a G∞-action, denoted by m 7→ mσ. For n ∈ Z the
n-th Tate twist M(n) of M is defined as the Zp-module M with the new G∞-action

m 7→ ρ(σ)n ·mσ.

In particular, Zp(1) ∼= lim←−µpn =: T , which is the so-called Tate-module, and
Qp/Zp(1) ∼= µp∞ . In general: M(n) ∼= M ⊗Zp Zp(n). If M and N are two Zp-
modules with a G∞-action, then we turn HomZp(M,N) into a G∞-module in the
following way: For f ∈ HomZp(M,N) and σ ∈ G∞ we define fσ via

fσ(m) = (f(mσ−1
))σ.

It is easy to see that with this definition of the G∞-action on Hom-groups we obtain
canonical isomorphisms for all n ∈ Z:

HomZp(M(n),Qp/Zp) ∼= HomZp(M,Qp/Zp(−n)) ∼= HomZp(M,Qp/Zp)(−n).

We note the following:
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Lemma 1.2 (cf. [27]). Assume that M is a Λ-torsion module with characteristic
polynomial f∗(T ). Then the characteristic polynomial of M(n) is given by

f∗(κ(γ)−n(1 + T )− 1).

The most interesting Λ-modules arise as Galois groups of certain abelian pro-p
extensions of F∞, where F∞/F is an arbitrary Zp-extension of a number field F . As-
sume then thatK∞ is an abelian pro-p extension of F∞, letX = Gal(K∞/F∞), and
assume that K∞/F is again a Galois extension (although not necessarily abelian).
Let G = Gal(K∞/F ). We obtain an extension of Zp-modules

0→ X → G→ Γ→ 0.

Since X is abelian, Γ acts on X by inner automorphisms, and this action turns
X into a compact Λ-module. As examples we can take for K∞ the maximal
abelian unramified pro-p extension of F∞, usually denoted by L∞, or the maxi-
mal subextension of L∞, in which all p-adic primes of F∞ split completely, usu-
ally denoted by L′∞. The corresponding Galois groups X∞ := Gal(L∞/F∞) and
X ′
∞ := Gal(L′∞/F∞) are examples of finitely generated Λ - torsion modules.

The main example in the current framework is the following: Let S be a finite
set of primes in F containing the primes above p and the infinite primes. Sp will
denote the minimal such set, i.e. the set consisting exactly of the primes above p
and the infinite primes. Let MS

∞ denote the maximal abelian pro-p-extension of
F∞, which is unramified outside primes in S, and let XS = Gal (MS

∞/F∞). This
is a finitely generated Λ-module, which we will call the standard Iwasawa module
over F∞ for the set S. Let us again specialize to the case of the cyclotomic Zp-
extension. Iwasawa([22]) has shown that in this case XS has no non-trivial finite
Λ-submodules and that the Λ-rank of XS is equal to the number r2 of different pairs
of complex conjugate embeddings of F . In particular, XS is a Λ-torsion module if
and only if F is totally real.

From now on F will be a fixed totally real number field and F∞ will denote the
cyclotomic Zp-extension with p being an odd prime number. We note that under
Leopoldt’s Conjecture the cyclotomic Zp-extension is the only Zp-extension of a
totally real number field.

We consider now a 1-dimensional p-adic valued Artin character ψ over F of
finite order:

ψ : Gal(F/F )→ Qp
∗
,

and we denote by Fψ the fixed field of the kernel of ψ, so that ψ is a faithful
character on Gal(Fψ/F ). We assume that ψ is even, i.e. that Fψ is again a totally
real number field. We recall Greenberg’s terminology (cf. [17]) about the different
types of the characters ψ: ψ is of type S, if

Fψ ∩ F∞ = F,

and ψ is of type W, if
Fψ ⊂ F∞.

We note that the trivial character is the only character, which is both of type
S and of type W.

We fix an embedding Qp → C, which allows us to view ψ as a complex-valued
character as well.
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Deligne-Ribet ([14]) have shown that there exists a p-adic L-function Lp(s, ψ),
which interpolates the special values of certain Artin L-functions in the following
way: For all n ≥ 1

Lp(1− n, ψ) = L(1− n, ψω−n) ·
∏
p|p

(1− ψω−n(p)N(p)n−1).

