$\mathfrak{C l y}$ Eew 見ork flath Cimes

04 OCT 2015

1208 images of 2 -adic Galois representations

By pierre de fermat

Jeremy Rouse - Wake Forest - and David Zureick-Brown - Emory - have stunned the number theory community with the announcement of a complete classication of all possible images of 2 -adic Galois representations attached to the Tate module of an elliptic curve over Q without complex multiplication. In particular, they have shown that there are exactly 1208 possibilities, up to conjugation.

Reuters
International Moose Count Underway By BOB O'BOBSTON
tion Council, worldwide moose numbers are expected to grow markedly on last year due to the traditional moose strongholds of Canada and the United States, with the larger developing moose ecologies also poised to make gains. The largest percentagege increase in moose will likely come from China", says McRohson, The Chinese government has invested heavily in moose infrastructure over the past decade, and their committment to macrofauna is beginning to pay dividends". Since 2004 China has expanded moose pasture from 1.5% of arable land to nearly 3.648% and moose numbers are expected to rise to 60,000 making China a net moose exporter for the first time. This is good news for neighbouring Mongolia, a barren moose-wasteland whose inhabitents nonetheless have an insatiable desire for the creatures. The increase in Beijing-Ulanbataar trade is anticipated to relieve pressure on the relatively strained Russion suppliers, but increase Mongolia's imbalance of trade with its larger neighbour.

Historically the only competitor to China in the far eastern moose markets has been Singapore but the tiny island nation is set to report a net loss, expecting a decrease of more than five percent on last year's 50,000 moose counted. The head of Singapore's Agency for Agriculture, JingFeng Lau, explained to an incredulous Singaporean parliament yesterday that bad weather had contributed
dred million billion.
Europe's rise as an international moose power will slow slightly this year as a response to the European Union's move towards standardising the European moose. Stringent quality controls are holding back the development of the eastern curopean populations compared to last year when they contributed significantly to europe's strong growth figures. Norway, which is not an EU member but has observer status, strengthed in numbers relative to the Euro area with numbers of Norweigian moose, known locally as elk" expected to rise for the tenth consecutive year, particularly thanks to a strong showing in the last quarter.

As moose season reaches its close, researchers world wide are turning to science in an attempt to boost next year's figures. NASA stunned the scientific community today with the announcment of their discovery that the moon is significantly smaller than previously believed. This conclusion, which is the conclusion of a tenyear collaborative project, will have profound implications for the moose community as the gravitational field is now known to be of the right strength to support moose in orbit.

According to John Johnson, head of the NASA Moon Sizing Experiment the first delivery of moose into low moon orbit could be achieved as early as the third quarter of next year. The technology to nurture moose in

David Zureick-Brown
(Emory)

Let E / \mathbb{Q} be an elliptic curve, and let $T_{2}(E)=\lim E\left[2^{n}\right]$ be the Tate module. The Galois action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $T_{2}(E)$ induces

$$
\rho_{E, 2}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(T_{2}(E)\right) \cong \operatorname{GL}\left(2, \mathbb{Z}_{2}\right) .
$$

Jeremy Rouse (Wake Forest)

David Zureick-Brown (Emory)

Theorem

Let E / \mathbb{Q} be an elliptic curve with no $C M$. Then, there are precisely 1208 possibilities for the image $\rho_{E, 2}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation.

Jeremy Rouse (Wake Forest)

David Zureick-Brown (Emory)

Theorem

Let E / \mathbb{Q} be an elliptic curve with no $C M$. Then, there are precisely 1208 possibilities for the image $\rho_{E, 2}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation. Further:

Jeremy Rouse (Wake Forest)

David Zureick-Brown (Emory)

Theorem

Let E / \mathbb{Q} be an elliptic curve with no $C M$. Then, there are precisely 1208 possibilities for the image $\rho_{E, 2}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation. Further:
(1) The representation $\rho_{E, 2}$ is defined (at most) modulo 32.

Jeremy Rouse (Wake Forest)

David Zureick-Brown (Emory)

Theorem

Let E / \mathbb{Q} be an elliptic curve with no $C M$. Then, there are precisely 1208 possibilities for the image $\rho_{E, 2}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation. Further:
(1) The representation $\rho_{E, 2}$ is defined (at most) modulo 32.
(2) The index of the image in $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ is a divisor of 64 or 96 , and all such indices occur.

