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Motivating Question

Question: How many integral binary quadratic forms ax2 + bxy + cy2

are there of fixed discriminant h and with bounded coefficients?

This problem lives in a larger context of counting integral points
on hyperbolic surfaces.
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Background

Erdös, 1952: Mentioned an unpublished result of Bellman and
Shapiro:

X∑
n=1

d(f (n)) = cX log X + O(X log log X)

where d(k) counts the divisors of k and f is an irreducible
quadratic polynomial.

Scourfield, 1961: Generalized this result and proved:

X∑
n=1

r2(f (n)) = cX log X + O(X log log X)

where r2(k) counts the number of ways k can be written as the sum
of two squares.
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Background, continued

Duke, Rudnick, Sarnak, 1993: Wanted to count integral points on
the one-sheeted hyperboloid defined by

−x2
1 − x2

2 + kx2
3 = −1

with ‖x‖ < X.

This amounts to counting the number of ways kx2
3 + 1 can be

written as the sum of two squares, so apply Scourfield’s result!
Remarks:

D-R-S result is much more general.
Eskin, McMullen, 1993 have essentially the same results using ergodic
methods.
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Background, continued

Oh, Shah, 2011: Let Q(x1, x2, x3) be an integral quadratic form
with signature (2,1). Then

#{x ∈ Z3 | Q(x) = h, ‖x‖ < X} ∼ cX log X.

As a corollary, because the discriminant is a quadratic form with
signature (2,1), we get:

Theorem (Oh, Shah)
For h a square,

#{Q(x, y) = ax2 + bxy + cy2 | disc Q = h, a2 + b2 + c2 ≤ X}

= cX log X + O(X(log X)
3
4 )
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Statement of Results

Goals are twofold:
Improve the error term.

Use Dirichlet series instead of ergodic methods.

Theorem (H-K-K-L)
∞∑

a,c=1

τ(4ac + h)e−( a+c
X ) = c1(h)X log X + c2(h)X + O(X

1
2 )

where c1(h) = 0 if h is not a square and

τ(n) =


0 if n 6= �

1 if n = 0
2 if n = �, n 6= 0
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Statement of Results, continued

Notice that
∞∑

a,c=1

τ(4ac + h)e−( a+c
X )

is a smoothed sum of

X∑
a,c=1

τ(4ac + h)

= #{(a, b, c) ∈ Z3 | b2 − 4ac = h, 1 ≤ a, c ≤ X, |b/2| ≤ X}.
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Statement of Results, continued

We also have

Theorem (H-K-K-L)
X∑

a,c=1

τ(4ac + h) = c1(h)X log X + c2(h)X + O(X
34
39 ).

There are other results (such as Hooley, Bykovskii) that count square
discriminants with the condition

ac < X2 instead of a, c < X.

If we use this condition and count integral points in a hyperbolic region
instead of a box, we get an error term of O(X

4
5 ).
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Proof Sketch

We study the Dirichlet series∑
a,c

τ(4ac + h)

awcs .

Then, taking inverse Mellin transforms, we get∑
a,c

τ(4ac + h)e−( a+c
X ).

Note: ∑
a,c

τ(4ac + h)

awcs =
∞∑

m=1

τ(4m + h)

ms

∑
a|m

1
av

=
∞∑

m=1

τ(4m + h)σ−v(m)

ms
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Proof Sketch, continued

Conclusion: We want to study the Shifted Convolution Sum:

∞∑
m=1

τ(4m + h)σ−v(m)

ms .

Key idea: Use Fourier coefficients of automorphic forms.
θ(z) gives the square indicator function, τ(n).
The Eisenstein series E(z, 1+v

2 ) gives the divisor function, σ−v(m).
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Proof: Key Points

Use a half-integral weight version of the Poincare series studied by
Hoffstein and Hulse. For f , g weight k modular forms,

〈Ph, f̄ gyk〉 = (Γ factors)
∞∑

m=1

a(m + h)b(m)

ms+k−1 .

We use Ph(z, s) =
∑

γ∈Γ∞\Γ0(4)=(γz)se−2πihz j(γ,z)
|j(γ,z)| .

If we unfold the integral of the inner product, we get the Dirichlet
series we want.
Use the spectral expansion of the Poincare series to locate poles
and compute residues.
Take inverse Mellin transforms and shift lines of integration.
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Proof: Difficulties

There are two main difficulties.
V(z) = θ(z)E(4z, 1+v

2 )y1/4 is not L2 (it has moderate growth). To
correct this, we actually take the inner product of Ph with
V(z)−(lin. combo. of 1/2-integral wt. Eisenstein series).

Ph is not L2 (it has exponential growth in y). To get around this,
cut off Ph and take limits carefully at the end.
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