Daniel Vallières

SUNY, Binghamton

Maine-Québec number theory conference in honor of Claude Levesque and Chip Snyder October 6, 2013 Study the connection between certain commutative connected complex Lie groups of the form \mathbb{C}^2/Γ , where Γ is a lattice of rank 3 in \mathbb{C}^2 , and non-totally real cubic number fields.

Motivation.

- Commutative connected complex Lie groups.
- The Remmert-Morimoto decomposition.
- Non-totally real cubic number fields and Cousin groups of complex dimension 2 and rank 3.
- Linearization of systems of exponents.

Motivation.

• Commutative connected complex Lie groups.

- The Remmert-Morimoto decomposition.
- Non-totally real cubic number fields and Cousin groups of complex dimension 2 and rank 3.
- Linearization of systems of exponents.

- Motivation.
- Commutative connected complex Lie groups.
- The Remmert-Morimoto decomposition.
- Non-totally real cubic number fields and Cousin groups of complex dimension 2 and rank 3.
- Linearization of systems of exponents.

- Motivation.
- Commutative connected complex Lie groups.
- The Remmert-Morimoto decomposition.
- Non-totally real cubic number fields and Cousin groups of complex dimension 2 and rank 3.
- Linearization of systems of exponents.

- Motivation.
- Commutative connected complex Lie groups.
- The Remmert-Morimoto decomposition.
- Non-totally real cubic number fields and Cousin groups of complex dimension 2 and rank 3.
- Linearization of systems of exponents.

Let K be a CM-field of degree 2n over \mathbb{Q} and let

$$\Phi = \{\varphi_1, \ldots, \varphi_n\}$$

be a *CM*-type. Define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^n$ by the formula

 $\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_n(\lambda)).$

Let *K* be a *CM*-field of degree 2n over \mathbb{Q} and let

$$\Phi = \{\varphi_1, \ldots, \varphi_n\}$$

be a *CM*-type. Define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^n$ by the formula

 $\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_n(\lambda)).$

34.16

 $\mathbb{C}^n/\mu_{\Phi}(\mathfrak{a})$

admits a Riemann form. Therefore, these complex tori can be embedded as abelian varieties inside some projective space $\mathbb{P}^m(\mathbb{C})$. Moreover, their rings of endomorphisms are "big". For example, if the corresponding abelian variety A is simple, then

 $\operatorname{End}_{\mathbb{C}}(A)\simeq O_{K}.$

$\mathbb{C}^n/\mu_{\Phi}(\mathfrak{a})$

admits a Riemann form. Therefore, these complex tori can be embedded as abelian varieties inside some projective space $\mathbb{P}^m(\mathbb{C})$. Moreover, their rings of endomorphisms are "big". For example, if the corresponding abelian variety A is simple, then

$$\operatorname{End}_{\mathbb{C}}(A) \simeq O_{K}.$$

$$\mathbb{C}^n/\mu_{\Phi}(\mathfrak{a})$$

admits a Riemann form. Therefore, these complex tori can be embedded as abelian varieties inside some projective space $\mathbb{P}^m(\mathbb{C})$. Moreover, their rings of endomorphisms are "big". For example, if the corresponding abelian variety A is simple, then

 $\operatorname{End}_{\mathbb{C}}(A) \simeq O_{K}.$

$$\mathbb{C}^n/\mu_{\Phi}(\mathfrak{a})$$

admits a Riemann form. Therefore, these complex tori can be embedded as abelian varieties inside some projective space $\mathbb{P}^m(\mathbb{C})$. Moreover, their rings of endomorphisms are "big". For example, if the corresponding abelian variety A is simple, then

$$\operatorname{End}_{\mathbb{C}}(A) \simeq O_{K}.$$

The case n = 1 might be more familiar: The complex tori are the elliptic curves with complex multiplication and one has the following theorem:

Theorem

There are exactly h_K isomorphism classes of elliptic curves with CM by O_K .

(Remark: There is a similar theorem for abelian varieties, but one has to keep track of the CM-type involved.)

The case n = 1 might be more familiar: The complex tori are the elliptic curves with complex multiplication and one has the following theorem:

Theorem

There are exactly h_K isomorphism classes of elliptic curves with CM by O_K .

(Remark: There is a similar theorem for abelian varieties, but one has to keep track of the CM-type involved.)

Question: How essential is the compactness of the complex tori???

For instance, one has

$$\mathbb{C}/\mathbb{Z} \xrightarrow{\simeq} \mathbb{G}_m(\mathbb{C})$$

via $z \mapsto \exp(2\pi i z)$.