These values uniquely determine the p-adic L-function.

Now let S be again a finite set of primes in F containing Sp. One defines an
”imprimitive” p-adic L-function LSp (s, ψ) by specifying the values at s = 1− n for
all n ≥ 1 as follows:

LSp (1− n, ψ) = L(1− n, ψω−n) ·
∏
p∈S

(1− ψω−n(p)N(p)n−1).

Removing the Euler factors for primes in S from the Artin L-functions we obtain
the L-functions LS(s, ψω−n) and the relation between the imprimitive L-functions
at 1− n is then simply expressed as (cf. [16], section 3):

LSp (1− n, ψ) = LS(1− n, ψω−n)
for all n ≥ 1.

We define

Hψ(T ) =
{
ψ(γ)(1 + T )− 1 if ψ is of type W
1 otherwise ,

and we denote the extension of Zp obtained by adjoining the values ψ(g), g ∈
Gal(Fψ/F ) by Oψ = Zp[ψ]. It was shown by Deligne-Ribet ([14]) that there exists
a power series Gψ,S(T ) ∈ Oψ[[T ]], so that

LSp (1− s, ψ) =
Gψ,S(κ(γ)s − 1)
Hψ(κ(γ)s − 1)

.

The power series Gψ,S(T ) can be written uniquely as

Gψ,S(T ) = πµ(Gψ,S) · g∗ψ,S(T ) · uψ,S(T ),

where g∗ψ,S(T ) is a distinguished polynomial, uψ,S(T ) is a unit power series and π
is a uniformizer in Oψ.

The classical Main Conjecture in Iwasawa Theory, proven by Wiles in [38] for
odd p (and also for p = 2, if F = Q) relates the polynomial g∗ψ,S(T ) to the following
characteristic polynomial: Let Fψ,∞ denote the cyclotomic Zp-extension of Fψ, and
let XS denote the standard Iwasawa module over Fψ,∞ for the set S. The Galois
group G = Gal(Fψ/F ) acts on the finite-dimensional vectorspace

V = XS ⊗Zp Qp,

and we denote by V ψ the eigenspace of V corresponding to the action of G via ψ.
Now let f∗ψ,S(T ) denote the characteristic polynomial of γ − 1 acting on V ψ.
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Iwasawa’s MainConjecture 1.3 (Wiles). Let F be a totally real number field,
let p be an odd prime, and let ψ be a 1-dimensional p-adic Artin character over F
of type S. Then for any finite set of primes S of F containing Sp:

g∗ψ,S(T ) = f∗ψ,S(T ).

It is important to note that the characteristic polynomial f∗ψ,S(T ) does not
change if we take instead of Fψ any finite abelian extension E of F containing
Fψ with E ∩ F∞ = F and then consider the standard Iwasawa module over E∞.
(cf. [17], Proposition 1).

2. Cohomology

We are going to use the Main Conjecture to relate special values of Artin L-functions
at negative integers to orders of étale cohomology groups. For our purposes it
suffices to use a description of étale cohomology in terms of Galois cohomology:
Fix an arbitrary prime p and an arbitrary number field F . Let Ω(p)

F denote the
maximal algebraic extension of F , which is unramified outside primes above p

and infinite primes, and let G(p)
F = Gal(Ω(p)

F /F ). The étale cohomology groups
H∗

ét(spec oF [ 1p ], µ
⊗n
pm ) of the scheme spec oF [ 1p ] with values in the étale sheaf µ⊗npmas

defined by Grothendieck (cf. e.g. [29]) can be identified with the Galois cohomology
groups H∗(G(p)

F , µ⊗npm ). To simplify notations we will write H∗
ét(o

′
F ,Z/pm(n)), where

o′F = oF [ 1p ]. Similarly, if S is a finite set of primes of F containing Sp, then we
obtain the étale cohomology groupsH∗

ét(o
S
F ,Z/pm(n)) as Galois cohomology groups,

where we replace the extension Ω(p)
F by the maximal algebraic S-ramified extension

ΩSF of F .

