Some results on k-free numbers

Patrick Letendre

05 october 2013

A local point of view (1)

A local point of view (1)

- Let

$$
Q_{k}(x):=\sum_{n=1}^{x} \mu_{k}(n)
$$

where

$$
\mu_{k}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \text { is } k \text {-free } \\
0 & \text { if } n \text { is not } k \text {-free }
\end{array} .\right.
$$

A local point of view (1)

- Let

$$
Q_{k}(x):=\sum_{n=1}^{x} \mu_{k}(n)
$$

where

$$
\mu_{k}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \text { is } k \text {-free } \\
0 & \text { if } n \text { is not } k \text {-free }
\end{array} .\right.
$$

- For $h \in \mathbb{N}$, we define

$$
g_{k}(h):=\max _{x \geq 0} Q_{k}(x+h)-Q_{k}(x)
$$

A local point of view (2)

A local point of view (2)

- For some $c_{1, k}, c_{2, k}>0$ we have

$$
c_{1, k} \frac{h^{1 / k}}{(\ln h)^{1 / k}(\ln \ln h)^{1-1 / k}} \leq g_{k}(h)-\frac{h}{\zeta(k)} \leq c_{2, k} \frac{h^{2 /(k+1)}}{(\ln h)^{2 k /(k+1)}}
$$

A local point of view (2)

- For some $c_{1, k}, c_{2, k}>0$ we have

$$
c_{1, k} \frac{h^{1 / k}}{(\ln h)^{1 / k}(\ln \ln h)^{1-1 / k}} \leq g_{k}(h)-\frac{h}{\zeta(k)} \leq c_{2, k} \frac{h^{2 /(k+1)}}{(\ln h)^{2 k /(k+1)}}
$$

- It is unclear what is the exact order for $g_{k}(h)$. We expect that

$$
g_{k}(h)-\frac{h}{\zeta(k)} \ll h^{1 / k+\epsilon}
$$

for each $\epsilon>0$.

A local point of view (2)

- For some $c_{1, k}, c_{2, k}>0$ we have

$$
c_{1, k} \frac{h^{1 / k}}{(\ln h)^{1 / k}(\ln \ln h)^{1-1 / k}} \leq g_{k}(h)-\frac{h}{\zeta(k)} \leq c_{2, k} \frac{h^{2 /(k+1)}}{(\ln h)^{2 k /(k+1)}}
$$

- It is unclear what is the exact order for $g_{k}(h)$. We expect that

$$
g_{k}(h)-\frac{h}{\zeta(k)} \ll h^{1 / k+\epsilon}
$$

for each $\epsilon>0$.

- Under a plausible conjecture we can show that

$$
g_{k}(h)-\frac{h}{\zeta(k)} \ll h^{3 /(2 k+1)+\epsilon}
$$

for each $\epsilon>0$.

A local point of view (3)

A local point of view (3)

- On the opposite direction, we can find gaps of length

$$
\frac{\zeta(k)}{k} \frac{\ln x}{\ln \ln x}(1+o(1))
$$

as $x \rightarrow \infty$. So at least everything in

$$
0 \leq Q_{k}(x+h)-Q_{k}(x) \leq \frac{h}{\zeta(k)}+c_{1, k} \frac{h^{1 / k}}{(\ln h)^{1 / k}(\ln \ln h)^{1-1 / k}}
$$

happen.

A first global point of view (1)

A first global point of view (1)

- We want to know the normal behavior of $Q_{k}(x+h)-Q_{k}(x)$.

A first global point of view (1)

- We want to know the normal behavior of $Q_{k}(x+h)-Q_{k}(x)$.
- We define

$$
\mathcal{M}_{k}(N, h):=\sum_{n=0}^{N-1}\left|\sum_{a=1}^{h} \mu_{k}(n+a)-\frac{h}{\zeta(k)}\right|^{2} .
$$

A first global point of view (2)

Theorem. (Hall, L.) We have

$$
\mathcal{M}_{k}(N, h)=\gamma_{k} h^{1 / k} N+E_{k}(h, N)
$$

where

$$
\begin{gathered}
E_{k}(h, N) \ll N h^{1 / 2 k} \exp (-c \sqrt{\ln h})+N h^{\theta_{k}} \\
+N^{2 /(k+1)} h^{2-2 /(k+1)} \ln N+h^{2} N^{1 / k} \ln N
\end{gathered}
$$

and

$$
\gamma_{k}:=2 \frac{\zeta(1 / k-1)}{1 / k-1} \prod_{p}\left(1-\frac{1}{p^{2}}-\frac{2}{p^{k}}+\frac{2}{p^{k+1}}\right)
$$

A first global point of view (3)

A first global point of view (3)

