Uniform Boundedness in Terms of Ramification

Álvaro Lozano-Robledo

Department of Mathematics University of Connecticut

2013 Maine-Québec Number Theory Conference University of Maine, Orono, October 6th, 2013 Let F be a number field, and let E/F be an elliptic curve over F.

Theorem (Mordell-Weil)

E(F) is a finitely generated abelian group.

In particular,

$$E(F) \cong E(F)_{\mathsf{tors}} \oplus \mathbb{Z}^{R_{E/F}},$$

where the torsion subgroup, $E(F)_{tors}$, is finite and $R_{E/F} \ge 0$.

Question

For a fixed F, how large can $E(F)_{tors}$ be for an arbitrary curve E/F?

Theorem (Mazur, 1977)

Let E/\mathbb{Q} be an elliptic curve. Then

$$E(\mathbb{Q})_{tors} \simeq egin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 10 \textit{ or } \textit{M} = 12, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 4. \end{cases}$$

Moreover, each group occurs for infinitely many $j(E) \in \mathbb{Q}$.

Theorem (Kenku and Momose, 1988; Kamienny, 1992)

Let F/\mathbb{Q} be a quadratic field and let E/F be an elliptic curve. Then

$$E(F)_{tors} \simeq \begin{cases} \mathbb{Z}/M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 16 \textit{ or } \textit{M} = 18, \textit{ or } \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z} & \textit{with } 1 \leq \textit{M} \leq 6, \textit{ or } \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3M\mathbb{Z} & \textit{with } \textit{M} = 1 \textit{ or } 2, \textit{ or } \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}. \end{cases}$$

Each group occurs for infinitely many j(E), with $[\mathbb{Q}(j(E)) : \mathbb{Q}] \leq 2$.

The Uniform Boundedness Conjecture

The Uniform Boundedness Conjecture Theorem

Theorem (Merel, 1996)

Let F be a number field of degree $[F:\mathbb{Q}]=d>1$. There is a number B(d)>0 such that $|E(F)_{tors}|\leq B(d)$ for all elliptic curves E/F.

Definition

We define T(d) as the supremum of $|E(F)_{tors}|$, over all number fields F of degree $[F:\mathbb{Q}] \leq d$, and elliptic curves E/F.

For instance, T(1) = 16, and T(2) = 24.

Folklore Conjecture (see Clark, Cook, Stankewicz, 2013)

There is a constant C > 0 such that

 $T(d) \leq C \cdot d \cdot \log \log d$ for all $d \geq 3$.

Folklore Conjecture (see Clark, Cook, Stankewicz, 2013)

There is a constant C > 0 such that

$$T(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

Highlights about T(d):

- Flexor and Oesterlé:
 - If E/F has at least one place of additive reduction, then

$$|E(F)_{tors}| \leq 48d$$
.

If it has at least two places of additive reduction, then

$$|E(F)_{tors}| \leq 12.$$

 Hindry and Silverman: If E/F has everywhere good reduction then

$$|E(F)_{tors}| \leq 1977408 \cdot d \log d$$
.

Related Question

What is the best bound for a prime power order that one can hope for?

Definition

For each $n \ge 1$, we define $S^n(d)$ as the set of primes p for which there exists a number field F of degree $\le d$ and an elliptic curve E/F such that $E(F)_{\text{tors}}$ contains a point of order p^n .

Examples:

- $S^1(1) = \{2, 3, 5, 7\}, S^2(1) = \{2, 3\}, S^3(1) = 2$, and $S^n(1) = \emptyset$ for all $n \ge 4$.
- $S^1(2) = \{2, 3, 5, 7, 11, 13\}, S^2(2) = \{2, 3\}, S^3(2) = S^4(2) = \{2\},$ and $S^n(2) = \emptyset$ for all $n \ge 5$.

Definition

For each $n \ge 1$, we define $S^n(d)$ as the set of primes p for which there exists a number field F of degree $\le d$ and an elliptic curve E/F such that $E(F)_{\text{tors}}$ contains a point of order p^n .

