Counting Square Discriminants

Li-Mei Lim

Bard College at Simon's Rock

October 3, 2015

joint with T.A. Hulse, E.M. Kıral and C.I. Kuan
Maine-Québec Number Theory Conference

Motivating Question

Question: How many integral binary quadratic forms $a x^{2}+b x y+c y^{2}$ are there of fixed discriminant h and with bounded coefficients?

Motivating Question

Question: How many integral binary quadratic forms $a x^{2}+b x y+c y^{2}$ are there of fixed discriminant h and with bounded coefficients?

- This problem lives in a larger context of counting integral points on hyperbolic surfaces.

Background

- Erdös, 1952: Mentioned an unpublished result of Bellman and Shapiro:

$$
\sum_{n=1}^{X} d(f(n))=c X \log X+O(X \log \log X)
$$

where $d(k)$ counts the divisors of k and f is an irreducible quadratic polynomial.

Background

- Erdös, 1952: Mentioned an unpublished result of Bellman and Shapiro:

$$
\sum_{n=1}^{X} d(f(n))=c X \log X+O(X \log \log X)
$$

where $d(k)$ counts the divisors of k and f is an irreducible quadratic polynomial.

- Scourfield, 1961: Generalized this result and proved:

$$
\sum_{n=1}^{X} r_{2}(f(n))=c X \log X+O(X \log \log X)
$$

where $r_{2}(k)$ counts the number of ways k can be written as the sum of two squares.

Background, continued

- Duke, Rudnick, Sarnak, 1993: Wanted to count integral points on the one-sheeted hyperboloid defined by

$$
-x_{1}^{2}-x_{2}^{2}+k x_{3}^{2}=-1
$$

with $\|\mathbf{x}\|<X$.

Background, continued

- Duke, Rudnick, Sarnak, 1993: Wanted to count integral points on the one-sheeted hyperboloid defined by

$$
-x_{1}^{2}-x_{2}^{2}+k x_{3}^{2}=-1
$$

with $\|\mathbf{x}\|<X$.
This amounts to counting the number of ways $k x_{3}^{2}+1$ can be written as the sum of two squares, so apply Scourfield's result!

Background, continued

- Duke, Rudnick, Sarnak, 1993: Wanted to count integral points on the one-sheeted hyperboloid defined by

$$
-x_{1}^{2}-x_{2}^{2}+k x_{3}^{2}=-1
$$

with $\|\mathbf{x}\|<X$.
This amounts to counting the number of ways $k x_{3}^{2}+1$ can be written as the sum of two squares, so apply Scourfield's result!

- Remarks:
- D-R-S result is much more general.

Background, continued

- Duke, Rudnick, Sarnak, 1993: Wanted to count integral points on the one-sheeted hyperboloid defined by

$$
-x_{1}^{2}-x_{2}^{2}+k x_{3}^{2}=-1
$$

with $\|\mathbf{x}\|<X$.
This amounts to counting the number of ways $k x_{3}^{2}+1$ can be written as the sum of two squares, so apply Scourfield's result!

- Remarks:
- D-R-S result is much more general.
- Eskin, McMullen, 1993 have essentially the same results using ergodic methods.

Background, continued

- Oh, Shah, 2011: Let $Q\left(x_{1}, x_{2}, x_{3}\right)$ be an integral quadratic form with signature $(2,1)$. Then

$$
\#\left\{\mathbf{x} \in \mathbb{Z}^{3} \mid Q(\mathbf{x})=h,\|\mathbf{x}\|<X\right\} \sim c X \log X
$$

Background, continued

- Oh, Shah, 2011: Let $Q\left(x_{1}, x_{2}, x_{3}\right)$ be an integral quadratic form with signature $(2,1)$. Then

$$
\#\left\{\mathbf{x} \in \mathbb{Z}^{3} \mid Q(\mathbf{x})=h,\|\mathbf{x}\|<X\right\} \sim c X \log X
$$

- As a corollary, because the discriminant is a quadratic form with signature (2,1), we get:

Theorem (Oh, Shah)

For h a square,

$$
\begin{array}{r}
\#\left\{Q(x, y)=a x^{2}+b x y+c y^{2} \mid \operatorname{disc} Q=h, a^{2}+b^{2}+c^{2} \leq X\right\} \\
=c X \log X+O\left(X(\log X)^{\frac{3}{4}}\right)
\end{array}
$$

Statement of Results

- Goals are twofold:
- Improve the error term.

Statement of Results

- Goals are twofold:
- Improve the error term.
- Use Dirichlet series instead of ergodic methods.

Statement of Results

- Goals are twofold:
- Improve the error term.
- Use Dirichlet series instead of ergodic methods.