Jeremy Rouse (Wake Forest)

David Zureick-Brown (Emory)

Theorem

Let E / \mathbb{Q} be an elliptic curve with no CM. Then, there are precisely 1208 possibilities for the image $\rho_{E, 2}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation. Further:
(1) The representation $\rho_{E, 2}$ is defined (at most) modulo 32.
(2) The index of the image in $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ is a divisor of 64 or 96 , and all such indices occur.
(3) There exists a database that describes all possible images.

Example

For instance, let

$$
E: y^{2}+x y=x^{3}+210 x+900
$$

Then, the 2-adic image is X2351 in the notation of the RZB database, which is defined modulo 16 , and is generated in $G L(2, \mathbb{Z} / 16 \mathbb{Z})$ by

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
12 & 1
\end{array}\right),\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
14 & 1
\end{array}\right),\left(\begin{array}{cc}
5 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
15 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
9 & 0 \\
8 & 9
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
8 & 1
\end{array}\right)
$$

On the minimal degree of definition of p-primary torsion subgroups of elliptic curves

Álvaro Lozano-Robledo

Department of Mathematics
University of Connecticut
Maine-Québec Number Theory Conference
University of Maine, Orono, ME
October 3-4, 2015

This is joint work with

Enrique González-Jiménez (Universidad Autónoma de Madrid)

Let E / \mathbb{Q} be an elliptic curve, and let $n \geq 2$. Let $\mathbb{Q}(E[n])$ be the field of definition of all n-torsion points on E.

Question

When is $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$?

Let E / \mathbb{Q} be an elliptic curve, and let $n \geq 2$. Let $\mathbb{Q}(E[n])$ be the field of definition of all n-torsion points on E.

Question

When is $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$? When is $\mathbb{Q}(E[n]) / \mathbb{Q}$ an abelian extension?

Let E / \mathbb{Q} be an elliptic curve, and let $n \geq 2$. Let $\mathbb{Q}(E[n])$ be the field of definition of all n-torsion points on E.

Question

When is $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$? When is $\mathbb{Q}(E[n]) / \mathbb{Q}$ an abelian extension?
Theorem (GJLR, 2015)

- If $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$, then $n=2,3,4,5$.
- If $\mathbb{Q}(E[n]) / \mathbb{Q}$ is an abelian extension, then $n=2,3,4,5,6,8$.

Let E / \mathbb{Q} be an elliptic curve, and let $n \geq 2$. Let $\mathbb{Q}(E[n])$ be the field of definition of all n-torsion points on E.

Question

When is $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$? When is $\mathbb{Q}(E[n]) / \mathbb{Q}$ an abelian extension?

Theorem (GJLR, 2015)

- If $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$, then $n=2,3,4,5$.
- If $\mathbb{Q}(E[n]) / \mathbb{Q}$ is an abelian extension, then $n=2,3,4,5,6,8$.
- $E_{15 a 2}: y^{2}+x y+y=x^{3}+x^{2}-135 x-660$ has $\mathbb{Q}(E[2])=\mathbb{Q}$,
- $E_{19 a 1}: y^{2}+y=x^{3}+x^{2}-9 x-15$ has $\mathbb{Q}(E[3])=\mathbb{Q}\left(\zeta_{3}\right)$,
- $E_{15 a 1}: y^{2}+x y+y=x^{3}+x^{2}-10 x-10$ has $\mathbb{Q}(E[4])=\mathbb{Q}\left(\zeta_{4}\right)$,
- $E_{11 a 1}: y^{2}+y=x^{3}-x^{2}-10 x-20$ has $\mathbb{Q}(E[5])=\mathbb{Q}\left(\zeta_{5}\right)$,
- $E_{14 a 1}: y^{2}+x y+y=x^{3}+4 x-6$ has $\mathbb{Q}(E[6])=\mathbb{Q}\left(\zeta_{6}, \sqrt{-7}\right)$,
- $E_{15 a 1}: y^{2}+x y+y=x^{3}+x^{2}-10 x-10$ has $\mathbb{Q}(E[8])=\mathbb{Q}\left(\zeta_{8}, \sqrt{3}, \sqrt{7}\right)$.

