REALIZING CERTAIN p-GROUPS AS GALOIS GROUPS

Andrew Schultz

Wellesley College

October 5, 2013

The umbrella question

Given group G and field F, is there an extension with

$$
\operatorname{Gal}(K / F) \simeq G
$$

The umbrella question

Given group G and field F, is there an extension with

$$
\operatorname{Gal}(K / F) \simeq G
$$

If we have $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$, solve "step by step"

The umbrella question

Given group G and field F, is there an extension with

$$
\operatorname{Gal}(K / F) \simeq G
$$

If we have $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$, solve "step by step"

- Find extension with $\operatorname{Gal}(K / F) \simeq Q$

A worked example

The umbrella question

Given group G and field F, is there an extension with

$$
\operatorname{Gal}(K / F) \simeq G
$$

If we have $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$, solve "step by step"

- Find extension with $\operatorname{Gal}(K / F) \simeq Q$
- Find L / K so that $\operatorname{Gal}(L / K) \simeq N$

A worked example

The umbrella question

Given group G and field F, is there an extension with

$$
\operatorname{Gal}(K / F) \simeq G
$$

If we have $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$, solve "step by step"

- Find extension with $\operatorname{Gal}(K / F) \simeq Q$
- Find L / K so that $\operatorname{Gal}(L / K) \simeq N$
- "Stitching" condition: does Galois S.E.S. match?

A working example: the Heisenberg group

$$
H_{p^{3}}=\left\langle x, y, z: x^{p}=y^{p}=z^{p}=1 ;[x, y]=z\right\rangle
$$

A worked example

A working example: the Heisenberg group

$H_{p^{3}}=\left\langle x, y, z: x^{p}=y^{p}=z^{p}=1 ;[x, y]=z\right\rangle$

- One of the two nonabelian groups of order p^{3}
- Realized by $\left\{\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\} \subseteq G L\left(\mathbb{F}_{p}\right)$

Heisenberg via embeddings: classic approach

$$
\underset{\substack{1 \\ \operatorname{Gal}(L / K)}}{\mathbb{Z} / p \longrightarrow} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \times \mathbb{Z} / p \longrightarrow 1
$$

Heisenberg via embeddings: classic approach

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} / p \longrightarrow \mathbb{\|} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \times \mathbb{Z} / p \longrightarrow 1 \\
\operatorname{Gal}(L / K) \\
\operatorname{Gal}(K / F)
\end{gathered}
$$

Constructing K / F and L / K
If $\xi_{p} \in F$, then $K=F(\sqrt[p]{a}, \sqrt[p]{b}) \quad$ and $\quad L=K(\sqrt[p]{z})$

Heisenberg via embeddings: classic approach

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} / p \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \times \mathbb{Z} / p \longrightarrow 1 \\
\operatorname{Gal}(L / K) \\
\operatorname{Gal}(K / F)
\end{gathered}
$$

Constructing K / F and L / K

If $\xi_{p} \in F$, then $K=F(\sqrt[p]{a}, \sqrt[p]{b}) \quad$ and $\quad L=K(\sqrt[p]{z})$

Stitching condition

$\exists x \in F(\sqrt[p]{a})$ with $N_{F(\sqrt{2}) / F} x=b$, and

$$
z=r x^{p-1} \sigma\left(x^{p-2}\right) \cdots \sigma^{p-2}(x) \text { for some } r \in F^{\times}
$$

Heisenberg via embeddings: new approach

A worked example

Heisenberg via embeddings: new approach

Heisenberg via embeddings: new approach

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} / p \times \mathbb{Z} / p \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \longrightarrow 1 \\
\operatorname{Gal}(L / K)
\end{gathered}
$$

Constructing K / F and L / K
If $\xi_{p} \in F$, then $K=F(\sqrt[p]{a}) \quad$ and $\quad L=K(\sqrt[p]{y}, \sqrt[p]{z})$

Heisenberg via embeddings: new approach

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} / p \times \mathbb{Z} / p \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \longrightarrow 1 \\
\operatorname{Gal}(L / K)
\end{gathered}
$$

Constructing K / F and L / K
If $\xi_{p} \in F$, then $K=F(\sqrt[p]{a}) \quad$ and $\quad L=K(\sqrt[p]{y}, \sqrt[p]{z})$

Stitching condition

Kummer theory and Galois actions

How can we detect "stitching" for elem. p-abelian extension?