A central role is played by the p-adic cohomology groups

H∗
ét(o

′
F ,Zp(n)) := lim←−H

∗
ét(o

′
F , µ

⊗n
pm ).

We also define

H∗
ét(o

′
F ,Qp/Zp(n)) = lim

→
H∗

ét(o
′
F , µ

⊗n
pm ).

We note the following: For each n ∈ Z the exact sequence

0→ Zp(n)→ Qp(n)→ Qp(n)/Zp(n)→ 0

gives rise to a long exact sequence in étale cohomology and the kernels and cokernels
of the boundary maps

δi : Hi−1
ét (o′F ,Qp/Zp(n))→ Hi

ét(o
′
F ,Zp(n)) (i ≥ 1)

can be described as follows (cf. [35]):

The kernel of δi is the maximal divisible subgroup of Hi−1
ét (o′F ,Qp/Zp(n)) and

the image of δi is the torsion subgroup of Hi
ét(o

′
F ,Zp(n)). In particular this implies

that the torsion subgroup of H1
ét(o

′
F ,Zp(n)) is isomorphic to H0

ét(o
′
F ,Qp/Zp(n)) =

H0(f,Qp/Zp(n)):

H1
ét(o

′
F ,Zp(n))tors ∼= H0

ét(o
′
F ,Qp/Zp(n)).
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In the following proposition we summarize some known results about the finitely
generated p-adic étale cohomology groups for rings of integers. We only list the
results for odd primes p and integers n ≥ 2.

Proposition 2.1. Let p be an odd prime and let n ≥ 2. Then

1. H0
ét(o

′
F ,Zp(n)) = 0.

2. Hk
ét(o

′
F ,Zp(n)) = 0 for k ≥ 3.

3. There are isomorphisms

H1
ét(o

′
F ,Zp(n)) ∼= H1

ét(F,Zp(n)).

4. The groups H2
ét(o

′
F ,Zp(n)) are finite and trivial for almost all primes p.

5. The groups H1
ét(o

′
F ,Zp(n)) are finitely-generated Zp-modules and

rkZp H
1
ét(F,Zp(n)) =

{
r1 + r2 if n is odd
r2 if n iseven.

Except for property 2 the statements in Proposition 2.1 are also true for p = 2.
If F has real places, then property 2 is false for p = 2, which causes technical
problems in this case.

Property 5 implies that for n ≥ 2 the étale cohomology groups H1
ét(F,Zp(n))

are finite precisely when F is totally real and n is even. If this is the case, then the
boundary map δ2 is an isomorphism:

H1
ét(o

′
F ,Qp/Zp(n)) ∼= H2

ét(o
′
F ,Zp(n)).

Let us assume now that n > 1 is odd and that E is a CM-field with maximal
real subfield E+. Then by property 5 H1

ét(E,Zp(n)) has the same Zp-rank as
H1

ét(E
+,Zp(n)). Since p is odd H1

ét(E,Zp(n)) splits into eigenspaces

H1
ét(E,Zp(n)) = H1

ét(E,Zp(n))+ ⊕H1
ét(E,Zp(n))−

under complex conjugation with H1
ét(E,Zp(n))+ ∼= H1

ét(E
+,Zp(n)). Therefore for

odd n > 1 H1
ét(E,Zp(n))− is finite and hence

H1
ét(o

′
E ,Qp/Zp(n))− ∼= H2

ét(o
′
E ,Zp(n))−.

We obtain:

Corollary 2.2. a) If F is totally real and n ≥ 2 is even, then

H1
ét(o

′
F ,Qp/Zp(n)) ∼= H2

ét(o
′
F ,Zp(n))

b) If E is CM, and n > 1 is odd, then

H1
ét(o

′
E ,Qp/Zp(n))− ∼= H2

ét(o
′
E ,Zp(n))−.
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There are two global ”cohomology theories“, closely related to étale cohomol-
ogy: AlgebraicK-theory and motivic cohomology. The precise relationship depends
on the validity of the Bloch-Kato Conjecture, which appears to have been proven by
Rost and Voevodsky – at least all the details are now either published or submitted
for publication. If we assume the Bloch-Kato Conjecture, then the picture is the
following – the 2-primary information here is unconditional. We refer to [24] for
more details and further references:

For i = 1, 2 and all n ≥ 2there are isomorphisms

K2n−i(oF ) ∼= Hi
M(oF ,Z(n))

up to (known) 2-torsion, and for all p there are isomorphisms

Hi
M(oF ,Z(n))⊗ Zp ∼= Hi

ét(o
′
F ,Zp(n)).