Let E / \mathbb{Q} be an elliptic curve, and let $P \in E(\overline{\mathbb{Q}})_{\text {tors }}$ be a torsion point.

Let E / \mathbb{Q} be an elliptic curve, and let $P \in E(\overline{\mathbb{Q}})_{\text {tors }}$ be a torsion point.

Question

What is the degree of $\mathbb{Q}(P) / \mathbb{Q}$?

Let E / \mathbb{Q} be an elliptic curve, and let $P \in E(\overline{\mathbb{Q}})_{\text {tors }}$ be a torsion point.

Question

What is the degree of $\mathbb{Q}(P) / \mathbb{Q}$?

- Mazur's proof of the Ogg/Levi's conjecture implies that if $[\mathbb{Q}(P): \mathbb{Q}]=1$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,12\}
$$

Question

What is the degree of $\mathbb{Q}(P) / \mathbb{Q}$?

- Mazur's proof of the Ogg/Levi's conjecture implies that if $[\mathbb{Q}(P): \mathbb{Q}]=1$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,12\}
$$

- Work of Kenku, Momose, Kamienny, Najman implies that if $[\mathbb{Q}(P): \mathbb{Q}]=2$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,12,15,16\} .
$$

Let E / \mathbb{Q} be an elliptic curve, and let $P \in E(\overline{\mathbb{Q}})_{\text {tors }}$ be a torsion point.

Question

What is the degree of $\mathbb{Q}(P) / \mathbb{Q}$?

- Mazur's proof of the Ogg/Levi's conjecture implies that if $[\mathbb{Q}(P): \mathbb{Q}]=1$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,12\} .
$$

- Work of Kenku, Momose, Kamienny, Najman implies that if $[\mathbb{Q}(P): \mathbb{Q}]=2$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,12,15,16\} .
$$

- Work of Najman implies that if $[\mathbb{Q}(P): \mathbb{Q}]=3$, then

$$
\operatorname{ord}(P) \in\{1,2,3,4,5,6,7,8,9,10,13,14,18,21\} .
$$

Definition

Let $d>0$. We define:
$S_{\mathbb{Q}}(d)=\left\{p\right.$: primes such that $p \mid E(K)_{\text {tors }}$ for some elliptic curve E defined over \mathbb{Q}, and a number field K of degree $\leq d\}$.

Definition

Let $d>0$. We define:
$S_{\mathbb{Q}}(d)=\left\{p\right.$: primes such that $p \mid E(K)_{\text {tors }}$ for some elliptic curve E defined over \mathbb{Q}, and a number field K of degree $\leq d\}$.

Theorem (L-R., 2011)
Let $p \geq 11$ with $p \neq 13$ or 37 . If $p \in S_{\mathbb{Q}}(d)$, then $p \leq 2 d+1$.

Definition

Let $d>0$. We define:
$S_{\mathbb{Q}}(d)=\left\{p\right.$: primes such that $p \mid E(K)_{\text {tors }}$ for some elliptic curve E defined over \mathbb{Q}, and a number field K of degree $\leq d\}$.

Theorem (L-R., 2011)

Let $p \geq 11$ with $p \neq 13$ or 37 . If $p \in S_{\mathbb{Q}}(d)$, then $p \leq 2 d+1$.

Theorem

Let $S_{\mathbb{Q}}(d)$ be the set of primes defined above.

- $S_{\mathbb{Q}}(d)=\{2,3,5,7\}$ for $d=1$ and 2 ;
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,13\}$ for $d=3$ and 4 ;
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,11,13\}$ for $d=5,6$, and 7;
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,11,13,17\}$ for $d=8$;
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,11,13,17,19\}$ for $d=9,10$, and 11 ;
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,11,13,17,19,37\}$ for $12 \leq d \leq 20$.
- $S_{\mathbb{Q}}(d)=\{2,3,5,7,11,13,17,19,37,43\}$ for $d=21$.

Question

If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$?
$\mathbb{Q}\left(E\left[2^{\infty}\right]\right)$

Question

If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$?

Question

If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$?

Note: if H_{P} is the stabilizer of P in G_{n}, then $[\mathbb{Q}(P): \mathbb{Q}]=\left|G_{n}\right| /\left|H_{P}\right|$.