- We can take

$$
\begin{gathered}
\theta_{2}=\frac{11}{53}, \theta_{3}=\frac{1}{6}, \theta_{4}=\frac{1489}{10776}, \theta_{5}=\frac{2513}{21196}, \theta_{6}=\frac{55}{527} \\
\theta_{k} \leq \begin{cases}\frac{6}{7 k+6} & \text { for } k \in\{7,8,9,10,11\} \\
\frac{1}{k+3} & \text { for } k \geq 12\end{cases}
\end{gathered}
$$

A first global point of view (3)

- We can take

$$
\begin{gathered}
\theta_{2}=\frac{11}{53}, \theta_{3}=\frac{1}{6}, \theta_{4}=\frac{1489}{10776}, \theta_{5}=\frac{2513}{21196}, \theta_{6}=\frac{55}{527} \\
\theta_{k} \leq \begin{cases}\frac{6}{7 k+6} & \text { for } k \in\{7,8,9,10,11\} \\
\frac{1}{k+3} & \text { for } k \geq 12\end{cases}
\end{gathered}
$$

- With the exponent pairs conjecture, we have

$$
\theta_{k}=\frac{1}{2 k+1}+\epsilon
$$

for each $\epsilon>0$.

A first global point of view (4)

A first global point of view (4)

- For all but $\ll N h^{-2 \epsilon}$ value of $x \in[0, N] \cap \mathbb{N}$ we have

$$
Q_{k}(x+h)-Q_{k}(x)=\frac{h}{\zeta(k)}+O\left(h^{1 / 2 k+\epsilon}\right)
$$

for $h \leq N^{\frac{k-1}{2 k-1}} / \ln ^{\frac{k}{2 k-1}} N$.

A first global point of view (4)

- For all but $\ll N h^{-2 \epsilon}$ value of $x \in[0, N] \cap \mathbb{N}$ we have

$$
Q_{k}(x+h)-Q_{k}(x)=\frac{h}{\zeta(k)}+O\left(h^{1 / 2 k+\epsilon}\right)
$$

for $h \leq N^{\frac{k-1}{2 k-1}} / \ln \frac{k}{2 k-1} N$.

- We also have the upper bound

$$
\mathcal{M}_{k}(h, N) \ll N h^{2 / k}
$$

for $h \geq N^{1 / 2}$.

A first global point of view (4)

- For all but $\ll N h^{-2 \epsilon}$ value of $x \in[0, N] \cap \mathbb{N}$ we have

$$
Q_{k}(x+h)-Q_{k}(x)=\frac{h}{\zeta(k)}+O\left(h^{1 / 2 k+\epsilon}\right)
$$

for $h \leq N^{\frac{k-1}{2 k-1}} / \ln \frac{k}{2 k-1} N$.

- We also have the upper bound

$$
\mathcal{M}_{k}(h, N) \ll N h^{2 / k}
$$

for $h \geq N^{1 / 2}$.

- There is a lot of overlapping of intervals in the definition of $\mathcal{M}_{k}(N, h)$.

A second global point of view (1)

A second global point of view (1)

- For $N=h(M+1)$ and for each $\beta \in[0, h-1] \cap \mathbb{N}$ we define

$$
\mathcal{T}_{k}(\beta, h, M):=\sum_{n=0}^{M}\left|\sum_{a=1}^{h} \mu_{k}(n h+a+\beta)-\frac{h}{\zeta(k)}\right|^{2} .
$$

A second global point of view (1)

- For $N=h(M+1)$ and for each $\beta \in[0, h-1] \cap \mathbb{N}$ we define

$$
\mathcal{T}_{k}(\beta, h, M):=\sum_{n=0}^{M}\left|\sum_{a=1}^{h} \mu_{k}(n h+a+\beta)-\frac{h}{\zeta(k)}\right|^{2} .
$$

- We have the relation

$$
\sum_{\beta=0}^{h-1} \mathcal{T}_{k}(\beta, h, M)=\mathcal{M}_{k}(N, h)
$$

A second global point of view (2)

Theorem. (L.) For $N=h(M+1)$ we have

$$
\mathcal{T}_{k}(\beta, h, M)=\gamma_{k} h^{1 / k}(M+1)+\mathcal{R}_{k}(h, N)
$$

where

$$
\begin{gathered}
\mathcal{R}_{k}(h, N) \ll M h^{\theta_{k}}+M h^{1 / 2 k} \prod_{p^{j} \|\left(h, \gamma^{k}(h)\right)}\left(1+\frac{2}{p^{k-j}}+\frac{1}{p^{1-j / 2 k}}\right) \\
+h^{2} M^{1 / k} \ln N+h M^{2 /(k+1)} \ln N \prod_{p \mid h}\left(1+\frac{2}{p^{k /(k+1)}}\right) .
\end{gathered}
$$

A second global point of view (3)

A second global point of view (3)

- We also have the upper bound

$$
\mathcal{T}_{k}(\beta, h, N) \ll M h^{2 / k}
$$

for $h \geq N^{1 / 3}$.

