Bounds on Height Functions

Justin Sukiennik

Colby College 2013 Maine-Québec Number Theory Conference

October 6, 2013

Notation and Absolute Values over a Number Field The Height Function Dynamics and Canonical Height

Notation

- Let *K* be a number field.
- ► O_K is the ring of integers in K.
- *M*⁰_K is the set of non-archimedean absolute values which are extended from *p*-adic absolute values.
- ► *M*[∞]_{*K*} is the set of archimedean absolute values extended from the usual absolute value.
- *M_K* = *M⁰_K* ∪ *M[∞]_K* is the set of all absolute values listed above.

The Height Function over a Number Field

Definition

The *logarithmic height h* over the number field *K* is a function from the field *K* to $\mathbb{R}_{\geq 0}$ defined as follows

$$h(x) = \frac{1}{[K:\mathbb{Q}]} \left(\sum_{v \in M_K} n_v \log \max\{1, |x|_v\} \right) \text{ for any } x \in K,$$

where n_v is the local degree $[K_v : \mathbb{Q}_v]$. When $K = \mathbb{Q}$, the height for $\frac{x}{y} \in \mathbb{Q}$ (in lowest terms) is described by $h\left(\frac{x}{y}\right) = \log \max\{|x|, |y|\}.$

Properties of the Height Function

The definition of the height function h can be extended to $\overline{\mathbb{Q}}$, i.e. if $x \in K$ and $x \in K'$, then $h_K(x) = h_{K'}(x)$.

We have the following properties for height functions over the algebraic numbers:

- 1. If α and $\beta \in K$ are conjugates, then $h(\alpha) = h(\beta)$.
- 2. (Product formula) For any $x \in K^{\times}$, we have

 $\prod_{v \in M_K} |x|_v^{n_v} = 1, \text{ where } n_v \text{ is the local degree } [K_v : \mathbb{Q}_v].$

Important Facts

We have a couple of theorems central to height functions.

Theorem (Northcott)

For any $M, N \in \mathbb{R}_{>0}$, there are only finitely many $\alpha \in \overline{\mathbb{Q}}$ such that $h(\alpha) \leq M$ and $\deg \alpha \leq N$.

Theorem If $\alpha \in \overline{\mathbb{Q}}^{\times}$, then $h(\alpha) = 0$ if and only if α is a root of unity.

Example

$$\left\{0, \pm 1, \pm 2, \pm \frac{1}{2}, \pm 3, \pm \frac{1}{3}, \pm \frac{2}{3}\right\}$$
 are the only rational *x* where $h(x) \leq \log 3$.

Notation and Absolute Values over a Number Field The Height Function Dynamics and Canonical Height

Canonical Height

Definition

We define the n^{th} *iterate of the rational function* φ as follows

$$\varphi^n(x) = (\varphi \circ \varphi \circ \ldots \circ \varphi)(x).$$
 (*n* times)

Definition

The canonical height for ϕ is defined as follows

$$\hat{h}_{\varphi}(x) = \lim_{n \to \infty} \frac{h(\varphi^n(x))}{d^n}$$
, where $d = \deg \varphi$.

Two properties about canonical height to note

- 1. For φ with deg $\varphi \ge 2$, we have $\hat{h}_{\varphi}(\alpha) = 0$ if and only if α is a preperiodic point of φ or $\alpha = 0$.
- 2. If $\varphi(x) = x^2$, then $\hat{h}_{\varphi} = h$, where *h* is the usual height.

Linear Fractional Transformations

We will focus on *linear fractional transformations* $\varphi(x) = \frac{ax+b}{cx+d}$ where *a*, *b*, *c*, and $d \in O_K$ have no "common factors" and $ad - bc \neq 0$.

No "common factors" means for all $v \in M_K^0$ there exists $\alpha \in \{a, b, c, d\}$ such that $|\alpha|_v = 1$.