Question If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$ (if $\rho_{E, 2}$ is defined $\bmod 2^{d}$)?

Question

 If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$ (if $\rho_{E, 2}$ is defined $\bmod 2^{d}$)?

Question

 If E / \mathbb{Q} and $P \in E\left[2^{n}\right]$, what is $[\mathbb{Q}(P): \mathbb{Q}]$ (if $\rho_{E, 2}$ is defined $\bmod 2^{d}$)?

Theorem

Let E / \mathbb{Q} be an elliptic curve defined over \mathbb{Q} without $C M$, and let $P \in E\left[2^{N}\right]$ be a point of exact order 2^{N}, with $N \geq 4$.

Theorem

Let E / \mathbb{Q} be an elliptic curve defined over \mathbb{Q} without $C M$, and let $P \in E\left[2^{N}\right]$ be a point of exact order 2^{N}, with $N \geq 4$. Then, the degree $[\mathbb{Q}(P): \mathbb{Q}]$ is divisible by $2^{2 N-7}$.

Theorem

Let E / \mathbb{Q} be an elliptic curve defined over \mathbb{Q} without $C M$, and let $P \in E\left[2^{N}\right]$ be a point of exact order 2^{N}, with $N \geq 4$. Then, the degree $[\mathbb{Q}(P): \mathbb{Q}]$ is divisible by $2^{2 N-7}$. Moreover, this bound is best possible, in the sense that there is a one-parameter family E_{t} / \mathbb{Q}, one for each $t \in \mathbb{Q}$, and there is a point $P_{t, N} \in E_{t}(\overline{\mathbb{Q}})$ of exact order 2^{N}, such that

$$
\left[\mathbb{Q}\left(P_{t, N}\right): \mathbb{Q}\right]=2^{2 N-7} .
$$

Theorem

Let E / \mathbb{Q} be an elliptic curve defined over \mathbb{Q} without $C M$, and let $P \in E\left[2^{N}\right]$ be a point of exact order 2^{N}, with $N \geq 4$. Then, the degree $[\mathbb{Q}(P): \mathbb{Q}]$ is divisible by $2^{2 N-7}$. Moreover, this bound is best possible, in the sense that there is a one-parameter family E_{t} / \mathbb{Q}, one for each $t \in \mathbb{Q}$, and there is a point $P_{t, N} \in E_{t}(\overline{\mathbb{Q}})$ of exact order 2^{N}, such that

$$
\left[\mathbb{Q}\left(P_{t, N}\right): \mathbb{Q}\right]=2^{2 N-7}
$$

The family mentioned in the statement of the theorem is

$$
\mathcal{X}_{235 I}: y^{2}=x^{3}+\left(t^{8}-4 t^{6}-2 t^{4}-4 t^{2}+1\right) x^{2}+16 t^{8} x
$$

One concrete member of the family is the curve with Cremona label 210 e1, given in Weierstrass form by

$$
E: y^{2}+x y=x^{3}+210 x+900
$$

Corollary

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let F / \mathbb{Q} be an extension of degree $d \geq 1$. Then $E(F)$ can only contain points of order 2^{N} with

$$
N \leq\left(\log _{2}(d)+7\right) / 2
$$

Corollary

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let F / \mathbb{Q} be an extension of degree $d \geq 1$. Then $E(F)$ can only contain points of order 2^{N} with

$$
N \leq\left(\log _{2}(d)+7\right) / 2
$$

More precisely, if ν_{2} is the usual 2-adic valuation, then $E(F)$ can only contain points of order 2^{N} with

$$
N \leq\left\lfloor\frac{\nu_{2}(d)+7}{2}\right\rfloor .
$$

More generally, let E / \mathbb{Q} be an elliptic curve, and let

$$
T=\left\langle P_{s}, Q_{N}\right\rangle \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right] .
$$

More generally, let E / \mathbb{Q} be an elliptic curve, and let

$$
T=\left\langle P_{s}, Q_{N}\right\rangle \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right] .
$$

Question

What is $[\mathbb{Q}(T): \mathbb{Q}]$?