Here the K-groups are Quillen’s K-groups, and the motivic cohomology groups
can e.g. be defined as Bloch’s higher Chow groups:

Hi
M(oF ,Z(n)) := CHn(oF ,Z(2n− i)).

If we do not want to assume the Bloch-Kato Conjecture, then we can still find
global cohomological ”models“ Hi(oF ,Z(n)), i = 1, 2, for the étale cohomology
groups. For i = 2 this is easy. We simply define

H2(oF ,Z(n)) =
∏
p

H2
ét(oF [

1
p
],Zp(n)),

which are finite groups and play in many situations a role similar to that of the
class group.

For i = 1 the construction is more involved (cf. [9]). The resulting group
H1(oF ,Z(n)) is an analog of the group of units. It is a finitely generated abelian
group of rank

r2 if n ≥ 3 is odd
r1 + r2 if n ≥ 2 is even,

which satisfies

Hi(oF ,Z(n))⊗ Zp ∼= Hi
ét(o

′
F ,Zp(n))

for all primes p.

In any case it is important to note that for certain indices there is a known
difference between the 2-primary parts of the K-groups and the cohomology groups,
which has an impact on the formulation of the conjectures we are going to discuss.

Finally in this section we want to discuss Galois actions on étale cohomology
groups. Let E/F is a finite Galois extension of number fields with Galois group G.
Let p be an odd prime and let S denote a finite set of primes of F containing all
primes above p as well as all primes which ramify in F , so that the extension E/F
is S-ramified. Using the properties of the étale cohomology groups the following
results about Galois descent and co-descent follow easily from the Hochschild-Serre
and the Tate spectral sequences:
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Proposition 2.3. Let E/F be a Galois extension of number fields with Galois
group G. Let p be an odd prime and let S be a finite set of primes of F containing
Sp and all primes ramified in E. Then

1. H1
ét(E,Zp(n))G ∼= H1

ét(F,Zp(n)).

2. H2
ét(o

S
E ,Zp(n))G ∼= H2

ét(o
S
F ,Zp(n)).

3. For all k ≥ 0 there are isomorphisms

Ĥk(G,H1
ét(E,Zp(n))) ∼= Ĥk(G,H2

ét(o
S
E ,Zp(n))).



LECTURE 2

Conjectures and Results

3. The Lichtenbaum Conjecture

We are now ready to apply the Main Conjecture in the case, where ψ is of order
prime to p (p odd). The character ψ is then automatically of type S. We now choose
a finite abelian extension E of F containing Fψ and µp (e.g. E = Fψ(µp)), so that
the Galois group G of E/F is of order prime to p. Then E∞ contains all p-power
roots of unity. For any finite set S of primes containing Sp the standard Iwasawa
module XS over E∞ is a Zp[G][[T ]]-module. The following arguments are valid for
an arbitrary finite set S of primes containing Sp, and so we simply drop the index
S from the notations.

Since the order of G is prime to p, the idempotents of the group algebra Qp[G]
are contained in Zp[G] and Zp[G] is a maximal order in Qp[G], isomorphic to a finite
product of discrete valuation rings Oρ for certain (absolutely irreducible) characters
ρ of G. Given a finitely generated Zp[G][[T ]]− module M and a character ρ, the
ρ-th component Mρ of M is defined as

Mρ = eρ(M ⊗Zp Oρ).
This is a finitely generated Oρ[[T ]]− module.

