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Goal

Study the connection between certain commutative connected
complex Lie groups of the form C2/Γ, where Γ is a lattice of rank
3 in C2, and non-totally real cubic number fields.
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Motivation

Let K be a CM-field of degree 2n over Q and let

Φ = {ϕ1, . . . , ϕn}

be a CM-type. Define µΦ : K −→ Cn by the formula

λ 7→ (ϕ1(λ), . . . , ϕn(λ)).
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Motivation

If a is a fractional ideal of K , then µΦ(a) is a lattice of full rank in
Cn and the complex torus

Cn/µΦ(a)

admits a Riemann form. Therefore, these complex tori can be
embedded as abelian varieties inside some projective space Pm(C).
Moreover, their rings of endomorphisms are “big”. For example, if
the corresponding abelian variety A is simple, then

EndC(A) ' OK .
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Motivation

The case n = 1 might be more familiar: The complex tori are the
elliptic curves with complex multiplication and one has the
following theorem:

Theorem

There are exactly hK isomorphism classes of elliptic curves with
CM by OK .

(Remark: There is a similar theorem for abelian varieties, but one
has to keep track of the CM-type involved.)
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Motivation

Question: How essential is the compactness of the complex tori???
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Motivation

For instance, one has

C/Z '−→ Gm(C)

via z 7→ exp(2πiz).
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Commutative connected complex Lie groups

Theorem

If G is a commutative connected complex Lie group of complex
dimension n, then there exists a lattice Γ (not necessarily of full
rank) such that

G ' Cn/Γ.
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The Remmert-Morimoto decomposition

Theorem (Remmert ?, Morimoto 1965)

Any commutative connected complex Lie group is isomorphic to a
group of the form

Ca × (C×)b × G0,

where G0 is a commutative connected complex Lie group satisfying
Hol(G0) = C.Moreover, this decomposition is unique meaning that
if

Ca × (C×)b × G0 ' Ca′ × (C×)b
′ × G ′

0,

then
a = a′, b = b′, and G0 ' G ′

0.
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The Remmert-Morimoto decomposition

Definition

A commutative connected complex Lie group G is called a Cousin
group if Hol(G ) = C.
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Non-totally real cubic number fields and Cousin groups

Let K be a number field, r = r1 + r2, and

Φ = {ϕ1, . . . , ϕr}

be a complete set of representatives modulo complex conjugation
for the embeddings of K into C, where the first r1 embeddings are
real. We define µΦ : K −→ Cr by the formula

λ 7→ (ϕ1(λ), . . . , ϕr (λ)).

Then given any fractional ideal a of K , µΦ(a) is a lattice of rank
[K : Q] and one can look at the commutative connected complex
Lie group

Cr/µΦ(a).
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Non-totally real cubic number fields and Cousin groups

If K is totally real then

Cr/µΦ(a) ' (C×)r1 .

Theorem (Gherardelli 1989, V.)

If K is a non-totally real cubic number field, then

C2/µΦ(a)

is a Cousin group.
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Non-totally real cubic number fields and Cousin groups

F. Gherardelli, Varieta’ quasi abeliane a moltiplicazione complessa,
Rendiconti del Seminario Matematico e Fisico di Milano, 1989.
Student: Giorgio Ottaviani
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Non-totally real cubic number fields and Cousin groups

If G is a Cousin group of complex dimension 2 and rank 3, then
most of the time

End(G ) = Z.

Theorem (Gherardelli 1989, V.)

Let G be a Cousin group of complex dimension 2 and of rank 3. If

End(G ) 6= Z,

then
End0(G ) := Q⊗Z End(G )

is a non-totally real cubic number field and End(G ) is an order.
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Non-totally real cubic number fields and Cousin groups

Theorem (Gherardelli 1989, V.)

Let K be a non-totally real cubic number field and let
Φ = {ϕ1, ϕ2} be as before. If a is any fractional ideal of K, then

C2/µΦ(a)

is a Cousin group satisfying

End
(
C2/µΦ(a)

)
' OK .