More generally, let E / \mathbb{Q} be an elliptic curve, and let

$$
T=\left\langle P_{s}, Q_{N}\right\rangle \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right] .
$$

Question

What is $[\mathbb{Q}(T): \mathbb{Q}]$?

$$
\begin{aligned}
& {[\mathbb{Q}(T): \mathbb{Q}]=1 } \Longrightarrow \begin{cases}\mathbb{Z} / M \mathbb{Z} & \text { with } 1 \leq M \leq 10 \text { or } M=12, \text { or } \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & \text { with } 1 \leq M \leq 4 .\end{cases} \\
& {[\mathbb{Q}(T): \mathbb{Q}]=2 \Longrightarrow \begin{cases}\mathbb{Z} / M \mathbb{Z} & \text { with } 1 \leq M \leq 10 \text { or } M=12,15,16, \text { or } \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & \text { with } 1 \leq M \leq 6, \text { or } \\
\mathbb{Z} / \mathbb{Z} \oplus \mathbb{Z} / 3 M \mathbb{Z} & \text { with } 1 \leq M \leq 2 \text { and } F=\mathbb{Q}(\sqrt{-3}), \text { or } \\
\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} & \text { with } F=\mathbb{Q}(\sqrt{-1}) .\end{cases} } \\
& {[\mathbb{Q}(T): \mathbb{Q}]=3 } \Longrightarrow \begin{cases}\mathbb{Z} / M \mathbb{Z} & \text { with } 1 \leq M \leq 10 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & \text { or } M=12,13,14,18,21, \text { or } \\
\text { with } 1 \leq M \leq 4 \text { or } M=7 .\end{cases}
\end{aligned}
$$

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$. Let $1 \leq s \leq N$ be fixed integers, and let $T \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right]$.

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$. Let $1 \leq s \leq N$ be fixed integers, and let $T \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right]$. Then, $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by 2 if $s=N=2$, and otherwise by $2^{2 N+2 s-8}$ if $N \geq 3$

Theorem

Let E / \mathbb{Q} be an elliptic curve without CM. Let $1 \leq s \leq N$ be fixed integers, and let $T \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right]$. Then, $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by 2 if $s=N=2$, and otherwise by $2^{2 N+2 s-8}$ if $N \geq 3$, unless $s \geq 4$ and $j(E)$ is one of the two values

$-\frac{18234932071051198464000}{48661191875666868481}$ or

35817550197738955933474532061609984000 2301619141096101839813550846721
in which case $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $3 \cdot 2^{2 N+2 s-9}$.

Theorem

Let E / \mathbb{Q} be an elliptic curve without CM. Let $1 \leq s \leq N$ be fixed integers, and let $T \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right]$. Then, $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by 2 if $s=N=2$, and otherwise by $2^{2 N+2 s-8}$ if $N \geq 3$, unless $s \geq 4$ and $j(E)$ is one of the two values

$-\frac{18234932071051198464000}{48661191875666868481}$ or

35817550197738955933474532061609984000 2301619141096101839813550846721
in which case $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $3 \cdot 2^{2 N+2 s-9}$. Moreover, this bound is best possible, i.e., there is $E_{s, N}(t) / \mathbb{Q}$ and subgroups $T_{s, N} \in E_{s, N}(t)(\overline{\mathbb{Q}})$ isomorphic to $\mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z}$, such that $\left[\mathbb{Q}\left(T_{s, N}\right): \mathbb{Q}\right]$ is equal to the bound given above.

d				
1	2	4	8	16
$\mathbb{Z} / 2$				
$\mathbb{Z} / 4$				$\mathbb{Z} / 2 \oplus \mathbb{Z} / 32$
$\mathbb{Z} / 8$	$\mathbb{Z} / 16$	$\mathbb{Z} / 2 \oplus \mathbb{Z} / 16$	$\mathbb{Z} / 32$	$\mathbb{Z} / 4 \oplus \mathbb{Z} / 16$
$\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$	$\mathbb{Z} / 4 \oplus \mathbb{Z} / 4$	$\mathbb{Z} / 4 \oplus \mathbb{Z} / 8$		$\mathbb{Z} / 8 \oplus \mathbb{Z} / 8$
$\mathbb{Z} / 2 \oplus \mathbb{Z} / 4$				
$\mathbb{Z} / 2 \oplus \mathbb{Z} / 8$				

Table : 2-primary torsion subgroups that appear in degree d for the first time.