We now take M = X and ρ = ψ, and let Λ = Oψ[[T ]]. Since ψ is even, the
ψ-component Xψ is a finitely generated Λ-torsion module. We also note that Oψ is
unramified over Zp, and so we can take π = p as the uniformizer. We denote the
characteristic polynomial of Xψ by f∗ψ(T ), and we let

f(T ) = pµ · f∗ψ(T ),

which is a generator of the characteristic ideal of Xψ.

Wiles has shown ([38],Theorem 1.4) that the µ-invariant µ of Xψ coincides
with µ(Gψ), and therefore by the Main Conjecture the characteristic ideal of Xψ is
generated by Gψ(T ).

Let us fix now an integer n ≥ 2 and consider the Λ-module Xψ(−n) and its
Pontryagin dual HomZp(X

ψ(−n),Qp/Zp). We let χ = ψω−n, and note that

Xψ(−n) = X(−n)χ.

Taking duals we obtain

HomZp(X
ψ(−n),Qp/Zp) = HomZp(X

χ,Qp/Zp(n)) = HomZp(X,Qp/Zp(n))χ
−1
.

13
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Because E∞ contains all p-power roots of unity, the Galois group Gal(Ω(p)
E /E∞)

acts trivially on the abelian group Qp/Zp(n), and therefore

HomZp(X,Qp/Zp(n)) = H1
ét(o

′
E∞ ,Qp/Zp(n)),

where
H1

ét(o
′
E∞ ,Qp/Zp(n)) = lim

→
H1

ét(o
′
Em ,Qp/Zp(n)).

Galois descent implies that

H1
ét(o

′
E∞ ,Qp/Zp(n))Γ = H1

ét(o
′
E ,Qp/Zp(n)).

The parity of χ is equal to (−1)n and therefore by Corollary 2.2 the χ−1-
eigenspace of H1

ét(o
′
E ,Qp/Zp(n)) is finite and isomorphic to H2

ét(o
′
E ,Zp(n))χ

−1
. We

have shown:

Proposition 3.1. The Pontryagin dual of Xψ(−n)Γ is isomorphic to the finite
group H2

ét(o
′
E ,Zp(n))χ

−1
.

Proposition 3.1 shows that Xψ(−n)Γ is finite. By Lemma 1.1 the same is then
true for the Γ-invariants Xψ(−n)Γ. However, Xψ(−n) has no non-trivial finite Λ-
submodules, hence the Γ-invariants of Xψ(−n) are trivial, and therefore we can
compute the order of Xψ(−n)Γ in terms of the valuation of the characteristic poly-
nomial at 0. By Lemma 1.2 the characteristic polynomial of Xψ(−n) is given by
f∗(κ(γ)n(1 + T )− 1). Hence by the Main Conjecture:

Proposition 3.2.

|H2
ét(o

′
E ,Zp(n))χ

−1
| = |Xψ(−n)Γ| = |f(κ(γ)n − 1)|v−1 = |Lp(1− n, ψ)|v−1 = |L(1− n, χ)|v−1

,

provided that ψ 6= 1.

We can slightly reformulate the result: Let us write a ∼p b if the two rational
numbers a, b have the same p-adic valuation. Let dχ denote the degree of Oχ over
Zp. Then

L(1− n, χ)dχ ∼p |H2
ét(o

′
E ,Zp(n))χ

−1
|,

provided that χ 6= ωn.

If ψ = 1, then we have to consider the polynomial H1(T ) = T as well. A
similar, but much easier calculation for the Iwasawa module X = Zp over E∞,
whose characteristic polynomial equals T yields

|X(−n)Γ|−1 = κ(γ)n − 1.

The dual of X(−n) is equal to Qp/Zp(n)ω
n

, and hence

|H0(E,Qp/Zp(n))ω
n

| = κ(γ)n − 1.

Since H0(E,Qp/Zp(n) is cyclic, there is only one non -trivial eigenspace, hence
we have H0(E,Qp/Zp(n)χ 6= 1 ↔ χ = ωn. This finally leads to the main result,
which we formulate for a general finite set S of primes:
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Theorem 3.3. Let χ be a 1-dimensional Artin character of order prime to p over
a real field F . Then for any finite set S of primes of F containing Sp, and any
n ≥ 2, so that χ(−1) = (−1)n, we have

LS(1− n, χ)dχ ∼p
|H2

ét(o
S
E ,Zp(n))χ

−1 |
|H0(E,Qp/Zp(n)χ−1 |

,

where E is any finite abelian extension of F of degree prime to p, containing Fχ.

