Relative Bogomolov Extensions Maine-Québec 2013

Bobby Grizzard

Department of Mathematics
The University of Texas at Austin
rgrizzard@math.utexas.edu

October 7, 2013

The absolute height of algebraic numbers

If $\alpha \in \overline{\mathbb{Q}}$ has minimal polynomial

$$
f(x)=a_{0} x^{d}+\cdots+a_{d}=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x],
$$

we define

$$
H(\alpha)=\underbrace{\left(a_{0} \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\}\right)^{\frac{1}{d}}}_{M(f)=\text { "Mahler measure of } f \text { " }}=\prod_{v} \max \left\{1,|\alpha|_{v}\right\} .
$$

- The last product is over all places of an arbitrary number field $K \ni \alpha$.
- H is the "multiplicative" height; $h:=\log H$ denotes the "logarithmic" or "additive" height.

Properties of $H: \overline{\mathbb{Q}}^{\times} \rightarrow[1, \infty)$

- $H(\alpha)=1$ iff α is a root of unity, a.k.a. a torsion point of $\mathbb{G}_{m}(\overline{\mathbb{Q}})$.
- If $\alpha=p / q \in \mathbb{Q},(p, q)=1$, then $H(\alpha)=\max \{|p|,|q|\}$.
- Galois-invariant (all roots of same irred. poly. have same height)
- If $\lambda \in \mathbb{Q}$, then $H\left(\alpha^{\lambda}\right)=H(\alpha)^{|\lambda|}$ ("scaling")
- $H(\alpha \beta) \leq H(\alpha) H(\beta)$ ("triangle inequality")
- Roughly comparable to ℓ^{1} - and ℓ^{∞}-norms of coefficients of minimal polynomial, which are easier to compute but don't play nice.

Other heights

- Absolute height on algebraic numbers $h: \mathbb{G}_{m}(\overline{\mathbb{Q}}) \rightarrow[0, \infty)$ (the focus for this talk)- more generally on \mathbb{G}_{m}^{n} sum the heights of coordinates.
- Absolute height of a point in projective space $h: \mathbb{P}^{n}(\overline{\mathbb{Q}}) \rightarrow[0, \infty)$ is just a slight adjustment of the previous definition.
- If $V / \overline{\mathbb{Q}}$ is a variety and we have a map $f: V \rightarrow \mathbb{P}^{n}$, this induces a height $h_{f}: V(\overline{\mathbb{Q}}) \rightarrow[0, \infty)$, by $h_{f}(P)=h(f(P))$.
- For an abelian variety A we have the Néron-Tate canonical height $\hat{h}: A(\overline{\mathbb{Q}}) \rightarrow[0, \infty)$, which is "close" $\left(O(1)\right.$ away) to h_{f} for any f and respects the group structure and Galois action, analogous to h on \mathbb{G}_{m}.
- Fancy results in diophantine geometry (e.g. Faltings's Theorem) use fancier heights.

Unconditional lower bounds - the Lehmer conjecture

Conjecture (D. H. Lehmer, '33)

There exists an absolute constant $c>1$ such that if α is an algebraic number of degree d over \mathbb{Q}, not a root of unity, then

$$
H(\alpha)^{d} \geq c
$$

- Evidence (ask Mike Mossinghoff) suggests that we can take $c=1.17628 \ldots$, achieved when α is a root of $x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$, already discovered by Lehmer in '33 (calculating by hand!).
- Dobrowolski ('79) showed we can get $H(\alpha)^{d} \geq c^{\prime} \cdot\left(\frac{\log \log d}{\log d}\right)^{3}$, and Voutier later showed here we can take $c^{\prime}=1 / 4$ for all $d>1$.

Bounds for subfields of $\overline{\mathbb{Q}}$ - the Bogomolov property

Definition (Bombieri \& Zannier, '01)

A subfield $K \subseteq \overline{\mathbb{Q}}$ satisfies the Bogomolov property if there exists $\varepsilon>0$ such that there is no non-torsion point $\alpha \in K^{\times}$with $h(\alpha)<\varepsilon$. (" K has no small points.")

- Easy to see all number fields have (B).
- We say K has (B) w.r.t. an abelian variety A if $A(K)$ has no small points in the canonical height.
- Named after the related Bogomolov conjectures in diophantine geometry.
- K has $(B) \Leftrightarrow K^{\times} /$tors is a discrete subgroup of $\overline{\mathbb{Q}}^{\times} /$tors.
- This means that if K has (B), then $K^{\times} /$tors is a free abelian group. Same for $A(K) /$ tors if K has (B) w.r.t. A.