Theorem

Let K be a number field, and let p be a prime.

Theorem

Let K be a number field, and let p be a prime. Then, there is only a finite number $a(K, p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without CM.

Let K be a number field, and let p be prime.

Theorem

Let K be a number field, and let p be prime. Then, there is only a finite number a(K, $p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \operatorname{Gal}(K / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without $C M$.

Theorem

Let p be a prime, let K be a number field, and let E / K be an elliptic curve defined over K without $C M$. Let $0 \leq s \leq N$ be integers, and let $T_{s, N} \subseteq E(\bar{K})_{\text {tors }}$ with $T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z}$.

Theorem

Let K be a number field, and let p be prime. Then, there is only a finite number a(K, $p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \operatorname{Gal}(K / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without $C M$.

Theorem

Let p be a prime, let K be a number field, and let E / K be an elliptic curve defined over K without $C M$. Let $0 \leq s \leq N$ be integers, and let $T_{s, N} \subseteq E(\bar{K})_{\text {tors }}$ with $T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z}$. Then:
(1) There are positive integers $n=n(K, p)$, and $g_{s, M}(K, p)$, for $0 \leq s \leq n$ and $M=\min \{n, N\}$, that depend on K and p but not on the choice of E / K or $T_{s, N}$, such that

Theorem

Let K be a number field, and let p be prime. Then, there is only a finite number a(K, $p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \mathrm{Gal}(K / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without $C M$.

Theorem

Let p be a prime, let K be a number field, and let E / K be an elliptic curve defined over K without CM. Let $0 \leq s \leq N$ be integers, and let $T_{s, N} \subseteq E(\bar{K})_{\text {tors }}$ with $T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z}$. Then:
(1) There are positive integers $n=n(K, p)$, and $g_{s, M}(K, p)$, for $0 \leq s \leq n$ and $M=\min \{n, N\}$, that depend on K and p but not on the choice of E / K or $T_{s, N}$, such that

- $\left[K\left(T_{s, N}\right): K\right]$ is divisible by $g_{s, M}(K, p) \cdot \max \left\{1, p^{2 N-2 n}\right\}$ if $s<n$, and

Theorem

Let K be a number field, and let p be prime. Then, there is only a finite number a(K, $p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \operatorname{Gal}(K / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without $C M$.

Theorem

Let p be a prime, let K be a number field, and let E / K be an elliptic curve defined over K without $C M$. Let $0 \leq s \leq N$ be integers, and let $T_{s, N} \subseteq E(\bar{K})_{\text {tors }}$ with $T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z}$. Then:
(1) There are positive integers $n=n(K, p)$, and $g_{s, M}(K, p)$, for $0 \leq s \leq n$ and $M=\min \{n, N\}$, that depend on K and p but not on the choice of E / K or $T_{s, N}$, such that

- $\left[K\left(T_{s, N}\right): K\right]$ is divisible by $g_{s, M}(K, p) \cdot \max \left\{1, p^{2 N-2 n}\right\}$ if $s<n$, and
- $\left[K\left(T_{s, N}\right): K\right]$ divisible by $g_{n, n}(K, p) \cdot p^{2 N+2 s-4 n}$ if $n \leq s \leq N$.

Theorem

Let K be a number field, and let p be prime. Then, there is only a finite number a(K, $p) \geq 1$ of possibilities (up to conjugation) for the image of $\rho_{E, p}: \operatorname{Gal}(K / K) \rightarrow \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$, for any elliptic curve E / K without $C M$.

Theorem

Let p be a prime, let K be a number field, and let E / K be an elliptic curve defined over K without CM. Let $0 \leq s \leq N$ be integers, and let $T_{s, N} \subseteq E(\bar{K})_{\text {tors }}$ with $T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z}$. Then:
(1) There are positive integers $n=n(K, p)$, and $g_{s, M}(K, p)$, for $0 \leq s \leq n$ and $M=\min \{n, N\}$, that depend on K and p but not on the choice of E / K or $T_{s, N}$, such that

- $\left[K\left(T_{s, N}\right): K\right]$ is divisible by $g_{s, M}(K, p) \cdot \max \left\{1, p^{2 N-2 n}\right\}$ if $s<n$, and
- $\left[K\left(T_{s, N}\right): K\right]$ divisible by $g_{n, n}(K, p) \cdot p^{2 N+2 s-4 n}$ if $n \leq s \leq N$.
(2) For a fixed E / K, and for all but finitely many primes p, we have

$$
\left[K\left(T_{s, N}\right): K\right]= \begin{cases}\left(p^{2}-1\right) p^{2 N-2} & , \text { if } s=0 \\ (p-1)\left(p^{2}-1\right) p^{2 N+2 s-3} & , \text { if } s \geq 1\end{cases}
$$

The Axew

Monday, August 31, 2015

Exactly 63 images over Q?

