Bounds on Height Functions

Justin Sukiennik

Colby College
2013 Maine-Québec Number Theory Conference

October 6, 2013

Notation

- Let K be a number field.
- \mathcal{O}_{K} is the ring of integers in K.
- M_{K}^{0} is the set of non-archimedean absolute values which are extended from p-adic absolute values.
- M_{K}^{∞} is the set of archimedean absolute values extended from the usual absolute value.
- $M_{K}=M_{K}^{0} \cup M_{K}^{\infty}$ is the set of all absolute values listed above.

The Height Function over a Number Field

Definition

The logarithmic height h over the number field K is a function from the field K to $\mathbb{R}_{\geqslant 0}$ defined as follows

$$
h(x)=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{v \in M_{K}} n_{v} \log \max \left\{1,|x|_{v}\right\}\right) \text { for any } x \in K
$$

where n_{v} is the local degree $\left[K_{v}: \mathbb{Q}_{v}\right]$.
When $K=\mathbb{Q}$, the height for $\frac{x}{y} \in \mathbb{Q}$ (in lowest terms) is described by

$$
h\left(\frac{x}{y}\right)=\log \max \{|x|,|y|\} .
$$

Properties of the Height Function

The definition of the height function h can be extended to $\overline{\mathbb{Q}}$, i.e. if $x \in K$ and $x \in K^{\prime}$, then $h_{K}(x)=h_{K^{\prime}}(x)$.

We have the following properties for height functions over the algebraic numbers:

1. If α and $\beta \in K$ are conjugates, then $h(\alpha)=h(\beta)$.
2. (Product formula) For any $x \in K^{\times}$, we have

$$
\prod_{v \in M_{K}}|x|_{v}^{n_{v}}=1, \text { where } n_{v} \text { is the local degree }\left[K_{v}: \mathbb{Q}_{v}\right] \text {. }
$$

Important Facts

We have a couple of theorems central to height functions.
Theorem (Northcott)
For any $M, N \in \mathbb{R}_{>0}$, there are only finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

$$
h(\alpha) \leqslant M \text { and } \operatorname{deg} \alpha \leqslant N .
$$

Theorem
If $\alpha \in \overline{\mathbb{Q}}^{\times}$, then $h(\alpha)=0$ if and only if α is a root of unity.
Example

$$
\begin{gathered}
\left\{0, \pm 1, \pm 2, \pm \frac{1}{2}, \pm 3, \pm \frac{1}{3}, \pm \frac{2}{3}\right\} \text { are the only rational } x \text { where } \\
h(x) \leqslant \log 3 .
\end{gathered}
$$

Canonical Height

Definition

We define the $n^{\text {th }}$ iterate of the rational function φ as follows

$$
\varphi^{n}(x)=(\varphi \circ \varphi \circ \ldots \circ \varphi)(x) .(n \text { times })
$$

Definition

The canonical height for ϕ is defined as follows

$$
\hat{h}_{\varphi}(x)=\lim _{n \rightarrow \infty} \frac{h\left(\varphi^{n}(x)\right)}{d^{n}}, \text { where } d=\operatorname{deg} \varphi
$$

Two properties about canonical height to note

1. For φ with $\operatorname{deg} \varphi \geqslant 2$, we have $\hat{h}_{\varphi}(\alpha)=0$ if and only if α is a preperiodic point of φ or $\alpha=0$.
2. If $\varphi(x)=x^{2}$, then $\hat{h}_{\varphi}=h$, where h is the usual height.

Linear Fractional Transformations

We will focus on linear fractional transformations $\varphi(x)=\frac{a x+b}{c x+d}$ where a, b, c, and $d \in \mathcal{O}_{K}$ have no "common factors" and $a d-b c \neq 0$.
No "common factors" means for all $v \in M_{K}^{0}$ there exists $\alpha \in\{a, b, c, d\}$ such that $|\alpha|_{v}=1$.
For algebraic numbers $x_{1}, x_{2}, \ldots, x_{n}$, we have three properties:

1. $h\left(x_{1} x_{2} \cdots x_{n}\right) \leqslant h\left(x_{1}\right)+h\left(x_{2}\right)+\cdots+h\left(x_{n}\right)$,
2. $h\left(x_{1}+x_{2}+\cdots+x_{n}\right) \leqslant h\left(x_{1}\right)+h\left(x_{2}\right)+\cdots+h\left(x_{n}\right)+\log n$, and
3. $h\left(x_{1}^{-1}\right)=h\left(x_{1}\right)$ when $x_{1} \neq 0$.