Let us consider the special case that χ = 1 and n ≥ 2 is even. Recall that

H2(oF ,Z(n)) ∼=
∏
p

H2
ét(o

′
F ,Zp(n))

is a finite group, and we denote its order simply by hn(F ) indicating the similarity
with the class number of F . Furthermore we denote the order of H0(F,Q/Z(n))
simply by wn(F ). With these notations we obtain the following

Corollary 3.4. Let F be a totally real number field and let n ≥ 2 be an even
integer. Then

ζF (1− n) = ± hn(F )
wn(F )

.

up to multiples of 2

We remark that the 2-primary part of the Corollary is also true if F is abelian
over Q. ( cf. [24]).

In the special case n = 2 the group H2(oF ,Z(2)) is isomorphic to K2(oF ) ([35])
and the statement of Corollary 3.4 in this case is the Birch-Tate Conjecture:

Birch-Tate Conjecture 3.5. Let F be a totally real number field. Then

ζF (−1) = ±|K2(oF )|
w2(F )

(up to possible multiples of 2 if F is not abelian over Q).

Corollary 3.4 is a special case of the (cohomological version of the) Lichtenbaum
Conjecture ([28]): Let F be an arbitrary number field, and let n ≥ 2. The order of
vanishing of the zeta-function of F at 1− n is equal to

r2 if n is even
r1 + r2 if n is odd.

These numbers are equal to the ranks of K2n−1(oF ) by a result of Borel’s ([4]).
Let ζ∗F (1 − n), the special value of ζF at 1 − n, denote the first non-vanishing
coefficient in a Taylor expansion of the zeta-function ζF (s) around 1− n.

Lichtenbaum Conjecture 3.6. Up to powers of 2:

ζ∗F (1− n) = ± |K2n−2(oF )|
|K2n−1(oF )tors|

·RBn (F ).



16 MANFRED KOLSTER, SPECIAL VALUES OF L-FUNCTIONS

Here RBn (F ) denotes the Borel regulator (cf. [4]). If the Bloch-Kato Conjecture
is true, then the Lichtenbaum Conjecture is true for abelian number fields (cf.
[25, 26, 1, 21, 7]).

If we want to include the 2-primary parts into this conjecture, then we should
replace the K-groups by motivic cohomology groups, i.e. we are led to the motivic
reformulation:

Motivic Lichtenbaum Conjecture 3.7.

ζ∗F (1− n) = ± |H2
M(oF ,Z(n))|

|H1
M(oF ,Z(n))tors|

·RMn (F ).

Here RMn (F ) differs from the Borel regulator by a power of 2. This conjecture
is known to be true (assuming Bloch-Kato) if F is totally real abelian and n ≥ 2 is
even (cp. Theorem 3.4) and in a few other cases.

4. The Coates-Sinnott Conjecture

We now consider an arbitrary abelian extension E/F of number fields with Galois
group G, and let S be a finite set of primes in F containing the primes ramified
in E and the infinite primes. It is well-known that there exists a function θSE/F (s)
with values in the complex group ring C[G], such that

χ(θSE/F (s)) = LS(χ−1, s)
for all characters χ of G. We simply define

θSE/F (s) =
∑
χ

LS(χ−1, s)eχ ∈ C[G],

where –as before– the sum extends over all absolutely irreducible characters of G,
and eχ = 1

|G|
∑
g∈G χ− (g)g−1 denotes the idempotent belonging to χ. By a result

of Klingen-Siegel θSE/F (1− n) is contained in Q[G] for all n ≥ 1, and it was shown
by Deligne-Ribet that suitable multiples of θSE/F (1 − n) are actually contained in
the integral group ring Z[G]. More precisely

AnnZ[G](H0(E,Q/Z(n))) · θSE/F (1− n) ⊂ Z[G].