In a stunning tour-de-force, David Zywina (Cornell) has described all known mod-p images of Galois representations attached to the p-torsion of elliptic curves defined over Q. Conjecturally, these 63
images are all the possible images that can occur over Rer Q. Andrew Sutherland (MIT) has arrived at the same conjecture by The computing the images for some 140 million curves of rela conductor up to $10 \approx 12$. the

News ... for $p \geq 2$!

David Zywina (Cornell)

Conjecture

Let E / \mathbb{Q} be an elliptic curve, and let p be an arbitrary prime. Then, there are precisely 63 possibilities for the image $\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, up to conjugation.

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that (A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that (A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.
In addition, let us assume that either (B) or (C) occurs, where
(B) p is not in the set $S=\{2,3,5,7,11,13,17,37\}$, or

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that (A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.
In addition, let us assume that either (B) or (C) occurs, where
(B) p is not in the set $S=\{2,3,5,7,11,13,17,37\}$, or
(C) if $p \in S$, we suppose that the p-adic image G of $\rho_{E, p \infty}$ is defined modulo p, i.e., the image G of $\rho_{E, p \infty}$ is the full inverse image of $G_{1}=\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ under mod-p reduction.

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that (A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.
In addition, let us assume that either (B) or (C) occurs, where
(B) p is not in the set $S=\{2,3,5,7,11,13,17,37\}$, or
(C) if $p \in S$, we suppose that the p-adic image G of $\rho_{E, p^{\infty}}$ is defined modulo p, i.e., the image G of $\rho_{E, p \infty}$ is the full inverse image of $G_{1}=\rho_{E, p}(\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ under mod-p reduction.
Let $T=T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z} \subseteq E\left[p^{N}\right]$ be a subgroup. Then,

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that (A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.
In addition, let us assume that either (B) or (C) occurs, where
(B) p is not in the set $S=\{2,3,5,7,11,13,17,37\}$, or
(C) if $p \in S$, we suppose that the p-adic image G of $\rho_{E, p \infty}$ is defined modulo p, i.e., the image G of $\rho_{E, p \infty}$ is the full inverse image of $G_{1}=\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ under mod-p reduction.
Let $T=T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z} \subseteq E\left[p^{N}\right]$ be a subgroup. Then,
(1. For a fixed $G_{1}=\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, the degree $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $g_{0,1}\left(G_{1}\right) \cdot p^{2 N-2}$ if $s=0$, and $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $g_{1,1}\left(G_{1}\right) \cdot p^{2 N+2 s-4}$ if $s \geq 1$, where the constants are explicit.

Theorem

Let E / \mathbb{Q} be an elliptic curve without $C M$, and let p be a prime such that
(A) the image G_{1} of $\rho_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / p \mathbb{Z})$ is not contained in the normalizer of a non-split Cartan subgroup.
In addition, let us assume that either (B) or (C) occurs, where
(B) p is not in the set $S=\{2,3,5,7,11,13,17,37\}$, or
(C) if $p \in S$, we suppose that the p-adic image G of $\rho_{E, p \infty}$ is defined modulo p, i.e., the image G of $\rho_{E, p \infty}$ is the full inverse image of $G_{1}=\rho_{E, p}(\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ under mod-p reduction.
Let $T=T_{s, N} \cong \mathbb{Z} / p^{s} \mathbb{Z} \oplus \mathbb{Z} / p^{N} \mathbb{Z} \subseteq E\left[p^{N}\right]$ be a subgroup. Then,
(1. For a fixed $G_{1}=\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, the degree $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $g_{0,1}\left(G_{1}\right) \cdot p^{2 N-2}$ if $s=0$, and $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $g_{1,1}\left(G_{1}\right) \cdot p^{2 N+2 s-4}$ if $s \geq 1$, where the constants are explicit.
(2) In general, $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $g_{0,1}(\mathbb{Q}, p) \cdot p^{2 N-2}$ if $s=0$, and divisible by $g_{1,1}(\mathbb{Q}, p) \cdot p^{2 N+2 s-4}$ if $s \geq 1$, where the constants $g_{k, 1}(\mathbb{Q}, p)$ are explicit.