æ

э

Theorem

If G is a commutative connected complex Lie group of complex dimension n, then there exists a lattice Γ (not necessarily of full rank) such that

 $G\simeq \mathbb{C}^n/\Gamma.$

Theorem (Remmert ?, Morimoto 1965)

Any commutative connected complex Lie group is isomorphic to a group of the form

 $\mathbb{C}^a imes (\mathbb{C}^{\times})^b imes G_0,$

where G_0 is a commutative connected complex Lie group satisfying $Hol(G_0) = \mathbb{C}$. Moreover, this decomposition is unique meaning that if

$$\mathbb{C}^a imes(\mathbb{C}^ imes)^b imes G_0\simeq\mathbb{C}^{a'} imes(\mathbb{C}^ imes)^{b'} imes G_0',$$

then

$$a = a', b = b', and G_0 \simeq G'_0.$$

Theorem (Remmert ?, Morimoto 1965)

Any commutative connected complex Lie group is isomorphic to a group of the form

 $\mathbb{C}^a \times (\mathbb{C}^{\times})^b \times \mathcal{G}_0,$

where G_0 is a commutative connected complex Lie group satisfying Hol(G_0) = \mathbb{C} . Moreover, this decomposition is unique meaning that if $\mathbb{C}^a \times (\mathbb{C}^{\times})^b \times G_0 \simeq \mathbb{C}^{a'} \times (\mathbb{C}^{\times})^{b'} \times G'_0$,

then

$$a = a', b = b', and G_0 \simeq G'_0$$
.

Theorem (Remmert ?, Morimoto 1965)

Any commutative connected complex Lie group is isomorphic to a group of the form

$$\mathbb{C}^{a} \times (\mathbb{C}^{\times})^{b} \times G_{0},$$

where G_0 is a commutative connected complex Lie group satisfying $Hol(G_0) = \mathbb{C}$. Moreover, this decomposition is unique meaning that if

$$\mathbb{C}^{\mathsf{a}} imes (\mathbb{C}^{ imes})^{b} imes \mathsf{G}_{0} \simeq \mathbb{C}^{\mathsf{a}'} imes (\mathbb{C}^{ imes})^{b'} imes \mathsf{G}_{0}',$$

then

$$a = a', b = b', and G_0 \simeq G'_0.$$

Definition

A commutative connected complex Lie group G is called a Cousin group if $Hol(G) = \mathbb{C}$.

Let K be a number field, $r = r_1 + r_2$, and

 $\Phi = \{\varphi_1, \ldots, \varphi_r\}$

be a complete set of representatives modulo complex conjugation for the embeddings of K into \mathbb{C} , where the first r_1 embeddings are real. We define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^r$ by the formula

$$\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_r(\lambda)).$$

Then given any fractional ideal \mathfrak{a} of K, $\mu_{\Phi}(\mathfrak{a})$ is a lattice of rank $[K : \mathbb{Q}]$ and one can look at the commutative connected complex Lie group

 $\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a}).$

Let K be a number field, $r = r_1 + r_2$, and

 $\mathbf{\Phi} = \{\varphi_1, \ldots, \varphi_r\}$

be a complete set of representatives modulo complex conjugation for the embeddings of K into \mathbb{C} , where the first r_1 embeddings are real. We define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^r$ by the formula

$$\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_r(\lambda)).$$

Then given any fractional ideal α of K, $\mu_{\Phi}(\alpha)$ is a lattice of rank $[K : \mathbb{Q}]$ and one can look at the commutative connected complex Lie group

 $\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a}).$

Let K be a number field, $r = r_1 + r_2$, and

$$\Phi = \{\varphi_1, \ldots, \varphi_r\}$$

be a complete set of representatives modulo complex conjugation for the embeddings of K into \mathbb{C} , where the first r_1 embeddings are real. We define $\mu_{\Phi}: K \longrightarrow \mathbb{C}^r$ by the formula

$$\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_r(\lambda)).$$

Then given any fractional ideal \mathfrak{a} of K, $\mu_{\Phi}(\mathfrak{a})$ is a lattice of rank $[K : \mathbb{Q}]$ and one can look at the commutative connected complex Lie group

 $\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a}).$

Let K be a number field, $r = r_1 + r_2$, and

$$\Phi = \{\varphi_1, \ldots, \varphi_r\}$$

be a complete set of representatives modulo complex conjugation for the embeddings of K into \mathbb{C} , where the first r_1 embeddings are real. We define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^r$ by the formula

$$\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_r(\lambda)).$$

Then given any fractional ideal \mathfrak{a} of K, $\mu_{\Phi}(\mathfrak{a})$ is a lattice of rank $[K : \mathbb{Q}]$ and one can look at the commutative connected complex Lie group