Kummer theory and Galois actions

How can we detect "stitching" for elem. p-abelian extension?
Our setup:

- $\operatorname{Gal}(L / K) \simeq \oplus^{k} \mathbb{Z} / p$ corresponds to $N \subseteq K^{\times} / K^{\times p}$
- $G_{n}=\operatorname{Gal}(K / F)=\langle\sigma\rangle \simeq \mathbb{Z} / p^{n}$

Kummer theory and Galois actions

How can we detect "stitching" for elem. p-abelian extension?
Our setup:

- $\operatorname{Gal}(L / K) \simeq \oplus^{k} \mathbb{Z} / p$ corresponds to $N \subseteq K^{\times} / K^{\times p}$
- $G_{n}=\operatorname{Gal}(K / F)=\langle\sigma\rangle \simeq \mathbb{Z} / p^{n}$

Fact: L / F Galois iff N is $\mathbb{F}_{p}[G]$-module

Kummer theory and Galois actions

How can we detect "stitching" for elem. p-abelian extension?
Our setup:

- $\operatorname{Gal}(L / K) \simeq \oplus^{k} \mathbb{Z} / p$ corresponds to $N \subseteq K^{\times} / K^{\times p}$
- $G_{n}=\operatorname{Gal}(K / F)=\langle\sigma\rangle \simeq \mathbb{Z} / p^{n}$

Fact: L / F Galois iff N is $\mathbb{F}_{p}[G]$-module
Fact: M is indecomposable and $\operatorname{dim}_{\mathbb{F}_{p}}(M)=\ell$ implies

$$
M \simeq A_{\ell}:=\mathbb{F}_{p}[G] /(\sigma-1)^{\ell}
$$

A worked example

$H_{p^{3}}$ extensions via modules

$$
\begin{array}{cc}
1 \longrightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow \\
\| \\
\operatorname{Gal}(L / K) & \operatorname{Gal}(K / F)
\end{array}
$$

A worked example

$H_{p^{3}}$ extensions via modules

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow 1 \\
\operatorname{Gal}(L / K)
\end{gathered}
$$

Because $\operatorname{dim}_{\mathbb{F}_{p}}(\operatorname{Gal}(L / K))=2$, either

A worked example

$H_{p^{3}}$ extensions via modules

$$
\begin{array}{cc}
1 \longrightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \longrightarrow H_{p^{3}} \longrightarrow & \mathbb{Z} / p \mathbb{Z} \longrightarrow 1 \\
\operatorname{Gal}(L / K) & \operatorname{Gal}(K / F)
\end{array}
$$

Because $\operatorname{dim}_{\mathbb{F}_{p}}(\operatorname{Gal}(L / K))=2$, either

- $N \simeq A_{1}^{\oplus 2}$
- $N \simeq A_{2}$

A worked example

$H_{p^{3}}$ extensions via modules

$$
\begin{array}{cc}
1 \longrightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow \\
\| \\
\operatorname{Gal}(L / K) & \operatorname{Gal}(K / F)
\end{array}
$$

Because $\operatorname{dim}_{\mathbb{F}_{p}}(\operatorname{Gal}(L / K))=2$, either

- $N \simeq A_{1}^{\oplus 2} \longleftarrow$ this makes $\operatorname{Gal}(L / F)$ abelian
- $N \simeq A_{2}$

A worked example

$H_{p^{3}}$ extensions via modules

$$
\begin{array}{cc}
1 \longrightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \longrightarrow H_{p^{3}} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow \\
\| \\
\operatorname{Gal}(L / K) & \operatorname{Gal}(K / F)
\end{array}
$$