The ideal AnnZ[G](H0(E,Q/Z(n))) ·θSE/F (1−n) is called the n-th higher Stick-
elberger ideal and denoted by StickSE/F (n). The classical Stickelberger Theorem
states that

StickSE/Q(1) ⊂ AnnZ[G](Cl(oE)),
and Brumer conjectured that the same result holds for arbitrary abelian extensions
E/F . For n ≥ 2 another generalization of Stickelberger’s theorem, involving higher
Quillen K-groups, was suggested by Coates-Sinnott ([12]) in the case F = Q and
extended to arbitrary base fields by Sands and V. Snaith.

Coates-Sinnott Conjecture 4.1. Let E/F be an abelian Galois extension of
number fields with Galois group G, and let n ≥ 2. Then

StickSE/F (n) ⊂ AnnZ[G](K2n−2(oE)).
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We note that at negative integers 1 − n, n ≥ 2, the Artin L-function LS(χ, s)
vanishes unless F is totally real and χ(−1) = (−1)n. Therefore one usually restricts
attention to F totally real, and either E totally real and n even or E CM and n
odd.

Conjecture 4.1 was proven by Coates and Sinnott in [12] for n = 2 and E
abelian over Q up to powers of 2.

As before, the 2-primary information about this conjecture suggests that the
K-groups should be replaced by motivic cohomology groups, i.e. the correct version
should read

Motivic Coates-Sinnott Conjecture 4.2. Let E/F be an abelian extension of
number fields with Galois group G, and let n ≥ 2. Then

StickSE/F (n) ⊂ AnnZ[G](H2
M(oE ,Z(n))).

To approach the conjecture one considers each prime p separately, and shows
that

AnnZp[G](H0(E,Qp/Zp(n))) · θSE/F (1− n) ⊂ AnnZpG](H2
ét(o

S
E ,Zp(n)).

This gives the p-part of the cohomological version of the conjecture.

We want to show now that the Classical Main Conjecture for and odd prime p
implies the p-part of the conjecture in the semi-simple case, i.e. we are considering
an odd prime p, which does not divide the order of G. In the setting of the previous
section (we are enlarging E to contain µp) we fix n ≥ 2 and a character χ of G with
parity (−1)n, so that the character ψ := χωn is real.

We first recall the definition and some of the properties of Fitting ideals.

The (first)Fitting ideal FittR(M) of a finitely generated R-module M over a
commutative ring R is defined as follows: Choose a free resolution

Rm
β→ Rn →M → 0

of M . The Fitting ideal FittR(M) of M is the R-ideal generated by all n×n-minors
of the n×m-matrix representing β. This definition is independent of the choice of
the free resolution. One of the properties of the Fitting ideal is that it is contained
in the annihilator of M :

FittR(M) ⊂ AnnR(M),
and the two ideals are equal if M is a cyclic R-module.

It is now rather straightforward to compute the Fitting ideal of the Iwasawa-
module

XS(−n)χ = XS,ψ(−n).
We note that this is a finitely generated torsion Oχ[[T ]]- module without non-

trivial finite submodules, and therefore by a result of Greither ([18], Theorem 2.2,
[31], Lemma 2.3) has projective dimension ≤ 1. We emphasize that the proof does
not need the module to be finitely generated as a Zp-module, hence one does not
have to assume that the µ-invariant of XS,ψ(−n) is trivial.
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Now, if M is a f.g. torsion R-module of projective dimension ≤ 1, then there
is a resolution of M of the form

0→ Rn
β→ Rn →M → 0,

hence
FittR(M) = (det β)

is a principal ideal generated by the determinant of β.

In our case we have an injection

0→ XS,ψ(−n)→ Λ/(fψ,S(κ(γ)n(1 + T )− 1))

with finite cokernel, where as in section 3 fψ,S(T ) is a generating polynomial of the
characteristic ideal of XS,ψ. At all height 1 primes of Λ the two principal ideals
FittΛ(XS(−n)χ) and (fψ,S(κ(γ)n(1 + T )− 1)) coincide, and it is then well known
(cf. [20],Proposition 3.2.1) that this implies the equality of the two ideals. We
obtain:

Proposition 4.3.