A second global point of view (3)

- We also have the upper bound

$$
\mathcal{T}_{k}(\beta, h, N) \ll M h^{2 / k}
$$

for $h \geq N^{1 / 3}$.

- We have found a way to cut the interval $[1, N]$ in small subsets and show that the average of μ_{k} on those subsets is what we expect for most of them. Can we do the same for more general partition of $[1, N]$ like

$$
\sum_{n \geq 1}\left|\sum_{a \in I_{n}} \mu_{k}(n)-\frac{\left|I_{n}\right|}{\zeta(k)}\right|^{2}
$$

where I_{n} are intervals with

$$
h \leq\left|I_{n}\right| \leq 2 h, \quad \bigcup I_{n}=[1, N], \quad I_{n} \cap I_{m}=\emptyset \forall n \neq m .
$$

Arithmetic progression (1)

Arithmetic progression (1)

- We define

$$
\mathcal{W}_{k}(q, x):=\sum_{a=1}^{q}\left|E_{k}(a, q, x)\right|^{2}
$$

where

$$
Q_{k}(a, q, x):=\sum_{\substack{n=1 \\ n \equiv a=1 \\ \bmod q}}^{x} \mu_{k}(n)=: g_{k}(a, q) x+E_{k}(a, q, x)
$$

and

$$
g_{k}(a, q):=\frac{1}{q \zeta(k)} \prod_{p \mid q}\left(1-\frac{1}{p^{k}}\right)^{-1} \prod_{\substack{p\left|q \\\left(q, p^{k}\right)\right| a}}\left(1-\frac{\left(q, p^{k}\right)}{p^{k}}\right) .
$$

Arithmetic progression (2)

Theorem. (L.) For $x=q M$, with $M \geq 1$ and $M \in \mathbb{R}$, we have

$$
\mathcal{W}_{k}(q, x)=\gamma_{k}(q) q M^{1 / k}+\mathcal{R}_{k}(q, x)
$$

where

$$
\begin{aligned}
\mathcal{R}_{k}(q, x) \ll & 2^{\omega(q)} q \prod_{p \| q}\left(1+\frac{1}{2 p}\right)+l\left(k \theta_{k}\right) M^{1 / 2 k} q \prod_{p \mid q}\left(1+\frac{1}{p^{1 / 2}}\right) \\
& +M^{\theta_{k}} q \prod_{p \mid q}\left(1+\frac{1}{p^{k \theta_{k}}}\right)+\frac{2^{\omega(q)} x^{1+1 / k} \ln x}{q}
\end{aligned}
$$

Arithmetic progression (3)

$$
\begin{aligned}
& \gamma_{k}(q):=2 \frac{\zeta(1 / k-1)}{1 / k-1} \prod_{p \nmid q}\left(1-\frac{1}{p^{2}}-\frac{2}{p^{k}}+\frac{2}{p^{k+1}}\right) \\
& \times \prod_{\substack{p^{\alpha} \| q \\
(r-1) k<\alpha \leq r k}}\left((1 - \frac { 1 } { p }) \left(\left(1-\frac{1}{p^{2}}-\frac{2}{p^{k}}+\frac{2}{p^{k+1}}\right)\right.\right. \\
&\left.+\sum_{j=1}^{r-1} \frac{1}{p^{j k}}\left(\left|\mu\left(p^{j}\right)\right|-\frac{1}{p}-\frac{1}{p^{2}}+\frac{2}{p^{k+1}}\right)\right) \\
&\left.+\frac{1}{p^{\alpha+r-\alpha / r}}\left(\left[\frac{1}{r}\right]-\frac{1}{p}-\frac{1}{p^{2}}+\frac{2}{p^{k+1}}\right)\right)
\end{aligned}
$$

Arithmetic progression (4)

Corollary. For $1 \leq q \leq x$ we have

$$
\mathcal{W}_{k}(q, x) \ll x^{2 / k} q^{1-2 / k}
$$

Applications

Applications

- Evaluate

$$
\sum_{n=1}^{x} \mu_{k}(n) f(n)
$$

for various functions.

Applications

- Evaluate

$$
\sum_{n=1}^{x} \mu_{k}(n) f(n)
$$

for various functions.

- Counting the solutions to the congruence

$$
f\left(x_{1}, \ldots, x_{n}\right) \equiv 0 \quad \bmod q
$$

for a polynomial $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ when $\left(x_{1}, \ldots, x_{n}\right) \in[1, x]^{n}$ with $q \ll x$.

References

T. Cochrane and S. Shi, "The congruence $x_{1} x_{2} \equiv x_{3} x_{4}(\bmod m)$ and mean values of character sums", J. Number Theory 130 (2010), 767-785.
S. W. Graham, "Moments of gaps between k-free numbers", J. Number Theory 44 (1993), 105-117.
R. R. Hall, "Squarefree numbers on short intervals", Mathematika 29 (1982), 7-17.
P. Letendre, to appear.