For algebraic numbers $x_1, x_2, ..., x_n$, we have three properties:

1.
$$h(x_1x_2\cdots x_n) \leq h(x_1) + h(x_2) + \cdots + h(x_n),$$

2. $h(x_1 + x_2 + \dots + x_n) \leq h(x_1) + h(x_2) + \dots + h(x_n) + \log n$, and

3.
$$h(x_1^{-1}) = h(x_1)$$
 when $x_1 \neq 0$.

Let's attempt to find an upper bound for

$$h(\varphi(x)) - h(x)$$
, for all $x \in K$.

Naïve Approach to Bounding Heights

Now, we can use the naïve bounds on heights to find a bound for the expression

$$\begin{split} h(\varphi(x)) - h(x) &\leq h\left(\frac{ax+b}{cx+d}\right) - h(x), \\ &\leq h(ax+b) + h(cx+d) - h(x), \\ &\leq h(a) + h(b) + h(c) + h(d) + h(x) + \log 4. \end{split}$$

Is there a best possible upper bound (not dependent on $x \in K$)?

Heights on Linear Fractional Transformations A Strict Upper Bound Sketch of Proof

A Theorem about a Strict Upper Bound

Theorem (S., 2012)
If
$$\varphi(x) = \frac{ax+b}{cx+d}$$
 as defined previously and L is the Galois closure
of K, then for all $\beta \in L$, we have
 $h(\varphi(\beta)) - h(\beta) \leq \frac{1}{[L:\mathbb{Q}]} \sum_{v \in M_L^{\infty}} n_v \log \max\{|a|_v + |b|_v, |c|_v + |d|_v\}.$

This inequality is the "best possible," or strict.

Example

Define $\varphi(x) = \frac{-3}{5}x + \frac{4}{3} = \frac{-9x + 20}{15}$. For rational β , we have $h(\varphi(\beta)) - h(\beta) \le \log \max\{|15|, |-9| + |20|\} = \log 29$.

Heights on Linear Fractional Transformations A Strict Upper Bound Sketch of Proof

Sketch of Proof

1. First, we get

$$\frac{1}{[K:\mathbb{Q}]} \sum_{v \in M_K^\infty} n_v \log \max\{|a|_v + |b|_v, |c|_v + |d|_v\}$$

as an upper bound. (We do not need to pass to the Galois closure for this part.)

2. Then, we need to find $\beta \in L$ that attains or is infinitesimally close to our upper bound.

Heights on Linear Fractional Transformations A Strict Upper Bound Sketch of Proof

An Approximation Theorem

Theorem (Artin-Whaples approximation theorem) Let $S = \{v_i : 1 \le i \le n\} \subset M_K$ be a finite set of absolute values of K. Let $\beta_1, \ldots, \beta_n \in K$. For any $\varepsilon > 0$, there is $\alpha \in K$ such that $|\alpha - \beta_i|_{v_i} < \varepsilon$, for all i.

- Optimally, we would attain the upper bound, but it is difficult or impossible in a number field $K \neq \mathbb{Q}$.
- We use the approximation theorem to find a points that approach the bound infinitesimally.
- We need to pass to the Galois closure *L* in order to proceed.

After using the Product formula, we have

$$h(\varphi(\beta)) = \frac{1}{[L:\mathbb{Q}]} \left(\sum_{v \in M_L} n_v \log \max\{|a\beta + b|_v, |c\beta + d|_v\} \right)$$

Our goals are to find $\beta \in L$ with two properties

1. $\log \max \{ |a\beta + b|_v, |c\beta + d|_v \} = \log \max \{1, |\beta|_v \}$, for all $v \in M_L^0$, and

2.
$$\log \max\{|a\beta + b|_{v}, |c\beta + d|_{v}\}\$$

 $\approx \log \max\{|a|_{v} + |b|_{v}, |c|_{v} + |d|_{v}\}, \text{ for all } v \in M_{L}^{\infty}.$

We use the Artin-Whaples approximation theorem to achieve both properties for a particular $\beta \in L$. Introduction Heights on Linear Fractional Transformations Height with Change of Variables A Strict Upper Bound Conclusion Sketch of Proof