Fields with (B) - no small points

- $\mathbb{Q}^{\text {tot. real }}$ (Schinzel '73) $-\alpha$ tot. real $\Rightarrow H(\alpha) \geq \frac{1+\sqrt{5}}{2}$ (sharp)
- $\mathbb{Q}^{a b}$ (Amoroso \& Dvornicich '00)
- If we interpret the above as a result about heights on $\mathbb{G}_{m}\left(\mathbb{Q}\left(\mathbb{G}_{m}\right.\right.$, tors $\left.)\right)$, this generalizes in several ways:
- $\mathbb{G}_{m}\left(k^{a b}\right), k$ a number field (Amoroso \& Zannier, '00, '10)
- $A\left(\mathbb{Q}\left(\mathbb{G}_{m, \text { tors }}\right)\right), A / \mathbb{Q}$ an abelian variety (Baker \& Silverman '04)
- $\mathbb{G}_{m}\left(\mathbb{Q}\left(E_{\text {tors }}\right)\right)$ and $E\left(\mathbb{Q}\left(E_{\text {tors }}\right)\right), E / \mathbb{Q}$ an elliptic curve (Habegger '13)
- Any Galois extension of \mathbb{Q} which embeds into a finite extension of \mathbb{Q}_{p} for some p (i.e. "totaly \mathfrak{p}-adic" (Bombieri \& Zannier '01)
- Any extension L of a number field k such that $\operatorname{Gal}(L / k) / Z(\operatorname{Gal}(L / k))$ has finite exponent (Amroso, David, \& Zannier, '13)

The relative Bogomolov property

Definition

Let $K \subseteq L$ be subfields of $\overline{\mathbb{Q}}$. The extension L / K is Bogomolov (or satisfies the relative Bogomolov property, (RB)) if there exists $\varepsilon>0$ such that no non-torsion point $\alpha \in L^{\times} \backslash K^{\times}$has $h(\alpha)<\epsilon$. (" L has no new small points.")

- If K has (B), then L / K has (RB) iff L has (B).
- For $M / L / K, M / K$ is (RB) iff M / L and L / K are both (RB).
- If $L \backslash K$ has a root of unity and K has small points, so does $L \backslash K$.

Theorem (G., Pottmeyer (indep.))

This can happen even when K has small points.

Examples

1. Let $K=\mathbb{Q}(\sqrt[3]{3}, \sqrt[9]{3}, \sqrt[27]{3}, \ldots)$ (choosing always the real root).

- $h\left(3^{1 / 3^{n}}\right)=\frac{1}{3^{n}} \cdot h(3)=\frac{\log 3}{3^{n}} \rightarrow 0$ as $n \rightarrow \infty$, so K does not have (B).
- Note that the only proper subfields of K are the finite extensions $\mathbb{Q}(\sqrt[n]{3}), n=0,1,2, \ldots$ Since all proper subfields are finite, K does not have (RB) over any subfield.
- $K(\sqrt{3})$ does not have (RB) - intuitively, K has points that are "close" to $\sqrt{3}$.
- $K(\sqrt{p})$ does have (RB) for p any other prime - this is harder to see, but a key fact is that p is unramified in K.

2. Let $K=\mathbb{Q}^{\text {tot.real }}(\sqrt{-1})$ (the "maximal CM field").

- K has small points (Amoroso \& Nuccio '07), even though $\mathbb{Q}^{\text {tot.real }}$ does not (Schinzel).
- There is no extension L / K having (RB) (Pottmeyer, '13).

Main result

Theorem (G.)

Let K / \mathbb{Q} be a Galois extension. If there is a (finite) rational prime p with bounded ramification index in K, then there exist relative Bogomolov extensions L / K.

- These extensions are of the form $K(\sqrt[p]{\alpha})$ for an appropriate choice of $\alpha \in K$.
- cf. Bombieri \& Zannier: if K has bounded local degree (ram. index times residual degree) at some prime, then K has (B).
Proof ingredients:
- A "non-archimedean" inequality of Silverman ('84) which bounds from below the heights of generators of relative extensions in terms of the relative discriminant (this generalizes a classical bound of Mahler).
- An "archimedean" bound of Garza ('07) which generalizes Schinzel's theorem for totally real numbers.

It's over!