Because $\operatorname{dim}_{\mathbb{F}_{p}}(\operatorname{Gal}(L / K))=2$, either

- $N \simeq A_{1}^{\oplus 2} \longleftarrow$ this makes $\operatorname{Gal}(L / F)$ abelian
- $N \simeq A_{2}$

Bad news: $N \simeq A_{2}$ can't be enough to ensure $\operatorname{Gal}(L / F) \simeq H_{p^{3}}$

$H_{p^{3}}$ extensions via modules

Problem: There are (typically) two ways to fill in

$$
1 \longrightarrow A_{\ell} \longrightarrow ? \longrightarrow G \longrightarrow 1
$$

$H_{p^{3}}$ extensions via modules

Problem: There are (typically) two ways to fill in

$$
1 \longrightarrow A_{\ell} \longrightarrow ? \longrightarrow G \longrightarrow 1
$$

If $L / K \leftrightarrow\langle\gamma\rangle$, there is a function to detect which is $\operatorname{Gal}(L / F)$

$H_{p^{3}}$ extensions via modules

Problem: There are (typically) two ways to fill in

$$
1 \longrightarrow A_{\ell} \longrightarrow ? \longrightarrow G \longrightarrow 1
$$

If $L / K \leftrightarrow\langle\gamma\rangle$, there is a function to detect which is $\operatorname{Gal}(L / F)$

$$
e(\gamma)={\sqrt[p]{N_{K / F}(\gamma)}}^{\sigma-1}
$$

A worked example

$H_{p^{3}}$ extensions via modules

Problem: There are (typically) two ways to fill in

$$
1 \longrightarrow A_{\ell} \longrightarrow ? \longrightarrow G \longrightarrow 1
$$

If $L / K \leftrightarrow\langle\gamma\rangle$, there is a function to detect which is $\operatorname{Gal}(L / F)$

$$
e(\gamma)={\sqrt[p]{N_{K / F}(\gamma)}}^{\sigma-1}
$$

- $\gamma \in \operatorname{ker}(e) \Longrightarrow \operatorname{Gal}(L / F) \simeq A_{\ell} \rtimes G$
- $\gamma \notin \operatorname{ker}(e) \Longrightarrow \operatorname{Gal}(L / F) \simeq A_{\ell} \bullet G$

Finishing our example

$$
\begin{gathered}
\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{2} \\
\gamma \in \operatorname{ker}(e)
\end{array}\right\} \\
\begin{array}{c}
\downarrow \\
H_{p^{3}} \simeq A_{2} \rtimes G
\end{array}
\end{gathered}
$$

Finishing our example

$$
\begin{gathered}
\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{2} \\
\gamma \notin \operatorname{ker}(e)
\end{array}\right\}
\end{gathered} \begin{gathered}
\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{2} \\
\gamma \in \operatorname{ker}(e)
\end{array}\right\} \\
\downarrow \\
M_{p^{3}} \simeq A_{2} \bullet G \quad H_{p^{3}} \simeq A_{2} \rtimes G
\end{gathered}
$$

A worked example

Finishing our example

$$
\begin{gathered}
\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{2} \\
\gamma \notin \operatorname{ker}(e)
\end{array}\right\}
\end{gathered} \begin{gathered}
\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{2} \\
\gamma \in \operatorname{ker}(e)
\end{array}\right\}
\end{gathered}\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{1}^{\oplus 2} \\
\gamma \in \operatorname{ker}(e)
\end{array}\right\}\left\{\begin{array}{c}
G \simeq \mathbb{Z} / p \\
\langle\gamma\rangle \simeq A_{1}^{\oplus 2} \\
\gamma \notin \operatorname{ker}(e)
\end{array}\right\}
$$

Good news

Good news

This paradigm gives machinery to study any embedding problem of form

$$
1 \longrightarrow \oplus^{k} \mathbb{Z} / p \longrightarrow G \longrightarrow \mathbb{Z} / p^{n} \longrightarrow 1
$$

regardless of base field

Good news

This paradigm gives machinery to study any embedding problem of form

$$
1 \longrightarrow \oplus^{k} \mathbb{Z} / p \longrightarrow G \longrightarrow \mathbb{Z} / p^{n} \longrightarrow 1
$$

regardless of base field, mostly in terms of linear algebra.

