Relative Bogomolov Extensions Maine-Québec 2013

Bobby Grizzard

Department of Mathematics The University of Texas at Austin rgrizzard@math.utexas.edu

October 7, 2013

The absolute height of algebraic numbers

If $\alpha \in \overline{\mathbb{Q}}$ has minimal polynomial

$$f(x) = a_0 x^d + \cdots + a_d = a_0 (x - \alpha_1) \cdots (x - \alpha_d) \in \mathbb{Z}[x],$$

we define

$$H(\alpha) = \underbrace{\left(a_{0}\prod_{i=1}^{d}\max\left\{1,|\alpha_{i}|\right\}\right)}_{M(f) = \text{``Mahler measure of }f''} \stackrel{\frac{1}{d}}{=} \prod_{v}\max\left\{1,|\alpha|_{v}\right\}.$$

• The last product is over all places of an arbitrary number field $K \ni \alpha$.

 H is the "multiplicative" height; h := log H denotes the "logarithmic" or "additive" height.

Properties of $H: \overline{\mathbb{Q}}^{\times} \to [1,\infty)$

- $H(\alpha) = 1$ iff α is a root of unity, a.k.a. a torsion point of $\mathbb{G}_m(\overline{\mathbb{Q}})$.
- If $\alpha = p/q \in \mathbb{Q}$, (p,q) = 1, then $H(\alpha) = \max\{|p|, |q|\}$.
- Galois-invariant (all roots of same irred. poly. have same height)
- If $\lambda \in \mathbb{Q}$, then $H(\alpha^{\lambda}) = H(\alpha)^{|\lambda|}$ ("scaling")
- $H(\alpha\beta) \leq H(\alpha)H(\beta)$ ("triangle inequality")
- Roughly comparable to ℓ¹- and ℓ[∞]-norms of coefficients of minimal polynomial, which are easier to compute but don't play nice.

Other heights

- Absolute height on algebraic numbers h : G_m(Q) → [0,∞) (the focus for this talk)- more generally on Gⁿ_m sum the heights of coordinates.
- Absolute height of a point in projective space h : Pⁿ(Q) → [0,∞) is just a slight adjustment of the previous definition.
- If $V/\overline{\mathbb{Q}}$ is a variety and we have a map $f: V \to \mathbb{P}^n$, this induces a height $h_f: V(\overline{\mathbb{Q}}) \to [0, \infty)$, by $h_f(P) = h(f(P))$.
- For an abelian variety A we have the Néron-Tate canonical height $\hat{h}: A(\overline{\mathbb{Q}}) \to [0,\infty)$, which is "close" (O(1) away) to h_f for any f and respects the group structure and Galois action, analogous to h on \mathbb{G}_m .
- Fancy results in diophantine geometry (e.g. Faltings's Theorem) use fancier heights.

Unconditional lower bounds - the Lehmer conjecture

Conjecture (D. H. Lehmer, '33)

There exists an absolute constant c > 1 such that if α is an algebraic number of degree d over \mathbb{Q} , not a root of unity, then

 $H(\alpha)^d \ge c.$

• Evidence (ask Mike Mossinghoff) suggests that we can take c = 1.17628..., achieved when α is a root of $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$, already discovered by Lehmer in '33 (calculating by hand!).

• Dobrowolski ('79) showed we can get $H(\alpha)^d \ge c' \cdot \left(\frac{\log \log d}{\log d}\right)^3$, and Voutier later showed here we can take c' = 1/4 for all d > 1.

Bounds for subfields of $\overline{\mathbb{Q}}$ – the Bogomolov property

Definition (Bombieri & Zannier, '01)

A subfield $K \subseteq \overline{\mathbb{Q}}$ satisfies the *Bogomolov property* if there exists $\varepsilon > 0$ such that there is no non-torsion point $\alpha \in K^{\times}$ with $h(\alpha) < \varepsilon$. ("K has no small points.")

