Determining Hilbert Modular Forms by Central Values of Rankin-Selberg Convolutions

Naomi Tanabe

(Joint work with Alia Hamieh)

Department of Mathematics Dartmouth College

Maine-Québec Number Theory Conference University of Maine, Orono

October 4, 2015

ヘロト ヘアト ヘビト ヘビト

<u>Question</u>: To what extent the special values of automorphic L-functions determine the underlying automorphic forms?

・ 同 ト ・ ヨ ト ・ ヨ ト …

<u>Question</u>: To what extent the special values of automorphic L-functions determine the underlying automorphic forms?

Theorem (Luo-Ramakrishnan, 1997)

Let $I \equiv I' \equiv 0 \mod 2$, and let g and g' be normalized eigenforms in $S_I^{new}(N)$ and $S_{I'}^{new}(N')$, respectively. Suppose that

$$L\left(g\otimes\chi_d,\frac{1}{2}
ight)=L\left(g'\otimes\chi_d,\frac{1}{2}
ight)$$

for almost all primitive quadratic characters χ_d of conductor prime to NN'. Then g = g'.

ヘロン 人間 とくほ とくほ とう

Theorem (Luo, 1999)

Let $I \equiv I' \equiv k \equiv 0 \mod 2$, and let g and g' be normalized eigenforms in $S_I^{new}(N)$ and $S_{I'}^{new}(N')$, respectively. If there exist infinitely many primes p such that

$$L\left(f\otimes g, \frac{1}{2}\right) = L\left(f\otimes g', \frac{1}{2}\right)$$

for all normalized newforms f in $S_k^{new}(p)$, then we have g = g'.

<ロト < 同ト < 回ト < 回ト = 三

Theorem (Ganguly-Hoffstein-Sengupta, 2009)

Let $I \equiv I' \equiv k \equiv 0 \mod 2$, and let g and g' be normalized eigenforms in $S_I(1)$ and $S_{I'}(1)$, respectively. If

$$L\left(f\otimes g,\frac{1}{2}\right)=L\left(f\otimes g',\frac{1}{2}\right)$$

for all normalized eigenforms $f \in S_k(1)$ for infinitely many k, then g = g'.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Ganguly-Hoffstein-Sengupta, 2009)

Let $I \equiv I' \equiv k \equiv 0 \mod 2$, and let g and g' be normalized eigenforms in $S_I(1)$ and $S_{I'}(1)$, respectively. If

$$L\left(f\otimes g,\frac{1}{2}\right)=L\left(f\otimes g',\frac{1}{2}\right)$$

for all normalized eigenforms $f \in S_k(1)$ for infinitely many k, then g = g'.

• (Zhang, 2011)
$$g \in \mathcal{S}_l^{\mathsf{new}}(\mathfrak{n})$$
 and $g' \in \mathcal{S}_{l'}^{\mathsf{new}}(\mathfrak{n}')$, $(f \in \mathcal{S}_k(1))$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Can one generalize those results to Hilbert modular forms?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Setting

- F: totally real number field of degree n
- \mathcal{O}_F : ring of integers in F
- \mathcal{D}_F : different ideal of F
- *h*⁺: the narrow class number

• $\{\overline{\mathfrak{a}}\}$: a set of representatives of the narrow class group

- embeddings of $F: \{\sigma_1, \cdots, \sigma_n\}$.
 - For $x \in F$ and $j \in \{1, \ldots, n\}$, we set $x_j = \sigma_j(x)$
 - *x* ≫ 0 if *x_j* > 0 ∀ *j*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Hilbert Modular Form

•
$$\mathbf{f} := (f_1, \ldots, f_{h^+})$$
 with $f_i \in \mathcal{S}_k(\Gamma_{\overline{\mathfrak{a}}_i}(\mathfrak{n}))$.