 $\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a}).$

Let K be a number field, $r = r_1 + r_2$, and

$$\Phi = \{\varphi_1, \ldots, \varphi_r\}$$

be a complete set of representatives modulo complex conjugation for the embeddings of K into \mathbb{C} , where the first r_1 embeddings are real. We define $\mu_{\Phi} : K \longrightarrow \mathbb{C}^r$ by the formula

$$\lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_r(\lambda)).$$

Then given any fractional ideal \mathfrak{a} of K, $\mu_{\Phi}(\mathfrak{a})$ is a lattice of rank $[K : \mathbb{Q}]$ and one can look at the commutative connected complex Lie group

 $\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a}).$

If K is totally real then

$$\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a})\simeq (\mathbb{C}^{\times})^{r_1}.$$

Theorem (Gherardelli 1989, V.

If K is a non-totally real cubic number field, then

 $\mathbb{C}^2/\mu_{\mathbf{\Phi}}(\mathfrak{a})$

is a Cousin group.

If K is totally real then

$$\mathbb{C}^r/\mu_{\Phi}(\mathfrak{a})\simeq (\mathbb{C}^{\times})^{r_1}.$$

Theorem (Gherardelli 1989, V.)

If K is a non-totally real cubic number field, then

 $\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})$

is a Cousin group.

F. Gherardelli, Varieta' quasi abeliane a moltiplicazione complessa, Rendiconti del Seminario Matematico e Fisico di Milano, 1989. Student: Giorgio Ottaviani

If G is a Cousin group of complex dimension 2 and rank 3, then most of the time

 $\operatorname{End}(G) = \mathbb{Z}.$

Theorem (Gherardelli 1989, V.)

Let G be a Cousin group of complex dimension 2 and of rank 3. If

 $\operatorname{End}(G) \neq \mathbb{Z},$

then

 $\operatorname{End}_0(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$

If G is a Cousin group of complex dimension 2 and rank 3, then most of the time

 $\operatorname{End}(G) = \mathbb{Z}.$

Theorem (Gherardelli 1989, V.)

Let G be a Cousin group of complex dimension 2 and of rank 3. If

 $\operatorname{End}(G) \neq \mathbb{Z},$

then

 $\operatorname{End}_0(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$

If G is a Cousin group of complex dimension 2 and rank 3, then most of the time

 $\operatorname{End}(G) = \mathbb{Z}.$

Theorem (Gherardelli 1989, V.)

Let G be a Cousin group of complex dimension 2 and of rank 3. If

 $\operatorname{End}(G) \neq \mathbb{Z},$

then

 $\operatorname{End}_0(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$

If G is a Cousin group of complex dimension 2 and rank 3, then most of the time

 $\operatorname{End}(G) = \mathbb{Z}.$

Theorem (Gherardelli 1989, V.)

Let G be a Cousin group of complex dimension 2 and of rank 3. If

 $\operatorname{End}(G) \neq \mathbb{Z},$

then

$$\operatorname{End}_{\mathbf{0}}(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$$

Theorem (Gherardelli 1989, V.)

Let K be a non-totally real cubic number field and let $\Phi = \{\varphi_1, \varphi_2\}$ be as before. If α is any fractional ideal of K, then

 $\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})$

is a Cousin group satisfying

End $(\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})) \simeq O_K.$

In fact, any Cousin group of complex dimension 2 and rank 3 having "extra multiplication" by O_K is isomorphic to one of those.

Theorem (Gherardelli 1989, V.)

Let K be a non-totally real cubic number field and let $\Phi = \{\varphi_1, \varphi_2\}$ be as before. If \mathfrak{a} is any fractional ideal of K, then

 $\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})$

is a Cousin group satisfying

End $(\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})) \simeq O_{\mathcal{K}}.$

In fact, any Cousin group of complex dimension 2 and rank 3 having "extra multiplication" by O_K is isomorphic to one of those.

Theorem (Gherardelli 1989, V.)

Let K be a non-totally real cubic number field and let $\Phi = \{\varphi_1, \varphi_2\}$ be as before. If a is any fractional ideal of K, then

 $\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})$

is a Cousin group satisfying

End $(\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a})) \simeq O_{\mathcal{K}}.$

In fact, any Cousin group of complex dimension 2 and rank 3 having "extra multiplication" by O_K is isomorphic to one of those.