Highlights about S(d):

$$S^1(1) = \{2,3,5,7\}, \qquad \text{Mazur, 1977}$$

$$S^1(2) = \{2,3,5,7,11,13\}, \qquad \text{Kamienny, Mazur, 1992}$$

$$\text{If } p \in S^1(d) \text{ and } d > 1, \text{ then } p \leq d^{3d^2}, \qquad \text{Merel, 1996}$$

$$\text{If } p \in S^1(d), \text{ then } p \leq (3^{d/2}+1)^2, \qquad \text{Oesterlé, 1996}$$

$$\text{If } p \in S^n(d), \text{ then } p^n \leq 129(5^d-1)(3d)^6, \qquad \text{Parent, 1999}$$

$$S^1(3) = \{2,3,5,7,11,13\}, \qquad \text{Parent, 2003}$$

$$S^1(4) = \{2,3,5,7,11,13,17\}, \qquad \text{Derickx, Kamienny,}$$

$$S^1(5) = \{2,3,5,7,11,13,17,19\}, \qquad \text{Derickx, Kamienny,}$$

$$S^1(6) \subseteq \{2,3,5,7,11,13,17,19,37,73\}. \qquad \text{Stein, Stoll, 2012}$$

Theorem (Silverberg, 1988; Prasad-Yogananda, 2001)

Let F be a number field of degree d, and let E/F be an elliptic curve with CM by an order $\mathcal O$ in the imaginary quadratic field K. Let $w=w(\mathcal O)=|\mathcal O^\times|$ (so w=2,4 or 6) and let m be the maximal order of an element of $E(F)_{tors}$. Then:

- 2 If $K \subseteq F$, then $\varphi(m) \leq \frac{w}{2} \cdot d$.
- **③** If $K \nsubseteq F$, then $\varphi(|E(F)_{tors}|) ≤ w \cdot d$.

Thus, if E/F has CM and E(F) has a pt. of order p^n , then $\varphi(p^n) \leq 6d$.

Definition

We define $S^n_{\rm CM}(d)$ if we restrict our attention to elliptic curves E/F with CM, and F as above.

Silverberg, Prasad, Yogananda: if $p \in S_{CM}^n(d)$, then $\varphi(p^n) \leq 6d$.

Folklore Conjecture

There is a constant C > 0 such that

$$T(d) \leq C \cdot d \cdot \log \log d$$
 for all $d \geq 3$.

We propose instead two conjectures:

Conjecture 1

There is a constant C_2 such that if $p \in S^n(d)$, then

$$\varphi(p^n) \leq C_2 \cdot d$$
, for all $d \geq 1$.

If $p \in S_{CM}^n(d)$, then $\varphi(p^n) \le 6d$, so the conjecture is true for CM curves, and $C_2 = 6$.

As advertised in the title, our results depend on ramification indices.

Definition

Let p be a prime, and let F/L be an extension of number fields. We define $e_{\min}(p,F/L)$ as the smallest ramification index $e(\mathfrak{P}|\wp)$ for a prime \mathfrak{P} of \mathcal{O}_F over a prime \wp of \mathcal{O}_L lying above the rational prime p. And similarly define $e_{\max}(p,F/L)$.

Conjecture 2

There is a constant C_3 such that if $p \in S^n(d)$ for a prime p and a curve E/F, with F/\mathbb{Q} of degree $\leq d$, then

$$\varphi(p^n) \leq C_3 \cdot e_{\max}(p, F/\mathbb{Q}) \leq C_3 \cdot d.$$

Folklore Conjecture

There is C > 0 s.t. $T(d) \le C \cdot d \cdot \log \log d$ for all $d \ge 3$.

Conjecture 1

There is $C_2 > 0$ s.t. if $p \in S^n(d)$, then $\varphi(p^n) \leq C_2 \cdot d$ for all $d \geq 1$.