• $f_i : \mathfrak{h}^n \to \mathbb{C}$

•
$$f_i|_k \gamma = f_i \text{ for all } \gamma \in \Gamma_{\overline{\mathfrak{a}}_i}(\mathfrak{n}))$$

- Fourier coefficients at m ⊂ O_F: C_f(m)
- $k = (k_1, \ldots, k_n)$ with $k_1 \equiv \cdots \equiv k_n \equiv 0 \mod 2$
- **f** is primitive \Leftrightarrow **f** is a normalized eigenform in $\mathcal{S}_k^{\text{new}}(\mathfrak{n})$.
- Π_k(n): a set of all primitive forms of weight k and level n.
- Rankin-Selberg convolution of f ∈ Π_k(q) and g ∈ Π_l(n) is defined as

$$L(\mathbf{f}\otimes\mathbf{g},\boldsymbol{s}) = \zeta_F^{\mathfrak{nq}}(2\boldsymbol{s})\sum_{\mathfrak{m}\subset\mathcal{O}_F}\frac{C_{\mathbf{f}}(\mathfrak{m})C_{\mathbf{g}}(\mathfrak{m})}{\mathrm{N}(\mathfrak{m})^s}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem (Hamieh, T.)

Let $\mathbf{g} \in \Pi_l(\mathfrak{n})$ and $\mathbf{g}' \in \Pi_{l'}(\mathfrak{n}')$, with the weights I and I' being in $2\mathbb{N}^n$. Let $k \in 2\mathbb{N}^n$ be fixed, and suppose that there exist infinitely many prime ideals q such that

$$L\left(\mathbf{f}\otimes\mathbf{g},\frac{1}{2}
ight)=L\left(\mathbf{f}\otimes\mathbf{g}',\frac{1}{2}
ight)$$

for all $\mathbf{f} \in \Pi_k(\mathfrak{q})$. Then $\mathbf{g} = \mathbf{g}'$.

ヘロン 人間 とくほ とくほ とう

Theorem (Hamieh, T.)

Let $\mathbf{g} \in \Pi_{l}(\mathfrak{n})$ and $\mathbf{g}' \in \Pi_{l'}(\mathfrak{n}')$, with the weights I and I' being in $2\mathbb{N}^{n}$. Let \mathfrak{q} be a fixed prime ideal. If

$$L\left(\mathbf{f}\otimes\mathbf{g},\frac{1}{2}
ight)=L\left(\mathbf{f}\otimes\mathbf{g}',\frac{1}{2}
ight)$$

for all $\mathbf{f} \in \Pi_k(\mathfrak{q})$ for infinitely many $k \in 2\mathbb{N}^n$, then $\mathbf{g} = \mathbf{g}'$.

ヘロン 人間 とくほ とくほ とう

ъ

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1}$$

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M + E$$

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M + E$$

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M + E$$

asymptotically.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M + E$$

asymptotically. Further analyzation of the above expression will allow us to conclude that if

$$L\left(\mathbf{f}\otimes\mathbf{g},\frac{1}{2}\right)=L\left(\mathbf{f}\otimes\mathbf{g}',\frac{1}{2}\right)$$

for all $\mathbf{f} \in \Pi_k(\mathfrak{q})$ (for infinitely many k or \mathfrak{q}), then $C_{\mathbf{g}}(\mathfrak{p}) = C_{\mathbf{g}'}(\mathfrak{p})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}.$$

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} L\left(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M + E$$

asymptotically. Further analyzation of the above expression will allow us to conclude that if

$$L\left(\mathbf{f}\otimes\mathbf{g},\frac{1}{2}\right)=L\left(\mathbf{f}\otimes\mathbf{g}',\frac{1}{2}\right)$$

for all $\mathbf{f} \in \Pi_k(\mathfrak{q})$ (for infinitely many k or \mathfrak{q}), then $C_{\mathbf{g}}(\mathfrak{p}) = C_{\mathbf{g}'}(\mathfrak{p})$. The desired results follow from the strong multiplicity one theorem.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

some complications we encounter:

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

some complications we encounter:

• the technical nature of adèlic Hilbert modular forms

(個) (日) (日) (日)

some complications we encounter:

- the technical nature of adèlic Hilbert modular forms
- the infinitude of the group of units in F

프 🖌 🛪 프 🛌

Twisted First Moment

Recall:
$$\omega_{\mathbf{f}} = \frac{(4\pi)^{k-1} |d_F|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)}$$

$$\sum_{\mathbf{f} \in \Pi_k(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Twisted First Moment

$$\begin{aligned} \text{Recall:} \ \omega_{\mathbf{f}} &= \frac{(4\pi)^{k-1} |d_{F}|^{1/2} \langle \mathbf{f}, \mathbf{f} \rangle_{\mathfrak{q}}}{\Gamma(k-1)} \\ & \sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1} \\ &= 2 \sum_{\mathfrak{m} \subset \mathcal{O}_{F}} \frac{C_{\mathbf{g}}(\mathfrak{m})}{\sqrt{N(\mathfrak{m})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n}\mathfrak{q})}{d} V\left(\frac{4^{n} \pi^{2n} N(\mathfrak{m}) d^{2}}{N(\mathfrak{D}_{F}^{2} \mathfrak{n}\mathfrak{q})}\right) \\ & \times \sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} \omega_{\mathbf{f}}^{-1} C_{\mathbf{f}}(\mathfrak{m}) C_{\mathbf{f}}(\mathfrak{p}) \end{aligned}$$

$$V(y) = \frac{1}{2\pi i} \int_{(3/2)} y^{-u} \prod_{j=1}^{n} \frac{\Gamma\left(u + \frac{|k_j - l_j| + 1}{2}\right) \Gamma\left(u + \frac{k_j + l_j - 1}{2}\right)}{\Gamma\left(\frac{|k_j - l_j| + 1}{2}\right) \Gamma\left(\frac{k_j + l_j - 1}{2}\right)} G(u) \frac{du}{u}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Proposition (Torotabas, 2011)

Let $k \in 2\mathbb{Z}_{>0}^n$, and let \mathfrak{a} and \mathfrak{b} be fractional ideals of F. If $\alpha \in \mathfrak{a}^{-1}$ and $\beta \in \mathfrak{b}^{-1}$, we have

$$\sum_{\mathbf{f}\in \Pi_k(\mathfrak{q})} \omega_{\mathbf{f}}^{-1} C_{\mathbf{f}}(\alpha \mathfrak{a}) C_{\mathbf{f}}(\beta \mathfrak{b}) + (Oldforms) = \mathbb{1}_{\alpha \mathfrak{a} = \beta \mathfrak{b}}$$

$$+ * \sum_{\substack{\overline{\mathfrak{c}}^2 = \mathfrak{a}\overline{\mathfrak{b}} \\ c \in \mathfrak{c}^{-1} \setminus \{0\} \\ \epsilon \in \mathcal{O}_F^{\times +} / \mathcal{O}_F^{\times 2}}} \frac{Kl(\epsilon \alpha, \mathfrak{a}; \beta, \mathfrak{b}; \boldsymbol{c}, \mathfrak{c})}{N(\boldsymbol{c}\mathfrak{c})} \prod_{j=1}^n J_{k_j - 1} \left(\frac{4\pi \sqrt{\epsilon_j \alpha_j \beta_j [\mathfrak{a}\mathfrak{b}\mathfrak{c}^{-2}]_j}}{|\boldsymbol{c}_j|} \right)$$

- \mathfrak{m} : integral ideal of $F \Longrightarrow \mathfrak{m} = \alpha \mathfrak{a}$ for some $\mathfrak{a} \in Cl^+(F)$ and $\mathfrak{0} \ll \alpha \in \mathfrak{a}^{-1}$
- Similarly, $\mathfrak{p} = \beta \mathfrak{b}$ with some $\mathfrak{b} \in Cl^+(F)$ and $0 \ll \beta \in \mathfrak{b}^{-1}$.