In fact, any Cousin group of complex dimension 2 and rank 3
having “extra multiplication” by OK is isomorphic to one of those.
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Non-totally real cubic number fields and Cousin groups

Definition

Suppose that G is a Cousin group of complex dimension 2 and
rank 3 satisfying

ι : K
'−→ End0(G ).

Then, ρa ◦ ι ' ϕ1 ⊕ ϕ2, where ϕ1 is the unique real embedding
and ϕ2 is one of the two complex embeddings. We then say that
(G , ι) is of type (K ,Φ), where

Φ = {ϕ1, ϕ2}.

Let ΣΦ be the set of isomorphism classes of Cousin groups (G , ι)
of type (K ,Φ).
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Non-totally real cubic number fields and Cousin groups

One defines an action ClK × ΣΦ −→ ΣΦ via

[a] ·
[
C2/µΦ(b)

]
7→

[
C2/µΦ(ab)

]
.

Theorem (Gherardelli 1989, V.)

This action is simply transitive and therefore there are exactly hK

isomorphism classes of Cousin groups (G , ι) of type (K ,Φ).

Daniel Vallières Number fields and complex Lie groups 18 / 24



Non-totally real cubic number fields and Cousin groups

One defines an action ClK × ΣΦ −→ ΣΦ via

[a] ·
[
C2/µΦ(b)

]
7→

[
C2/µΦ(ab)

]
.

Theorem (Gherardelli 1989, V.)

This action is simply transitive and therefore there are exactly hK

isomorphism classes of Cousin groups (G , ι) of type (K ,Φ).

Daniel Vallières Number fields and complex Lie groups 18 / 24



Linearization of systems of exponents

In general, one can study M(Cn/Γ), the field of meromorphic
functions on these complex manifolds. Such an f ∈M(Cn/Γ) can
be written as

f =
g1

g2
,

for some g1, g2 ∈ Hol(Cn), where the gi satisfy a certain functional
equation involving a system of exponents.
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Linearization of systems of exponents

Recall what a system of exponents is: It is a map s : Γ×Cn −→ C
satisfying

The map sγ : Cn −→ C defined by z 7→ s(γ, z) is holomorphic.

s(0, z) ∈ Z for all z ∈ Cn.

s(γ + γ′, z)− (s(γ, z + γ′) + s(γ′, z)) ∈ Z.

The functional equation satisfied by the gi is

gi (z + γ) = exp (2πis(γ, z)) · gi (z).
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Linearization of systems of exponents

Two systems of exponents s and s ′ are equivalent if and only if
there exists d ∈ Hol(Cn) satisfying(

s ′(γ, z)− s(γ, z)
)

+ Z = (d(z + γ)− d(z)) + Z.
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Linearization of systems of exponents

Question: Can one find gi with a simplest possible system of
exponents, i.e. of the form

s(γ, z) = Lγ(z) + c(γ),

where Lγ ∈ HomC(Cn, C) and c(γ) ∈ C. If yes, s is said to be
linearizable. A function g satisfying

g(z + γ) = exp (2πi (Lγ(z) + c(γ))) · g(z)

is called a theta function.
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Linearization of systems of exponents

Remarks:

In the compact case, it is always possible and this is the
Appell-Humbert theorem.

P. Cousin (Sur les fonctions triplement périodiques de deux
variables, Acta. Math., 1910) gave counter-examples for
certain C2/Γ where Γ has rank 3.

C. Vogt (Line bundles on toroidal groups, Crelle, 1982)
characterizes Cousin groups for which systems of exponents
are always linearizable.

Theorem (V.)

Let C2/Γ be a Cousin group of complex dimension 2 and rank 3
having “extra multiplication”. Then, any system of exponents is
linearizable, i.e. every Γ-periodic function can be written as a
quotient of theta functions.
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