Theorem (H-K-K-L)

$$
\sum_{a, c=1}^{\infty} \tau(4 a c+h) e^{-\left(\frac{a+c}{X}\right)}=c_{1}(h) X \log X+c_{2}(h) X+O\left(X^{\frac{1}{2}}\right)
$$

where $c_{1}(h)=0$ if h is not a square and

$$
\tau(n)= \begin{cases}0 & \text { if } n \neq \square \\ 1 & \text { if } n=0 \\ 2 & \text { if } n=\square, n \neq 0\end{cases}
$$

Statement of Results, continued

Notice that

$$
\sum_{a, c=1}^{\infty} \tau(4 a c+h) e^{-\left(\frac{a+c}{X}\right)}
$$

is a smoothed sum of

$$
\begin{aligned}
\sum_{a, c=1}^{X} & \tau(4 a c+h) \\
& =\#\left\{(a, b, c) \in \mathbb{Z}^{3}\left|b^{2}-4 a c=h, 1 \leq a, c \leq X,|b / 2| \leq X\right\}\right.
\end{aligned}
$$

Statement of Results, continued

We also have

Theorem (H-K-K-L)

$$
\sum_{a, c=1}^{X} \tau(4 a c+h)=c_{1}(h) X \log X+c_{2}(h) X+O\left(X^{\frac{34}{39}}\right) .
$$

Statement of Results, continued

We also have

Theorem (H-K-K-L)

$$
\sum_{a, c=1}^{X} \tau(4 a c+h)=c_{1}(h) X \log X+c_{2}(h) X+O\left(X^{\frac{34}{39}}\right)
$$

There are other results (such as Hooley, Bykovskii) that count square discriminants with the condition

$$
a c<X^{2} \quad \text { instead of } \quad a, c<X .
$$

Statement of Results, continued

We also have

Theorem (H-K-K-L)

$$
\sum_{a, c=1}^{X} \tau(4 a c+h)=c_{1}(h) X \log X+c_{2}(h) X+O\left(X^{\frac{34}{39}}\right)
$$

There are other results (such as Hooley, Bykovskii) that count square discriminants with the condition

$$
a c<X^{2} \quad \text { instead of } \quad a, c<X .
$$

If we use this condition and count integral points in a hyperbolic region instead of a box, we get an error term of $O\left(X^{\frac{4}{5}}\right)$.

Proof Sketch

- We study the Dirichlet series

$$
\sum_{a, c} \frac{\tau(4 a c+h)}{a^{w} c^{s}}
$$

Proof Sketch

- We study the Dirichlet series

$$
\sum_{a, c} \frac{\tau(4 a c+h)}{a^{w} c^{s}}
$$

- Then, taking inverse Mellin transforms, we get

$$
\sum_{a, c} \tau(4 a c+h) e^{-\left(\frac{a+c}{X}\right)}
$$

Proof Sketch

- We study the Dirichlet series

$$
\sum_{a, c} \frac{\tau(4 a c+h)}{a^{w} c^{s}}
$$

- Then, taking inverse Mellin transforms, we get

$$
\sum_{a, c} \tau(4 a c+h) e^{-\left(\frac{a+c}{X}\right)}
$$

- Note:

$$
\begin{aligned}
\sum_{a, c} \frac{\tau(4 a c+h)}{a^{w} c^{s}} & =\sum_{m=1}^{\infty} \frac{\tau(4 m+h)}{m^{s}} \sum_{a \mid m} \frac{1}{a^{v}} \\
& =\sum_{m=1}^{\infty} \frac{\tau(4 m+h) \sigma_{-v}(m)}{m^{s}}
\end{aligned}
$$

Proof Sketch, continued

Conclusion: We want to study the Shifted Convolution Sum:

$$
\sum_{m=1}^{\infty} \frac{\tau(4 m+h) \sigma_{-v}(m)}{m^{s}}
$$

Proof Sketch, continued

Conclusion: We want to study the Shifted Convolution Sum:

$$
\sum_{m=1}^{\infty} \frac{\tau(4 m+h) \sigma_{-v}(m)}{m^{s}}
$$

Key idea: Use Fourier coefficients of automorphic forms.

Proof Sketch, continued

Conclusion: We want to study the Shifted Convolution Sum:

$$
\sum_{m=1}^{\infty} \frac{\tau(4 m+h) \sigma_{-v}(m)}{m^{s}}
$$

Key idea: Use Fourier coefficients of automorphic forms.

- $\theta(z)$ gives the square indicator function, $\tau(n)$.
- The Eisenstein series $E\left(z, \frac{1+v}{2}\right)$ gives the divisor function, $\sigma_{-v}(m)$.