(4 ≥) ≥

$$\sum_{\mathbf{f}\in\Pi_{k}(\mathfrak{q})}L\left(\mathbf{f}\otimes\mathbf{g},\frac{1}{2}\right)C_{\mathbf{f}}(\mathfrak{p})\omega_{\mathbf{f}}^{-1}=M_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q})+E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q})-E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q},\mathsf{old})$$

where

$$M_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q}) = 2\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{N(\mathfrak{p})}} \sum_{d=1}^{\infty} \frac{a_d(\mathfrak{n}\mathfrak{q})}{d} V_{1/2} \left(\frac{4^n \pi^{2n} N(\mathfrak{p}) d^2}{N(\mathfrak{D}_{\mathcal{F}}^2 \mathfrak{n}\mathfrak{q})} \right),$$

$$\begin{split} E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q}) &= \sum_{\{\overline{\mathfrak{a}}\}} \sum_{\alpha \in (\mathfrak{a}^{-1})^{\gg 0}/\mathcal{O}_{F}^{\times +}} \frac{C_{\mathbf{g}}(\alpha\mathfrak{a})}{\sqrt{N(\alpha\mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n}\mathfrak{q})}{d} V_{1/2} \left(\frac{4^{n} \pi^{2n} N(\alpha\mathfrak{a}) d^{2}}{N(\mathfrak{O}_{F}^{2} \mathfrak{n}\mathfrak{q})} \right) \\ &\times \sum_{\substack{\overline{\mathfrak{c}}^{2} = \overline{\mathfrak{a}\mathfrak{b}} \\ c \in \mathfrak{c}^{-1} \mathfrak{l}\mathfrak{q} \setminus \{0\} \\ \epsilon \in \mathcal{O}_{F}^{\times +}/\mathcal{O}_{F}^{\times 2}}} \frac{Kl(\epsilon\alpha,\mathfrak{a};\beta,\mathfrak{b};\mathfrak{c},\mathfrak{c})}{N(\mathfrak{c}\mathfrak{c})} \prod_{j=1}^{n} J_{k_{j}-1} \left(\frac{4\pi \sqrt{\epsilon_{j}\alpha_{j}\beta_{j}[\mathfrak{a}\mathfrak{b}\mathfrak{c}^{-2}]_{j}}}{|c_{j}|} \right), \end{split}$$

$$E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q},\mathsf{old}) = \sum_{\mathfrak{m}\subset\mathcal{O}_{F}} \frac{C_{\mathbf{g}}(\mathfrak{m})}{\sqrt{N(\mathfrak{m})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n}\mathfrak{q})}{d} V_{1/2}\left(\frac{4^{n}\pi^{2n}N(\mathfrak{m})d^{2}}{N(\mathfrak{D}_{F}^{2}\mathfrak{n}\mathfrak{q})}\right) \sum_{\mathbf{f}\in\Pi_{k}(\mathcal{O}_{F})} \frac{C_{\mathbf{f}}(\mathfrak{p})C_{\mathbf{f}}(\mathfrak{m})}{\omega_{\mathbf{f}}}$$

Level Aspect

Lemma

$$M^{\mathbf{g}}_{\mathfrak{p}}(k,\mathfrak{q}) = \frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{N(\mathfrak{p})}} \gamma_{-1}(F) \prod_{\mathfrak{l}|\mathfrak{n}} (1 - N(\mathfrak{l})^{-1}) \log(N(\mathfrak{q})) + O(1),$$

where $\gamma_{-1}(F)$ is the residue in the Laurent expansion of $\zeta_F(2u+1)$ at u = 0.

Lemma

We have
$$E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q}) = O\left(\mathrm{N}(\mathfrak{q})^{-\frac{1}{2}+\epsilon}\right).$$

Lemma

We have
$$E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q},\textit{old}) = O\left(\mathrm{N}(\mathfrak{q})^{-rac{1}{2}+\epsilon}
ight)$$
 .