Let's attempt to find an upper bound for

$$
h(\varphi(x))-h(x), \text { for all } x \in K
$$

Naïve Approach to Bounding Heights

Now, we can use the naïve bounds on heights to find a bound for the expression

$$
\begin{aligned}
h(\varphi(x))-h(x) & \leqslant h\left(\frac{a x+b}{c x+d}\right)-h(x) \\
& \leqslant h(a x+b)+h(c x+d)-h(x) \\
& \leqslant h(a)+h(b)+h(c)+h(d)+h(x)+\log 4
\end{aligned}
$$

Is there a best possible upper bound (not dependent on $x \in K$)?

A Theorem about a Strict Upper Bound

Theorem (S., 2012)
If $\varphi(x)=\frac{a x+b}{c x+d}$ as defined previously and L is the Galois closure
of K, then for all $\beta \in L$, we have
$h(\varphi(\beta))-h(\beta) \leqslant \frac{1}{[L: \mathbb{Q}]} \sum_{v \in M_{L}^{\infty}} n_{v} \log \max \left\{|a|_{v}+|b|_{v},|c|_{v}+|d|_{v}\right\}$.
This inequality is the "best possible," or strict.
Example
Define $\varphi(x)=\frac{-3}{5} x+\frac{4}{3}=\frac{-9 x+20}{15}$. For rational β, we have

$$
h(\varphi(\beta))-h(\beta) \leqslant \log \max \{|15|,|-9|+|20|\}=\log 29 .
$$

Sketch of Proof

1. First, we get

$$
\frac{1}{[K: \mathbb{Q}]} \sum_{v \in M_{K}^{\infty}} n_{v} \log \max \left\{|a|_{v}+|b|_{v},|c|_{v}+|d|_{v}\right\}
$$

as an upper bound. (We do not need to pass to the Galois closure for this part.)
2. Then, we need to find $\beta \in L$ that attains or is infinitesimally close to our upper bound.

An Approximation Theorem

Theorem (Artin-Whaples approximation theorem)
Let $S=\left\{v_{i}: 1 \leqslant i \leqslant n\right\} \subset M_{K}$ be a finite set of absolute values of K. Let $\beta_{1}, \ldots, \beta_{n} \in K$. For any $\varepsilon>0$, there is $\alpha \in K$ such that

$$
\left|\alpha-\beta_{i}\right|_{v_{i}}<\varepsilon, \text { for all } i
$$

- Optimally, we would attain the upper bound, but it is difficult or impossible in a number field $K \neq \mathbb{Q}$.
- We use the approximation theorem to find a points that approach the bound infinitesimally.
- We need to pass to the Galois closure L in order to proceed.

After using the Product formula, we have

$$
h(\varphi(\beta))=\frac{1}{[L: \mathbb{Q}]}\left(\sum_{v \in M_{L}} n_{v} \log \max \left\{|a \beta+b|_{v},|c \beta+d|_{v}\right\}\right) .
$$

Our goals are to find $\beta \in L$ with two properties

1. $\log \max \left\{|a \beta+b|_{v},|c \beta+d|_{v}\right\}=\log \max \left\{1,|\beta|_{v}\right\}$, for all $v \in M_{L}^{0}$, and
2. $\log \max \left\{|a \beta+b|_{v},|c \beta+d|_{v}\right\}$

$$
\approx \log \max \left\{|a|_{v}+|b|_{v},|c|_{v}+|d|_{v}\right\}, \text { for all } v \in M_{L}^{\infty} .
$$

We use the Artin-Whaples approximation theorem to achieve both properties for a particular $\beta \in L$.