Good news

This paradigm gives machinery to study any embedding problem of form

$$
1 \longrightarrow \oplus^{k} \mathbb{Z} / p \longrightarrow G \longrightarrow \mathbb{Z} / p^{n} \longrightarrow 1
$$

regardless of base field, mostly in terms of linear algebra.
Replace $K^{\times} / K^{\times p}$ with appropriate parameterizing space
$J(K)=\left\{\begin{array}{l}K^{\times} / K^{\times p} \\ K / \wp(K) \\ K\left(\xi_{p}\right)^{\times} /\left.K\left(\xi_{p}\right)^{\times p}\right|_{\epsilon=t}\end{array}\right.$
if $\xi_{p} \in F$
if $\operatorname{char}(F)=p$
if $\operatorname{char}(F) \neq p$ and $\xi_{p} \notin F$

Good news

This paradigm gives machinery to study any embedding problem of form

$$
1 \longrightarrow \oplus^{k} \mathbb{Z} / p \longrightarrow G \longrightarrow \mathbb{Z} / p^{n} \longrightarrow 1
$$

regardless of base field, mostly in terms of linear algebra.

Moral

Solvability of particular embedding problem determined by existence of certain modules in $J(K)$

More good news

Solvability of embedding problems determined by existence of appropriate modules in $J(K)$. And we know structure of $J(K)$!

More good news

Solvability of embedding problems determined by existence of appropriate modules in $J(K)$. And we know structure of $J(K)$!

Structure of $J(K)$ - $[B, M, S,-]$
If $\operatorname{Gal}(K / F) \simeq \mathbb{Z} / p^{n}$, then

$$
J(K) \simeq\langle\chi\rangle \oplus Y_{0} \oplus \cdots \oplus Y_{n}
$$

More good news

Solvability of embedding problems determined by existence of appropriate modules in $J(K)$. And we know structure of $J(K)$!

Structure of $J(K)$ - $[B, M, S,-]$
If $\operatorname{Gal}(K / F) \simeq \mathbb{Z} / p^{n}$, then

$$
J(K) \simeq\langle\chi\rangle \oplus Y_{0} \oplus \cdots \oplus Y_{n}
$$

where

- $Y_{i} \simeq\left(A_{p^{i}}\right)^{\oplus \mathfrak{d}_{i}}$ and $\langle\chi\rangle \simeq A_{p^{i}(K / F)+1}$

More good news

Solvability of embedding problems determined by existence of appropriate modules in $J(K)$. And we know structure of $J(K)$!

Structure of $J(K)$ - $[B, M, S,-]$
If $\operatorname{Gal}(K / F) \simeq \mathbb{Z} / p^{n}$, then

$$
J(K) \simeq\langle\chi\rangle \oplus Y_{0} \oplus \cdots \oplus Y_{n}
$$

where

- $Y_{i} \simeq\left(A_{p^{i}}\right)^{\oplus \mathfrak{0}_{i}}$ and $\langle\chi\rangle \simeq A_{p^{i}(K / F)+1}$
- $\chi \notin \operatorname{ker}(e)$ and $Y_{i} \subseteq \operatorname{ker}(e)$ for $0 \leq i<n$,

Who cares?

Now that we have this machinery, what does it do for us?

Who cares?

Now that we have this machinery, what does it do for us?

- Enumerate extensions with prescribed Galois groups

Who cares?

Now that we have this machinery, what does it do for us?