Conjecture 2

There is $C_3 > 0$ s.t. if $p \in S^n(d)$ for some E/F with $[F : \mathbb{Q}] \leq d$, then

$$\varphi(p^n) \leq C_3 \cdot e_{\max}(p, F/\mathbb{Q}) \leq C_3 \cdot d.$$

Silverberg, Prasad and Yogananda \Longrightarrow Conjecture 1 for CM curves.

Theorem (L-R., 2013)

Let F be a number field with degree $[F:\mathbb{Q}]=d\geq 1$, and let p be a prime such that $p\in S^n_{CM}(d)$, for some E/F with CM. Then,

$$\varphi(p^n) \leq 12 \cdot e_{max}(p, F/\mathbb{Q}) \leq 12d.$$

Let us further "decorate" our notation... Let *L* be a number field.

Definition

- Let $S_L^n(d)$ be the set of primes p, where p is a prime for which there exists a finite extension F/L of number fields with $[F:\mathbb{Q}] \leq d$, and an elliptic curve E/L, such that $E(F)_{tors}$ contains a point of exact order p^n .
- If $\Sigma \subseteq L$, we define $S_L^n(d,\Sigma)$, as before, except that we only consider elliptic curves E/L with $j(E) \notin \Sigma$.

Examples:

- $S^1_{\mathbb{Q}}(1) = S^1(1) = \{2, 3, 5, 7\}.$
- $S^1_{\mathbb Q}(2)=\{2,3,5,7\},\ S^2_{\mathbb Q}(2)=\{2,3\},\ S^3_{\mathbb Q}(2)=\{2\},\ S^n_{\mathbb Q}(2)=\emptyset$ for all $n\geq 4$.
- $S^1_{\mathbb{Q}}(3)=\{2,3,5,7,13\},\ S^2_{\mathbb{Q}}(3)=\{2,3\},\ S^3_{\mathbb{Q}}(3)=\{2\},\ S^n_{\mathbb{Q}}(3)=\emptyset$ for all $n\geq 4$.

Theorem (L-R., 2011)

Let $S^1_{\mathbb{Q}}(d)$ be the set of primes defined above. Then:

- $S^1_{\mathbb{Q}}(d) = \{2, 3, 5, 7\}$ for d = 1 and 2;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 13\}$ for d = 3 and 4;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13\}$ for d = 5, 6, and 7;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17\}$ for d = 8;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19\}$ for d = 9, 10, and 11;
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$ for $12 \le d \le 20$.
- $S_{\mathbb{O}}^{1}(d) = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43\}$ for d = 21.

Moreover,

- There is a conjectural formula for $S^1_{\mathbb{Q}}(d)$ for all $d \geq 1$, which is valid for all $1 \leq d \leq 42$, and would follow from a positive answer to Serre's uniformity question.
- If $p \in S^1_{\mathbb{Q}}(d)$ with $p \ge 11$ and $p \ne 13$, then $\varphi(p) \le 2d$.

Again, $S_L^n(d) = \{p : \text{ there is } E/L \text{ and } F/L \text{ such that } L \subseteq F, [F : \mathbb{Q}] \le d, \text{ and there is a point } R \in E(F) \text{ of order } p^n\}.$

Theorem (L-R.,2013)

If p > 2 and $p \in S^n_{\mathbb{Q}}(d)$ for some E/F, then

$$\varphi(p^n) \leq 222 \cdot e_{max}(p, F/\mathbb{Q}) \leq 222 \cdot d.$$

Theorem (L-R.,2013)

Let L be a number field, and let p > 2 be a prime with $p \in S_L^n(d)$ for some E/F. Then, there is a constant C_L such that

$$\varphi(p^n) \leq C_L \cdot e_{max}(p, F/\mathbb{Q}) \leq C_L \cdot d.$$

Moreover, there is a computable finite set Σ_L such that if $p \in S_L^n(d, \Sigma_L)$, then

$$\varphi(p^n) \leq 588 \cdot e_{max}(p, F/\mathbb{Q}) \leq 588 \cdot d.$$

Example

Let E/\mathbb{Q} be '121B1', defined by:

$$y^2 + y = x^3 - x^2 - 7x + 10.$$

Let $\zeta = \zeta_{11}$ be a primitive 11th root of unity. Then:

$$R = (\zeta^8 + \zeta^7 - \zeta^6 - \zeta^5 + \zeta^4 + \zeta^3 + 2, \ 2\zeta^9 - \zeta^8 - 2\zeta^7 - 2\zeta^4 - \zeta^3 + 2\zeta^2 - 4)$$

is a point of $E(\mathbb{Q}(\zeta_{11}))$ of order 11. Notice that the coordinates x = x(R) and y = y(R) are real! So R is defined over $\mathbb{Q}(\zeta_{11})^+$. Hence

$$\varphi(11) = 2e(\Omega_R|(11)),$$

for the prime Ω_R above 11.

Example

The elliptic curve E/\mathbb{Q} , with $j=23^3/(2\cdot 13)$, defined by

$$y^2 + xy + y = x^3$$

admits a \mathbb{Q} -rational isogeny of degree 9. The curve E has a point of order 9 defined over a Galois extension F/\mathbb{Q} of degree 3, which ramifies at 13 but not at 3.

Example

The elliptic curve E/\mathbb{Q} , with $j=2^6\cdot 1439^3/71$, defined by

$$y^2 = x^3 - x^2 - 959x - 11117$$

admits a \mathbb{Q} -rational isogeny of degree 25. The curve E has a point of order 25 defined over a Galois extension F/\mathbb{Q} of degree 20, which ramifies at 2 and 71 but not at 5.

Results on *L*-rational isogenies.

Theorem (Momose; Larson, Vaintrob)

Let L be a number field, and let S_L be the set of rational primes such that there is an E/L with a L-rational isogeny of degree p.

- **1** (Momose, 1995) Suppose that L/\mathbb{Q} is quadratic, but not imaginary of class number 1. Then, S_L is finite.
- ② (Larson, Vaintrob, 2012) Assume GRH. The set \mathcal{S}_L is finite if and only if L does not contain the Hilbert class field of an imaginary quadratic field F (i.e., if and only if there are no elliptic curves with CM defined over L). Moreover, if \mathcal{S}_L is finite, then there is an effective computable constant P_L such that if $p \in \mathcal{S}_L$, then $p \leq P_L$.

Uniform Boundedness in terms of Ramification

- Suppose L doesn't contain any H.c.f. of a quad. imag. field.
- Let S_L be the set of primes given by Momose, or Larson-Vaintrob.
- Let $a(L, p) \ge 1$ be the smallest integer such that $X_0(p^a)$ is of genus ≥ 2 , or $X_0(p^a)$ is of genus 1 but $X_0(p^a)(L)$ is finite.
- Let $\Sigma(L,p) \subset L$ be the finite set of *j*-invariants corresponding to the non-cuspidal *L*-rational points on $X_0(p^{a(L,p)})$.
- For each $j_0 \in \Sigma(L, p)$ let $a = a(p, j_0)$ be the least positive integer a such that any curve E/L with $j(E) = j_0$ does not admit L-rational isogenies of degree p^a .
- Let $A(L,p) = \max\{a(L,p), a(p,j_0) : j_0 \in \Sigma(L,p)\}.$
- Define $C_L = 12 \cdot \max\{p^{A(L,p)-1} : p \in S_L\}$.

Then, there is a constant $1 \le C(E/L, \wp) \le 12e(\wp|p)$ such that:

$$egin{aligned} arphi(oldsymbol{p}^n) &\leq \gcd(arphi(oldsymbol{p}^n), c(E/L, \wp) \cdot oldsymbol{p}^{A(L,p)-1}) \cdot e(\Omega_R|\wp) \ &\leq C_L \cdot e(\wp|oldsymbol{p})e(\Omega_R|\wp) \ &\leq C_L \cdot e_{\max}(oldsymbol{p}, F/\mathbb{Q}) \leq C_L \cdot [F:\mathbb{Q}]. \end{aligned}$$

alozano@math.uconn.edu

http://homepage.uconn.edu/alozano