ヘロン 人間 とくほ とくほとう

æ

Error Term

$$\begin{split} E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q}) &= \sum_{\{\overline{\mathfrak{a}}\}} \sum_{\alpha \in (\mathfrak{a}^{-1})^{\gg 0}/\mathcal{O}_{F}^{\times +}} \frac{C_{\mathbf{g}}(\alpha\mathfrak{a})}{\sqrt{N(\alpha\mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n}\mathfrak{q})}{d} V_{1/2} \left(\frac{4^{n}\pi^{2n}N(\alpha\mathfrak{a})d^{2}}{N(\mathfrak{D}_{F}^{2}\mathfrak{n}\mathfrak{q})} \right) \\ &\times \sum_{\substack{\overline{\mathfrak{c}}^{2} = \overline{\mathfrak{ab}} \\ \mathcal{C} \in \mathfrak{c}^{-1}\mathfrak{q} \setminus \{0\} \\ \epsilon \in \mathcal{O}_{F}^{\times +}/\mathcal{O}_{F}^{\times 2}}} \frac{Kl(\epsilon\alpha,\mathfrak{a};\beta,\mathfrak{b};\mathfrak{c},\mathfrak{c})}{N(\mathfrak{c}\mathfrak{c})} \prod_{j=1}^{n} J_{k_{j}-1} \left(\frac{4\pi\sqrt{\epsilon_{j}\alpha_{j}\beta_{j}}[\mathfrak{a}\mathfrak{b}\mathfrak{c}^{-2}]_{j}}{|c_{j}|} \right) \end{split}$$

Error Term

$$\begin{split} E_{\mathfrak{p}}^{\mathbf{g}}(k,\mathfrak{q}) &= \sum_{\{\overline{\mathfrak{a}}\}} \sum_{\alpha \in (\mathfrak{a}^{-1})^{\gg 0}/\mathcal{O}_{F}^{\times +}} \frac{C_{\mathbf{g}}(\alpha \mathfrak{a})}{\sqrt{N(\alpha \mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n}\mathfrak{q})}{d} V_{1/2} \left(\frac{4^{n} \pi^{2n} N(\alpha \mathfrak{a}) d^{2}}{N(\mathfrak{D}_{F}^{2} \mathfrak{n}\mathfrak{q})} \right) \\ &\times \sum_{\substack{\overline{\mathfrak{c}}^{2} = \overline{\mathfrak{a}\mathfrak{b}} \\ \mathcal{C} \in \mathfrak{c}^{-1} \mathfrak{q} \setminus \{0\} \\ \epsilon \in \mathcal{O}_{F}^{\times +}/\mathcal{O}_{F}^{\times 2}}} \frac{Kl(\epsilon \alpha, \mathfrak{a}; \beta, \mathfrak{b}; \mathfrak{c}, \mathfrak{c})}{N(\mathfrak{c}\mathfrak{c})} \prod_{j=1}^{n} J_{k_{j}-1} \left(\frac{4\pi \sqrt{\epsilon_{j} \alpha_{j} \beta_{j} [\mathfrak{a}\mathfrak{b}\mathfrak{c}^{-2}]_{j}}}{|c_{j}|} \right) \end{split}$$

Now consider

$$\sum_{\boldsymbol{c}\in\mathfrak{c}^{-1}\mathfrak{q}\setminus\{0\}/\mathcal{O}_{F}^{\times+}}\sum_{\boldsymbol{\eta}\in\mathcal{O}_{F}^{\times+}}\frac{Kl(\boldsymbol{\alpha},\mathfrak{a};\boldsymbol{\beta},\mathfrak{b};\boldsymbol{c}\boldsymbol{\eta},\mathfrak{c})}{|\mathrm{N}(\boldsymbol{c})|}\prod_{j=1}^{n}J_{k_{j}-1}\left(\frac{4\pi\sqrt{\alpha_{j}\beta_{j}[\mathfrak{a}\mathfrak{b}\mathfrak{c}^{-2}]_{j}}}{\eta_{j}|\boldsymbol{c}_{j}|}\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

J-Bessel Function

The J-Bessel function is defined as

$$J_u(x) = \int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)} \left(\frac{x}{2}\right)^s ds \qquad x > 0, \ 0 < \sigma < \Re(u).$$

We have

$$J_u(x) \ll x^{1-\delta}$$
 for $0 \le \delta \le 1$.