FittΛ(XS(−n)χ) = (fψ,S(κ(γ)n(1 + T )− 1)).

As an immediate consequence we obtain a reformulation of the Classical Main
Conjecture:

Corollary 4.4. The Main Conjecture for ψ is equivalent to

FittΛ(XS,ψ(−n)) = (Gψ,S(κ(γ)n(1 + T )− 1))

for all n ≥ 2

We now descend to XS,ψ(−n)Γ. Its Fitting ideal over Oψ is the image of
FittΛ(XS,ψ(−n) under the map T 7→ 0, hence

Corollary 4.5.
FittOψ (XS,ψ(−n)Γ) = (LSp (1− n, ψ)),

if ψ 6= 1.

To treat the case ψ = 1 we consider the Iwasawa module Zp(−n) and obtain
with a similar argument:

FittZp(Zp(−n)Γ) = (κ(γ)n − 1),
and therefore in this case

Corollary 4.6.

FittZp(X
S(−n)Γ) = FittZp(Zp(−n)) · (LSp (1− n, 1)).

For a finite module M the Fitting ideals of M and its dual M∗ are the same,
and so we can dualize and finally take the sum over all eigenspaces to obtain

Theorem 4.7.

FittZp[G](H2
ét(o

S
E ,Zp(n))) = FittZp[G](H0(E,Qp/Zp(n))) · θSE/F (1− n).
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We note that this implies the p-part of the cohomological version of the Coates-
Sinnott Conjecture, because the right-hand side equals AnnZp[G](H0(E,Qp/Zp(n) ·
θSE/F (1− n), which is then contained in AnnZp[G](H2

ét(o
S
E ,Zp(n))). Since

H2
ét(o

′
E ,Zp(n)) ⊂ H2

ét(o
S
E ,Zp(n))

we obtain

Corollary 4.8. If p - |G|, p and odd prime, then the p-part of the cohomological
version of the Coates-Sinnott Conjecture holds:

AnnZp[G](H0(E,Qp/Zp(n))) · θSE/F (1− n) ⊂ AnnZpG](H2
ét(o

S
E ,Zp(n)).

To prove the cohomological version of the Coates-Sinnott Conjecture in general,
one has to replace the Classical Main Conjecture by an Equivariant Main Conjec-
ture, because the decomposition into eigenspaces is no longer available. A version of
the Equivariant Main Conjecture has been formulated and proven by Ritter-Weiss
([32]) under the hypothesis that the µ-invariant of the Iwasawa-module X is trivial
and that p is odd. As a consequence Nguyen Quang Do proved the cohomologi-
cal version of the Coates-Sinnott Conjecture (cp. [30]). Independently, this was
also proven by Burns-Greither ([8]) under the same assumptions (and some addi-
tional restrictions on the primes p, if F 6= Q) as a consequence of the Equivariant
Tamagawa Number Conjecture. Most recently, Greither and Popescu gave a new
and much more general approach to an Equivariant Main Conjecture, again under
the assumption that the µ-invariant vanishes and that p is odd, which seems to
have many more applications besides implying the Coates-Sinnott Conjecture. The
situation for the prime 2 remains almost completely open.





Bibliography

[1] D. Benois and T. Nguyen Quang Do, Les nombres de Tamagawa locaux et la conjecture de

Bloch et Kato pour les motifs Q(m) sur un corps abelien, Ann. Sci. École Norm. Sup. (4) 35
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[33] C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent.
Math. 55 (1979), 251–295.

[34] A. A. Suslin and V. Voevodsky, The Bloch–Kato conjecture and motivic cohomology with

finite coefficients, preprint (1995); revised version (1999).
[35] J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.

[36] V. Voevodsky, A. A. Suslin and E. Friedlander, Cycles, Transfers, and Motivic Homology
Theories, Annals of Math. Studies, vol. 143, Princeton University Press, New JA. A. Suslin-

ersey, 2000.

[37] V. Voevodsky Motivic Cohomology with Z/2-coefficients, Publ. Math. de l’IHÉS, vol. 98 #1
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