- Easy to see all number fields have (B).
- We say K has (B) w.r.t. an abelian variety A if A(K) has no small points in the canonical height.
- Named after the related Bogomolov conjectures in diophantine geometry.
- *K* has (B) $\Leftrightarrow K^{\times}/\text{tors}$ is a discrete subgroup of $\overline{\mathbb{Q}}^{\times}/\text{tors}$.
- This means that if K has (B), then K[×]/tors is a free abelian group.
 Same for A(K)/tors if K has (B) w.r.t. A.

Fields with (B) – no small points

- $\mathbb{Q}^{\text{tot. real}}$ (Schinzel '73) α tot. real $\Rightarrow H(\alpha) \geq \frac{1+\sqrt{5}}{2}$ (sharp)
- \mathbb{Q}^{ab} (Amoroso & Dvornicich '00)
- If we interpret the above as a result about heights on $\mathbb{G}_m(\mathbb{Q}(\mathbb{G}_m, \text{tors}))$, this generalizes in several ways:
 - $\mathbb{G}_m(k^{ab})$, k a number field (Amoroso & Zannier, '00, '10)
 - $A(\mathbb{Q}(\mathbb{G}_{m,tors}))$, A/\mathbb{Q} an abelian variety (Baker & Silverman '04)
 - $\mathbb{G}_m(\mathbb{Q}(E_{tors}))$ and $E(\mathbb{Q}(E_{tors}))$, E/\mathbb{Q} an elliptic curve (Habegger '13)
- Any Galois extension of Q which embeds into a finite extension of Q_p for some p (i.e. "totaly p-adic" (Bombieri & Zannier '01)
- Any extension L of a number field k such that Gal(L/k)/Z(Gal(L/k)) has finite exponent (Amroso, David, & Zannier, '13)

The relative Bogomolov property

Definition

Let $K \subseteq L$ be subfields of $\overline{\mathbb{Q}}$. The extension L/K is Bogomolov (or satisfies the *relative Bogomolov property*, (RB)) if there exists $\varepsilon > 0$ such that no non-torsion point $\alpha \in L^{\times} \setminus K^{\times}$ has $h(\alpha) < \epsilon$. ("L has no new small points.")

- If K has (B), then L/K has (RB) iff L has (B).
- For M/L/K, M/K is (RB) iff M/L and L/K are both (RB).
- If $L \setminus K$ has a root of unity and K has small points, so does $L \setminus K$.

Theorem (G., Pottmeyer (indep.))

This can happen even when K has small points.

Examples

- 1. Let $K = \mathbb{Q}(\sqrt[3]{3}, \sqrt[9]{3}, \sqrt[27]{3}, \dots)$ (choosing always the real root).
 - $h(3^{1/3^n}) = \frac{1}{3^n} \cdot h(3) = \frac{\log 3}{3^n} \to 0$ as $n \to \infty$, so K does not have (B).
 - Note that the only proper subfields of K are the finite extensions Q(ⁿ√3), n = 0, 1, 2, Since all proper subfields are finite, K does not have (RB) over any subfield.
 - $K(\sqrt{3})$ does not have (RB) intuitively, K has points that are "close" to $\sqrt{3}$.
 - K(√p) does have (RB) for p any other prime this is harder to see, but a key fact is that p is unramified in K.
- 2. Let $K = \mathbb{Q}^{\text{tot.real}}(\sqrt{-1})$ (the "maximal CM field").
 - K has small points (Amoroso & Nuccio '07), even though Q^{tot.real} does not (Schinzel).
 - There is no extension L/K having (RB) (Pottmeyer, '13).

Main result

Theorem (G.)

Let K/\mathbb{Q} be a Galois extension. If there is a (finite) rational prime p with bounded ramification index in K, then there exist relative Bogomolov extensions L/K.

- These extensions are of the form K(^p√α) for an appropriate choice of α ∈ K.
- cf. Bombieri & Zannier: if K has bounded local degree (ram. index times residual degree) at some prime, then K has (B).

Proof ingredients:

- A "non-archimedean" inequality of Silverman ('84) which bounds from below the heights of generators of relative extensions in terms of the relative discriminant (this generalizes a classical bound of Mahler).
- An "archimedean" bound of Garza ('07) which generalizes Schinzel's theorem for totally real numbers.

It's over!