In general, if $\rho_{E, p}$ is defined modulo p (and image is not in a normalizer of non-split Cartan), and $T_{s, N} \cong \mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z} \subseteq E\left[2^{N}\right]$, then

- $\left[\mathbb{Q}\left(T_{s, N}\right): \mathbb{Q}\right]$ is divisible by $g_{0,1}(\mathbb{Q}, p) \cdot p^{2 N-2}$ if $s=0$, and
- $\left[\mathbb{Q}\left(T_{s, N}\right): \mathbb{Q}\right]$ is divisible by $g_{1,1}(\mathbb{Q}, p) \cdot p^{2 N+2 s-4}$ if $s \geq 1$, where the constants $g_{k, 1}(\mathbb{Q}, p)$ are

p	$g_{0,1}(\mathbb{Q}, p)$	$m_{0,1}(\mathbb{Q}, p)$	$g_{1,1}(\mathbb{Q}, p)$	$m_{1,1}(\mathbb{Q}, p)$
2	1	1	1	1
3	1	1	2	2
5	1	1	4	4
7	1	1	6	18
11	5	5	10	110
13	1	3	12	288
17	8	8	1088	1088
37	12	12	15984	15984
else	$p^{2}-1$	$p^{2}-1$	$(p-1) p\left(p^{2}-1\right)$	$(p-1) p\left(p^{2}-1\right)$

Table : $g_{k, 1}(\mathbb{Q}, p)$ and $m_{k, 1}(\mathbb{Q}, p)$, for $k=0,1$.

p	G	$g_{0,1}(G)$	$m_{0,1}(G)$	$g_{1,1}(G)=m_{1,1}(G)$	Example E / \mathbb{Q}
11	11 B .1 .4	5	5	110	121 a 2
11	11 B .1 .5	5	5	110	121 c 2
11	11 B .1 .6	5	10	110	121 a 1
11	11 B .1 .7	5	10	110	121 c 1
11	11 B .10 .4	10	10	220	1089 f 2
11	11 B .10 .5	10	10	220	$1089 \mathrm{f1} 1$
11	11 Nn	120	120	240	232544 f 1
11	GL $\left(2, \mathbb{F}_{11}\right)$	120	120	13200	11 a 1
13	13 S 4	24	72	288	152100 g 1
13	13 B .3 .1	3	3	468	147 b 1
13	13 B .3 .2	3	12	468	147 b 2
13	13 B .3 .4	6	6	468	2484301
13	13 B .3 .7	6	12	468	2484302
13	13 B .5 .1	4	4	624	2890 d 1
13	13 B .5 .2	4	12	624	2890 d 2
13	13 B .5 .4	12	12	624	216320 i 1
13	13 B .4 .1	6	6	936	147 c 1
13	13 B .4 .2	6	12	936	147 c 2
13	13 B	12	12	1872	245011
13	GL $\left(2, \mathbb{F}_{13}\right)$	168	168	26208	11 a 1
17	17 B .4 .2	8	8	1088	14450 n 1
17	17 B .4 .6	8	16	1088	14450 n 2
17	GL $\left(2, \mathbb{F}_{17}\right)$	288	288	78336	11 a 1
37	37 B .8 .1	12	12	15984	1225 e 1
37	37 B .8 .2	12	36	15984	1225 e 2
37	GL $\left(2, \mathbb{F}_{37}\right)$	1368	1368	182176	11 a 1
else	GL $\left(2, \mathbb{F}_{p}\right)$	$p^{2}-1$	$p^{2}-1$	$(p-1) p\left(p^{2}-1\right)$	11 a 1

TABLE 6. $g_{k, 1}(G)$ and $m_{k, 1}(G)$, for $k=0,1$, and example curves.

alvaro@uconn.edu
http://alozano.clas.uconn.edu