Proof: Key Points

- Use a half-integral weight version of the Poincare series studied by Hoffstein and Hulse. For f, g weight k modular forms,

$$
\left\langle P_{h}, \bar{f} g y^{k}\right\rangle=(\Gamma \text { factors }) \sum_{m=1}^{\infty} \frac{a(m+h) b(m)}{m^{s+k-1}}
$$

Proof: Key Points

- Use a half-integral weight version of the Poincare series studied by Hoffstein and Hulse. For f, g weight k modular forms,

$$
\left\langle P_{h}, \bar{f} g y^{k}\right\rangle=(\Gamma \text { factors }) \sum_{m=1}^{\infty} \frac{a(m+h) b(m)}{m^{s+k-1}}
$$

We use $P_{h}(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(4)} \Im(\gamma z)^{s} e^{-2 \pi i h z} \frac{j(\gamma, z)}{|j(\gamma, z)|}$.

Proof: Key Points

- Use a half-integral weight version of the Poincare series studied by Hoffstein and Hulse. For f, g weight k modular forms,

$$
\left\langle P_{h}, \bar{f} g y^{k}\right\rangle=(\Gamma \text { factors }) \sum_{m=1}^{\infty} \frac{a(m+h) b(m)}{m^{s+k-1}}
$$

We use $P_{h}(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(4)} \Im(\gamma z)^{s} e^{-2 \pi i h z} \frac{j(\gamma, z)}{|j(\gamma, z)|}$.

- If we unfold the integral of the inner product, we get the Dirichlet series we want.

Proof: Key Points

- Use a half-integral weight version of the Poincare series studied by Hoffstein and Hulse. For f, g weight k modular forms,

$$
\left\langle P_{h}, \bar{f} g y^{k}\right\rangle=(\Gamma \text { factors }) \sum_{m=1}^{\infty} \frac{a(m+h) b(m)}{m^{s+k-1}}
$$

We use $P_{h}(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(4)} \Im(\gamma z)^{s} e^{-2 \pi i h z} \frac{j(\gamma, z)}{|j(\gamma, z)|}$.

- If we unfold the integral of the inner product, we get the Dirichlet series we want.
- Use the spectral expansion of the Poincare series to locate poles and compute residues.

Proof: Key Points

- Use a half-integral weight version of the Poincare series studied by Hoffstein and Hulse. For f, g weight k modular forms,

$$
\left\langle P_{h}, \bar{f} g y^{k}\right\rangle=(\Gamma \text { factors }) \sum_{m=1}^{\infty} \frac{a(m+h) b(m)}{m^{s+k-1}}
$$

We use $P_{h}(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(4)} \Im(\gamma z)^{s} e^{-2 \pi i h z} \frac{j(\gamma, z)}{|j(\gamma, z)|}$.

- If we unfold the integral of the inner product, we get the Dirichlet series we want.
- Use the spectral expansion of the Poincare series to locate poles and compute residues.
- Take inverse Mellin transforms and shift lines of integration.

Proof: Difficulties

There are two main difficulties.

- $V(z)=\theta(z) E\left(4 z, \frac{1+v}{2}\right) y^{1 / 4}$ is not L^{2} (it has moderate growth). To correct this, we actually take the inner product of P_{h} with $V(z)$-(lin. combo. of 1/2-integral wt. Eisenstein series).

Proof: Difficulties

There are two main difficulties.

- $V(z)=\theta(z) E\left(4 z, \frac{1+v}{2}\right) y^{1 / 4}$ is not L^{2} (it has moderate growth). To correct this, we actually take the inner product of P_{h} with $V(z)$-(lin. combo. of $1 / 2$-integral wt. Eisenstein series).
- P_{h} is not L^{2} (it has exponential growth in y). To get around this, cut off P_{h} and take limits carefully at the end.

Bibliography

V. A. Bykovskii, Spectral expansions of certain automorphic functions and their number-theoretic applications, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 134 (1984), 15-33.
W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Mathematical Journal 71 (1993), no. 1.
A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Mathematical Journal 71 (1993), no. 1.

Paul Erdös, On the sum $\sum_{k=1}^{x} d(f(k))$, J. London Math. Soc. 27 (1952).
Jeffrey Hoffstein and Thomas Hulse, Multiple Dirichlet series and shifted convolutions, submitted, arXiv:1110.4868.
C. Hooley, On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963), 97-114.

Thomas Hulse, E. Mehmet Kıral, Chan Ieong Kuan, and Li-Mei Lim, Counting square discriminants, submitted.
Hee Oh and Nimish Shah, Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids, Israel Journal of Mathematics (2014).
E. J. Scourfield, The divisors of a quadratic polynomial, Proc. Glasgow Math. Assoc. 5 (1961).