- Enumerate extensions with prescribed Galois groups
- Put structural restrictions on absolute Galois groups

Realization multiplicity

A few notations to help us count extensions

Realization multiplicity

A few notations to help us count extensions $\nu(G, F)=\#\{G$-extn's of $F\}$

Realization multiplicity

A few notations to help us count extensions
$\nu(G, F)=\#\{G$-extn's of $F\}$
$\nu(G \rightarrow Q, K / F)=\#\{$ Soln's to $G \rightarrow Q$ over $K / F\}$

Realization multiplicity

A few notations to help us count extensions
$\nu(G, F)=\#\{G$-extn's of $F\}$
$\nu(G \rightarrow Q, K / F)=\#\{$ Soln's to $G \rightarrow Q$ over $K / F\}$
$\nu(G)=\min _{F}\{\nu(G, F): \nu(G, F)>0\}$

Realization multiplicity

A few notations to help us count extensions
$\nu(G, F)=\#\{G$-extn's of $F\}$
$\nu(G \rightarrow Q, K / F)=\#\{$ Soln's to $G \rightarrow Q$ over $K / F\}$
$\nu(G)=\min _{F}\{\nu(G, F): \nu(G, F)>0\}$

Example

$\nu(\mathbb{Z} / n)=1$, since \mathbb{F}_{p} has only one \mathbb{Z} / n extension

Relating $M_{p^{3}}$ and $H_{p^{3}}$

Brattstrom proved: if $\xi_{p^{2}} \in F$ or $\operatorname{char}(F)=p$, then

$$
\nu\left(M_{p^{3}}, F\right)=\left(p^{2}-1\right) \nu\left(H_{p^{3}}, F\right)
$$

Relating $M_{p^{3}}$ and $H_{p^{3}}$

Brattstrom proved: if $\xi_{p^{2}} \in F$ or $\operatorname{char}(F)=p$, then

$$
\nu\left(M_{p^{3}}, F\right)=\left(p^{2}-1\right) \nu\left(H_{p^{3}}, F\right)
$$

Using modules, we can prove
$\nu\left(M_{p^{3}}, F\right)=\left(p^{2}-1\right) \nu\left(H_{p^{3}}, F\right)+\left(\binom{\operatorname{dim} J(F)}{1}_{p}-\binom{\operatorname{dim} \mathfrak{N}}{1}_{p}\right) \frac{|J(F)|}{p^{2}}$
where \mathfrak{N} is subspace of $J(F)$ where $\mathbb{Z} / p^{2} \rightarrow \mathbb{Z} / p$ is solvable

Count on $H_{p^{3}}$-extensions is critical for other groups too:

$H_{p^{3}}$ as the key

Count on $H_{p^{3}}$-extensions is critical for other groups too:
$\nu\left(A_{\ell} \rtimes G \rightarrow G, K / F\right)=$

$H_{p^{3}}$ as the key

Count on $H_{p^{3}}$-extensions is critical for other groups too:
$\nu\left(A_{\ell} \rtimes G \rightarrow G, K / F\right)=$

$$
\nu\left(H_{p^{3}} \rightarrow G, K / F\right) \cdot\left(\frac{p(p-1)}{|J(F)|} \nu\left(H_{p^{3}} \rightarrow G, K / F\right)+\frac{1}{p}\right)^{\ell-2}
$$

Minimal realization multiplicity

Known results for nonabelian p-groups ($p>2$):

Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups $(p>2)$:
$\nu\left(M_{p^{3}}\right)=p, \quad \nu\left(M_{p^{3}} \times \mathbb{Z} / p\right)=p^{2}-1, \quad \nu\left((\mathbb{Z} / p)^{k} \times H_{p^{3}}\right)=1$.

Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups $(p>2)$:
$\nu\left(M_{p^{3}}\right)=p, \quad \nu\left(M_{p^{3}} \times \mathbb{Z} / p\right)=p^{2}-1, \quad \nu\left((\mathbb{Z} / p)^{k} \times H_{p^{3}}\right)=1$.