Suppose that G is a Cousin group of complex dimension 2 and rank 3 satisfying

 $\iota: K \xrightarrow{\simeq} \operatorname{End}_0(G).$

Then, $\rho_a \circ \iota \simeq \varphi_1 \oplus \varphi_2$, where φ_1 is the unique real embedding and φ_2 is one of the two complex embeddings. We then say that (G, ι) is of type (K, Φ) , where

 $\Phi = \{\varphi_1, \varphi_2\}.$

Suppose that G is a Cousin group of complex dimension 2 and rank 3 satisfying

$$\iota: K \xrightarrow{\simeq} \operatorname{End}_0(G).$$

Then, $\rho_a \circ \iota \simeq \varphi_1 \oplus \varphi_2$, where φ_1 is the unique real embedding and φ_2 is one of the two complex embeddings. We then say that (G, ι) is of type (K, Φ) , where

$$\Phi = \{\varphi_1, \varphi_2\}.$$

Suppose that G is a Cousin group of complex dimension 2 and rank 3 satisfying

$$\iota: K \xrightarrow{\simeq} \operatorname{End}_{0}(G).$$

Then, $\rho_a \circ \iota \simeq \varphi_1 \oplus \varphi_2$, where φ_1 is the unique real embedding and φ_2 is one of the two complex embeddings. We then say that (G, ι) is of type (K, Φ) , where

$$\Phi = \{\varphi_1, \varphi_2\}.$$

Suppose that G is a Cousin group of complex dimension 2 and rank 3 satisfying

$$\iota: K \xrightarrow{\simeq} \operatorname{End}_{0}(G).$$

Then, $\rho_a \circ \iota \simeq \varphi_1 \oplus \varphi_2$, where φ_1 is the unique real embedding and φ_2 is one of the two complex embeddings. We then say that (G, ι) is of type (K, Φ) , where

$$\Phi = \{\varphi_1, \varphi_2\}.$$

One defines an action $Cl_K \times \Sigma_{\Phi} \longrightarrow \Sigma_{\Phi}$ via $[\mathfrak{a}] \cdot \left[\mathbb{C}^2/\mu_{\Phi}(\mathfrak{b})\right] \mapsto \left[\mathbb{C}^2/\mu_{\Phi}(\mathfrak{a}\mathfrak{b})\right].$

Theorem (Gherardelli 1989, V.)

This action is simply transitive and therefore there are exactly h_K isomorphism classes of Cousin groups (G, ι) of type (K, Φ) .

One defines an action $Cl_{\mathcal{K}} \times \Sigma_{\Phi} \longrightarrow \Sigma_{\Phi}$ via

$$[\mathfrak{a}] \cdot \left[\mathbb{C}^2 / \mu_{\Phi}(\mathfrak{b}) \right] \mapsto \left[\mathbb{C}^2 / \mu_{\Phi}(\mathfrak{ab}) \right].$$

Theorem (Gherardelli 1989, V.)

This action is simply transitive and therefore there are exactly h_K isomorphism classes of Cousin groups (G, ι) of type (K, Φ) .

In general, one can study $\mathcal{M}(\mathbb{C}^n/\Gamma)$, the field of meromorphic functions on these complex manifolds. Such an $f \in \mathcal{M}(\mathbb{C}^n/\Gamma)$ can be written as

for some $g_1, g_2 \in Hol(\mathbb{C}^n)$, where the g_i satisfy a certain functional equation involving a system of exponents.

In general, one can study $\mathcal{M}(\mathbb{C}^n/\Gamma)$, the field of meromorphic functions on these complex manifolds. Such an $f \in \mathcal{M}(\mathbb{C}^n/\Gamma)$ can be written as

$$f=rac{g_1}{g_2}$$

for some $g_1, g_2 \in Hol(\mathbb{C}^n)$, where the g_i satisfy a certain functional equation involving a system of exponents.

- The map s_γ : Cⁿ → C defined by z → s(γ, z) is holomorphic.
 s(0, z) ∈ Z for all z ∈ Cⁿ.
- $s(\gamma + \gamma', z) (s(\gamma, z + \gamma') + s(\gamma', z)) \in \mathbb{Z}.$

The functional equation satisfied by the g_i is

 $g_i(z+\gamma) = \exp\left(2\pi i s(\gamma,z)\right) \cdot g_i(z).$

- The map $s_{\gamma} : \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $z \mapsto s(\gamma, z)$ is holomorphic.
- $s(0,z) \in \mathbb{Z}$ for all $z \in \mathbb{C}^n$.
- $s(\gamma + \gamma', z) (s(\gamma, z + \gamma') + s(\gamma', z)) \in \mathbb{Z}.$