In the archimedean case, we have for any $x \in L$,

$$
\sum_{v \in M_{L}^{\infty}} n_{v} \log \max \left\{1,|x|_{v}\right\}=\sum_{\imath \in \operatorname{Gal}(L / \mathbb{Q})} \log \max \{1,|\iota(x)|\}
$$

Assume $\max \left\{|a|_{v}+|b|_{v},|c|_{v}+|d|_{v}\right\}=|a|_{v}+|b|_{v}$. To maximize the contribution from the archimedean places, β must be close to the element $\frac{|\mathfrak{l}(a)|}{\mathfrak{l}(a)} \cdot \frac{\mathfrak{l}(b)}{|\iota(b)|}$ on the unit circle. But chances are $\frac{|\mathfrak{l}(a)|}{\mathfrak{l}(a)} \cdot \frac{\mathfrak{l}(b)}{|\mathfrak{l}(b)|}$ is not in L. Because L is the Galois closure of K, there exists $\kappa_{\iota} \in L$ such that

$$
\left|\frac{|\iota(a)|}{\imath(a)} \cdot \frac{\iota(b)}{|\iota(b)|}-\kappa_{\imath}\right|<\epsilon
$$

where $\stackrel{\imath}{ }\left(x_{\imath}\right)=\kappa_{\iota}$.

The last condition $\left|\beta-x_{\llcorner }\right|_{v}<\epsilon$, for all $v \in M_{L}^{\infty}$, can be demonstrated as follows.

An Interesting Corollary

Corollary

In general, if L is the Galois closure of K, then

$$
\sup \{h(\varphi(\beta))-h(\beta): \beta \in L\} \neq \sup \{h(\beta)-h(\varphi(\beta)): \beta \in L\} .
$$

Proof.

Since φ is a bijection in L, then

$$
\begin{aligned}
\sup \left\{h\left(\varphi^{-1}(\beta)\right)-h(\varphi(\beta)): \beta \in L\right\} & =\sup \left\{h\left(\varphi^{-1}(\varphi(\beta))\right)-h(\varphi(\beta))\right\} \\
& =\sup \{h(\beta)-h(\varphi(\beta))\}
\end{aligned}
$$

We can express the inverse as follows $\varphi^{-1}(x)=\frac{d x-b}{-c x+a}$.

So, by our theorem, we have

$$
\begin{aligned}
\sup \{h(\beta) & -h(\varphi(\beta)): \beta \in L\} \\
& =\frac{1}{[L: \mathbb{Q}]} \sum_{v \in M_{L}^{\infty}} n_{v} \log \max \left\{|a|_{v}+|c|_{v},|b|_{v}+|d|_{v}\right\} .
\end{aligned}
$$

Example
Over \mathbb{Q}, Let $\varphi(x)=\frac{-9 x+20}{15}$ and $\varphi^{-1}(x)=\frac{-15 x+20}{9}$. By the theorem, we get $\sup \{h(\varphi(\beta))-h(\beta): \beta \in \mathbb{Q}\}=\log \max \{|15|,|-9|+|20|\}=\log 29$;
$\sup \{h(\beta)-h(\varphi(\beta)): \beta \in \mathbb{Q}\}=\log \max \{|9|,|-15|+|35|\}=\log 35$.

A theorem by C. Petsche, L. Szpiro, and T. Tucker is as follows.

Theorem

Let σ be a rational map of degree $d \geqslant 2$ in $\mathbb{P}^{1}(\mathbb{C})$. We have

$$
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \sum_{\sigma^{n}(\alpha)=\alpha} h(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{\zeta^{2}=\zeta} \hat{h}_{\sigma}(\zeta)
$$

If we take $\sigma=\varphi^{-1} \circ f \circ \varphi$ where $f(x)=x^{2}$ is the squaring map and $\varphi(x)=\frac{a x+b}{c x+d}$, then after a few steps we can re-write the equation as

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{\sigma^{n}(\alpha)=\alpha} h(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{2^{2^{n}}=\zeta} h(\varphi(\zeta))
$$