J-Bessel Function

The J-Bessel function is defined as

$$J_u(x) = \int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)} \left(\frac{x}{2}\right)^s ds \qquad x > 0, \ 0 < \sigma < \Re(u).$$

We have

$$J_u(x) \ll x^{1-\delta}$$
 for $0 \le \delta \le 1$.

$$\prod_{j=1}^{n} J_{k_{j}-1} \left(\frac{4\pi \sqrt{\alpha_{j}\beta_{j} [\mathfrak{abc}^{-2}]_{j}}}{\eta_{j} |c_{j}|} \right) \ll \prod_{j=1}^{n} \left(\frac{\sqrt{\alpha_{j}\beta_{j} [\mathfrak{abc}^{-2}]_{j}}}{\eta_{j} |c_{j}|} \right)^{1-\delta_{j}},$$

J-Bessel Function

The J-Bessel function is defined as

$$J_u(x) = \int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)} \left(\frac{x}{2}\right)^s ds \qquad x > 0, \ 0 < \sigma < \Re(u).$$

We have

$$J_u(x) \ll x^{1-\delta}$$
 for $0 \le \delta \le 1$.

$$\prod_{j=1}^{n} J_{k_{j}-1} \left(\frac{4\pi \sqrt{\alpha_{j}\beta_{j} [\mathfrak{abc}^{-2}]_{j}}}{\eta_{j} |c_{j}|} \right) \ll \prod_{j=1}^{n} \left(\frac{\sqrt{\alpha_{j}\beta_{j} [\mathfrak{abc}^{-2}]_{j}}}{\eta_{j} |c_{j}|} \right)^{1-\delta_{j}},$$

where $\delta_j = 0$ if $\eta_j \ge 1$, and $\delta_j = \delta$ for some fixed $\delta > 0$ otherwise.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Controlling the totally positive units

Key Observation (Luo, 2003)

$$\sum_{\eta\in\mathcal{O}_{F}^{\times+}}\prod_{\eta_{j}<1}\eta_{j}^{\delta}<\infty.$$

Naomi Tanabe Determining Hilbert Modular Forms

・ 同 ト ・ ヨ ト ・ ヨ ト …

Controlling the totally positive units

Key Observation (Luo, 2003)

$$\sum_{\eta\in\mathcal{O}_F^{\times+}}\prod_{\eta_j<1}\eta_j^{\delta}<\infty.$$

$$\begin{split} \sum_{c} \sum_{\eta} \frac{KI}{|\mathbf{N}(c)|} \prod_{j} J_{k_{j}-1} \\ \ll \sum_{\eta \in \mathcal{O}_{F}^{\times +}} \prod_{\eta_{j}<1} \eta_{j}^{\delta} \sum_{c \in \mathfrak{c}^{-1}\mathfrak{q} \setminus \{0\}/\mathcal{O}_{F}^{\times +}} |c|^{\delta-1} \frac{\mathrm{N}((\alpha\mathfrak{a},\beta\mathfrak{b},\mathfrak{c}))^{1/2}}{\mathrm{N}(\mathfrak{c})^{3/2-\delta}}. \end{split}$$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Lemma

$$M^{\mathbf{g}}_{\mathfrak{p}}(\mathbf{k},\mathfrak{q}) = rac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} \gamma^{\mathfrak{nq}}_{-1}(F) \log \mathbf{k} + O(1)$$

where $\gamma^{nq}(F)$ is the residue in the Laurent expansion of ζ_F^{nq} at 1.

Lemma

$$E_{\mathfrak{p}}^{\mathbf{g}}(\boldsymbol{k},\mathfrak{q})=O(1).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Thank you!

Naomi Tanabe Determining Hilbert Modular Forms

ヘロア 人間 アメヨア 人間アー