The functional equation satisfied by the g_i is

 $g_i(z+\gamma) = \exp(2\pi i s(\gamma,z)) \cdot g_i(z).$

- The map $s_{\gamma} : \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $z \mapsto s(\gamma, z)$ is holomorphic.
- $s(0,z) \in \mathbb{Z}$ for all $z \in \mathbb{C}^n$.
- $s(\gamma + \gamma', z) (s(\gamma, z + \gamma') + s(\gamma', z)) \in \mathbb{Z}.$

The functional equation satisfied by the g_i is

 $g_i(z+\gamma) = \exp(2\pi i s(\gamma,z)) \cdot g_i(z).$

- The map $s_{\gamma}: \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $z \mapsto s(\gamma, z)$ is holomorphic.
- $s(0,z) \in \mathbb{Z}$ for all $z \in \mathbb{C}^n$.
- $s(\gamma + \gamma', z) (s(\gamma, z + \gamma') + s(\gamma', z)) \in \mathbb{Z}.$

The functional equation satisfied by the g_i is

 $g_i(z+\gamma) = \exp\left(2\pi i s(\gamma,z)\right) \cdot g_i(z).$

• The map $s_{\gamma}: \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $z \mapsto s(\gamma, z)$ is holomorphic.

•
$$s(0,z)\in\mathbb{Z}$$
 for all $z\in\mathbb{C}^n$.

•
$$s(\gamma + \gamma', z) - (s(\gamma, z + \gamma') + s(\gamma', z)) \in \mathbb{Z}.$$

The functional equation satisfied by the g_i is

$$g_i(z + \gamma) = \exp(2\pi i s(\gamma, z)) \cdot g_i(z).$$

Two systems of exponents s and s' are equivalent if and only if there exists $d \in Hol(\mathbb{C}^n)$ satisfying

$$(s'(\gamma, z) - s(\gamma, z)) + \mathbb{Z} = (d(z + \gamma) - d(z)) + \mathbb{Z}.$$

 $s(\gamma, z) = L_{\gamma}(z) + c(\gamma),$

where $L_{\gamma} \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n, \mathbb{C})$ and $c(\gamma) \in \mathbb{C}$. If yes, s is said to be linearizable. A function g satisfying

 $g(z+\gamma) = \exp\left(2\pi i \left(L_{\gamma}(z) + c(\gamma)\right)\right) \cdot g(z)$

$$s(\gamma, z) = L_{\gamma}(z) + c(\gamma),$$

where $L_{\gamma} \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^{n},\mathbb{C})$ and $c(\gamma) \in \mathbb{C}$. If yes, s is said to be linearizable. A function g satisfying

$$g(z+\gamma) = \exp\left(2\pi i \left(L_{\gamma}(z) + c(\gamma)\right)\right) \cdot g(z)$$

$$s(\gamma, z) = L_{\gamma}(z) + c(\gamma),$$

where $L_{\gamma} \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n, \mathbb{C})$ and $c(\gamma) \in \mathbb{C}$. If yes, s is said to be linearizable. A function g satisfying

$$g(z+\gamma) = \exp\left(2\pi i \left(L_{\gamma}(z) + c(\gamma)\right)\right) \cdot g(z)$$

$$s(\gamma, z) = L_{\gamma}(z) + c(\gamma),$$

where $L_{\gamma} \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n, \mathbb{C})$ and $c(\gamma) \in \mathbb{C}$. If yes, s is said to be linearizable. A function g satisfying

$$g(z+\gamma) = \exp\left(2\pi i \left(L_{\gamma}(z) + c(\gamma)\right)\right) \cdot g(z)$$

Linearization of systems of exponents

Remarks:

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain C²/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.

Let \mathbb{C}^2/Γ be a Cousin group of complex dimension 2 and rank 3 having "extra multiplication". Then, any system of exponents is linearizable, i.e. every Γ -periodic function can be written as a quotient of theta functions.

A D N A B N A B N

Linearization of systems of exponents

Remarks:

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.

Let \mathbb{C}^2/Γ be a Cousin group of complex dimension 2 and rank 3 having "extra multiplication". Then, any system of exponents is linearizable, i.e. every Γ -periodic function can be written as a quotient of theta functions.

< /□> < □>

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.)

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.)

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.)

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.)

- In the compact case, it is always possible and this is the Appell-Humbert theorem.
- P. Cousin (Sur les fonctions triplement périodiques de deux variables, Acta. Math., 1910) gave counter-examples for certain \mathbb{C}^2/Γ where Γ has rank 3.
- C. Vogt (Line bundles on toroidal groups, Crelle, 1982) characterizes Cousin groups for which systems of exponents are always linearizable.

Theorem (V.)

Thank you

Questions??

æ

_ र ≣ ≯

Thank you

Questions??

P

문▶ ★ 문▶

æ