New results:

- $\nu\left(\left(A_{p} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p^{2}+p$

Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups $(p>2)$:
$\nu\left(M_{p^{3}}\right)=p, \quad \nu\left(M_{p^{3}} \times \mathbb{Z} / p\right)=p^{2}-1, \quad \nu\left((\mathbb{Z} / p)^{k} \times H_{p^{3}}\right)=1$.

New results:

- $\nu\left(\left(A_{p} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p^{2}+p$
- $\nu\left(\left(A_{\ell} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p+1$ for $2<\ell<p$

Minimal realization multiplicity

Known results for nonabelian p-groups $(p>2)$:
$\nu\left(M_{p^{3}}\right)=p, \quad \nu\left(M_{p^{3}} \times \mathbb{Z} / p\right)=p^{2}-1, \quad \nu\left((\mathbb{Z} / p)^{k} \times H_{p^{3}}\right)=1$.

New results:

- $\nu\left(\left(A_{p} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p^{2}+p$
- $\nu\left(\left(A_{\ell} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p+1$ for $2<\ell<p$
- $\nu\left(A_{\ell} \bullet \mathbb{Z} / p\right)=p^{2}-1$ for $2<\ell<p$

Minimal realization multiplicity

Known results for nonabelian p-groups $(p>2)$:
$\nu\left(M_{p^{3}}\right)=p, \quad \nu\left(M_{p^{3}} \times \mathbb{Z} / p\right)=p^{2}-1, \quad \nu\left((\mathbb{Z} / p)^{k} \times H_{p^{3}}\right)=1$.

New results:

- $\nu\left(\left(A_{p} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p^{2}+p$
- $\nu\left(\left(A_{\ell} \rtimes \mathbb{Z} / p\right) \times(\mathbb{Z} / p)^{k}\right)=p+1$ for $2<\ell<p$
- $\nu\left(A_{\ell} \bullet \mathbb{Z} / p\right)=p^{2}-1$ for $2<\ell<p$
- $\nu\left(A_{p}^{\oplus k} \rtimes G\right) \geq p^{k}$

Automatic realizations

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Example: If $G \rightarrow Q$, then $G \Rightarrow Q$.

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Example: If $G \rightarrow Q$, then $G \Rightarrow Q . \longleftarrow$ (These are stupid.)

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Example: If $G \rightarrow Q$, then $G \Rightarrow Q . \longleftarrow$ (These are stupid.)
Example: If p is odd, then $\mathbb{Z} / p \Rightarrow \mathbb{Z} / p^{2}$

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Example: If $G \rightarrow Q$, then $G \Rightarrow Q . \longleftarrow$ (These are stupid.)
Example: If p is odd, then $\mathbb{Z} / p \Rightarrow \mathbb{Z} / p^{2} \Rightarrow \mathbb{Z} / p^{3}$

Automatic realizations

Automatic realization

We say that H automatically realizes G when

$$
\nu(H, F)>0 \text { implies } \nu(G, F)>0 .
$$

We write this $H \Rightarrow G$.

Example: If $G \rightarrow Q$, then $G \Rightarrow Q$. \longleftarrow (These are stupid.)
Example: If p is odd, then $\mathbb{Z} / p \Rightarrow \mathbb{Z} / p^{2} \Rightarrow \mathbb{Z} / p^{3} \Rightarrow \cdots \Rightarrow \mathbb{Z}_{p}$

Previously known automatic realizations

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8}$ 人 $D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8}$ 人 $D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Fewer for $p>2$:

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8}$ 人 $D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Fewer for $p>2$:

- $\mathbb{Z} / p^{a_{1}} \times \mathbb{Z} / p^{a_{2}} \Rightarrow \mathbb{Z} / p^{b_{1}} \times \mathbb{Z} / p^{b_{2}}$ iff $\min \left(a_{1}, a_{2}\right) \geq \min \left(b_{1}, b_{2}\right)$

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8} \curlywedge D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Fewer for $p>2$:

- $\mathbb{Z} / p^{a_{1}} \times \mathbb{Z} / p^{a_{2}} \Rightarrow \mathbb{Z} / p^{b_{1}} \times \mathbb{Z} / p^{b_{2}}$ iff $\min \left(a_{1}, a_{2}\right) \geq \min \left(b_{1}, b_{2}\right)$
- $H_{p^{3}} \Rightarrow M_{p^{3}}$

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8} \curlywedge D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Fewer for $p>2$:

- $\mathbb{Z} / p^{a_{1}} \times \mathbb{Z} / p^{a_{2}} \Rightarrow \mathbb{Z} / p^{b_{1}} \times \mathbb{Z} / p^{b_{2}}$ iff $\min \left(a_{1}, a_{2}\right) \geq \min \left(b_{1}, b_{2}\right)$
- $H_{p^{3}} \Rightarrow M_{p^{3}} \Rightarrow M_{p^{3}} \curlywedge \mathbb{Z} / p^{2}$

Previously known automatic realizations

Several automatic realizations for small 2-groups

- $Q_{8} \Rightarrow Q_{8}$ 人 $D_{4} \Rightarrow D_{4}$
- $Q_{16} \Rightarrow \mathbb{Z} / 4$
- $S D_{16} \Rightarrow \mathbb{Z} / 4$
- $Q_{8} \curlywedge C_{4} \Leftrightarrow Q_{8}$

Fewer for $p>2$:

- $\mathbb{Z} / p^{a_{1}} \times \mathbb{Z} / p^{a_{2}} \Rightarrow \mathbb{Z} / p^{b_{1}} \times \mathbb{Z} / p^{b_{2}}$ iff $\min \left(a_{1}, a_{2}\right) \geq \min \left(b_{1}, b_{2}\right)$
- $H_{p^{3}} \Rightarrow M_{p^{3}} \Rightarrow M_{p^{3}} \curlywedge \mathbb{Z} / p^{2}$
- $H_{p^{3}} \times K \Rightarrow M_{p^{3}} \times K$ for any finite group K

Some new automatic realizations

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$
- $A_{\ell} \bullet G \Rightarrow A_{\ell} \rtimes G$ for $\ell \neq p^{k}+1$

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$
- $A_{\ell} \bullet G \Rightarrow A_{\ell} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{\ell} \bullet G \Rightarrow A_{\ell-1} \rtimes G$ for $\ell \neq p^{k}+1$

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$
- $A_{\ell} \bullet G \Rightarrow A_{\ell} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{\ell} \bullet G \Rightarrow A_{\ell-1} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{p^{n-1}+1} \rtimes G \Rightarrow A_{p^{n-1}+k} \bullet G$ for $1 \leq k \leq p^{n}-p^{n-1}$

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$
- $A_{\ell} \bullet G \Rightarrow A_{\ell} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{\ell} \bullet G \Rightarrow A_{\ell-1} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{p^{n-1}+1} \rtimes G \Rightarrow A_{p^{n-1}+k} \bullet G$ for $1 \leq k \leq p^{n}-p^{n-1}$

Even works for non-cyclics: for any $\mathbb{F}_{p}[G]$-module M,

$$
M \rtimes G \Rightarrow\lceil M\rceil \rtimes G
$$

Some new automatic realizations

- $A_{\ell} \rtimes G \Rightarrow A_{\ell+1} \rtimes G$ for $\ell \neq p^{k}$
- $A_{\ell} \bullet G \Rightarrow A_{\ell} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{\ell} \bullet G \Rightarrow A_{\ell-1} \rtimes G$ for $\ell \neq p^{k}+1$
- $A_{p^{n-1}+1} \rtimes G \Rightarrow A_{p^{n-1}+k} \bullet G$ for $1 \leq k \leq p^{n}-p^{n-1}$

Even works for non-cyclics: for any $\mathbb{F}_{p}[G]$-module M,

$$
M \rtimes G \Rightarrow\lceil M\rceil \rtimes G
$$

Example: a group of size $3125 \Rightarrow$ a group of size 48828125