In the archimedean case, we have for any $x \in L$,

$$\sum_{v \in M_L^{\infty}} n_v \log \max\{1, |x|_v\} = \sum_{\iota \in \operatorname{Gal}(L/\mathbb{Q})} \log \max\{1, |\iota(x)|\}.$$

Assume max{ $|a|_v + |b|_v, |c|_v + |d|_v$ } = $|a|_v + |b|_v$. To maximize the contribution from the archimedean places, β must be close to the element $\frac{|\iota(a)|}{\iota(a)} \cdot \frac{\iota(b)}{|\iota(b)|}$ on the unit circle. But chances are $\frac{|\iota(a)|}{\iota(a)} \cdot \frac{\iota(b)}{|\iota(b)|}$ is not in *L*. Because *L* is the Galois closure of *K*, there exists $\kappa_{\iota} \in L$ such that $\left|\frac{|\iota(a)|}{\iota(a)} \cdot \frac{\iota(b)}{|\iota(b)|} - \kappa_{\iota}\right| < \epsilon$,

where $\iota(x_{\iota}) = \kappa_{\iota}$.

 Introduction
 Heights on Linear Fractional Transformations

 Height with Change of Variables
 A Strict Upper Bound

 Conclusion
 Sketch of Proof

The last condition $|\beta - x_t|_v < \epsilon$, for all $v \in M_L^{\infty}$, can be demonstrated as follows.

Asymmetric Differences in Heights Comparing with Another Result

An Interesting Corollary

Corollary

In general, if *L* is the Galois closure of *K*, then $\sup \{h(\varphi(\beta)) - h(\beta) : \beta \in L\} \neq \sup \{h(\beta) - h(\varphi(\beta)) : \beta \in L\}.$

Proof.

Since φ is a bijection in *L*, then $\sup \{h(\varphi^{-1}(\beta)) - h(\varphi(\beta)) : \beta \in L\} = \sup \{h(\varphi^{-1}(\varphi(\beta))) - h(\varphi(\beta))\}$ $= \sup \{h(\beta) - h(\varphi(\beta))\}.$

We can express the inverse as follows $\varphi^{-1}(x) = \frac{dx - b}{-cx + a}$.

So, by our theorem, we have

$$\sup \{h(\beta) - h(\varphi(\beta)) : \beta \in L\} = \frac{1}{[L:\mathbb{Q}]} \sum_{v \in M_L^{\infty}} n_v \log \max \{|a|_v + |c|_v, |b|_v + |d|_v\}.$$

Example

Over \mathbb{Q} , Let $\varphi(x) = \frac{-9x+20}{15}$ and $\varphi^{-1}(x) = \frac{-15x+20}{9}$. By the theorem, we get $\sup\{h(\varphi(\beta)) - h(\beta) : \beta \in \mathbb{Q}\} = \log\max\{|15|, |-9| + |20|\} = \log 29;$ $\sup\{h(\beta) - h(\varphi(\beta)) : \beta \in \mathbb{Q}\} = \log\max\{|9|, |-15| + |35|\} = \log 35.$ A theorem by C. Petsche, L. Szpiro, and T. Tucker is as follows. Theorem

Let σ be a rational map of degree $d \ge 2$ in $\mathbb{P}^1(\mathbb{C})$. We have

$$\lim_{n\to\infty}\frac{1}{d^n}\sum_{\sigma^n(\alpha)=\alpha}h(\alpha)=\lim_{n\to\infty}\frac{1}{2^n}\sum_{\zeta^{2^n}=\zeta}\hat{h}_{\sigma}(\zeta).$$

If we take $\sigma = \varphi^{-1} \circ f \circ \varphi$ where $f(x) = x^2$ is the squaring map and $\varphi(x) = \frac{ax+b}{cx+d}$, then after a few steps we can re-write the equation as

$$\lim_{n\to\infty}\frac{1}{2^n}\sum_{\sigma^n(\alpha)=\alpha}h(\alpha)=\lim_{n\to\infty}\frac{1}{2^n}\sum_{\zeta^{2^n}=\zeta}h(\varphi(\zeta)).$$