Determining Hilbert Modular Forms by Central Values of Rankin-Selberg Convolutions

Naomi Tanabe

(Joint work with Alia Hamieh)

Department of Mathematics
Dartmouth College

Maine-Québec Number Theory Conference University of Maine, Orono

October 4, 2015

Motivation

Question: To what extent the special values of automorphic L-functions determine the underlying automorphic forms?

Motivation

Question: To what extent the special values of automorphic L-functions determine the underlying automorphic forms?

Theorem (Luo-Ramakrishnan, 1997)

Let $I \equiv I^{\prime} \equiv 0 \bmod 2$, and let g and g^{\prime} be normalized eigenforms in $\mathcal{S}_{l}^{\text {new }}(N)$ and $\mathcal{S}_{l^{\prime}}^{\text {new }}\left(N^{\prime}\right)$, respectively. Suppose that

$$
L\left(g \otimes \chi_{d}, \frac{1}{2}\right)=L\left(g^{\prime} \otimes \chi_{d}, \frac{1}{2}\right)
$$

for almost all primitive quadratic characters χ_{d} of conductor prime to $N N^{\prime}$. Then $g=g^{\prime}$.

Motivation - Level Aspect on $\mathrm{GL}_{2}(\mathbb{Q})$

Theorem (Luo, 1999)

Let $I \equiv I^{\prime} \equiv k \equiv 0 \bmod 2$, and let g and g^{\prime} be normalized eigenforms in $\mathcal{S}_{l}^{\text {new }}(N)$ and $\mathcal{S}_{l^{\prime}}^{\text {new }}\left(N^{\prime}\right)$, respectively. If there exist infinitely many primes p such that

$$
L\left(f \otimes g, \frac{1}{2}\right)=L\left(f \otimes g^{\prime}, \frac{1}{2}\right)
$$

for all normalized newforms f in $S_{k}^{n e w}(p)$, then we have $g=g^{\prime}$.

Motivation - Weight Aspect on $\mathrm{GL}_{2}(\mathbb{Q})$

Theorem (Ganguly-Hoffstein-Sengupta, 2009)

Let $I \equiv I^{\prime} \equiv k \equiv 0 \bmod 2$, and let g and g^{\prime} be normalized eigenforms in $\mathcal{S}_{l}(1)$ and $\mathcal{S}_{\prime \prime}(1)$, respectively. If

$$
L\left(f \otimes g, \frac{1}{2}\right)=L\left(f \otimes g^{\prime}, \frac{1}{2}\right)
$$

for all normalized eigenforms $f \in S_{k}(1)$ for infinitely many k, then $g=g^{\prime}$.

Motivation - Weight Aspect on $\mathrm{GL}_{2}(\mathbb{Q})$

Theorem (Ganguly-Hoffstein-Sengupta, 2009)

Let $I \equiv I^{\prime} \equiv k \equiv 0 \bmod 2$, and let g and g^{\prime} be normalized eigenforms in $\mathcal{S}_{l}(1)$ and $\mathcal{S}_{\prime \prime}(1)$, respectively. If

$$
L\left(f \otimes g, \frac{1}{2}\right)=L\left(f \otimes g^{\prime}, \frac{1}{2}\right)
$$

for all normalized eigenforms $f \in S_{k}(1)$ for infinitely many k, then $g=g^{\prime}$.

- (Zhang, 2011) $g \in \mathcal{S}_{l}^{\text {new }}(\mathfrak{n})$ and $g^{\prime} \in \mathcal{S}_{\mathcal{I}^{\prime}}^{\text {new }}\left(\mathfrak{n}^{\prime}\right),\left(f \in \mathcal{S}_{k}(1)\right)$.

Question

Can one generalize those results to Hilbert modular forms?

- F : totally real number field of degree n
- \mathcal{O}_{F} : ring of integers in F
- \mathcal{D}_{F} : different ideal of F
- h^{+}: the narrow class number
- $\{\bar{a}\}$: a set of representatives of the narrow class group
- embeddings of $F:\left\{\sigma_{1}, \cdots, \sigma_{n}\right\}$.
- For $x \in F$ and $j \in\{1, \ldots, n\}$, we set $x_{j}=\sigma_{j}(x)$
- $x \gg 0$ if $x_{j}>0 \forall j$
- $\mathbf{f}:=\left(f_{1}, \ldots, f_{h^{+}}\right)$with $f_{i} \in \mathcal{S}_{k}\left(\Gamma_{\overline{\mathfrak{a}}_{i}}(\mathfrak{n})\right)$.
- $f_{i}: \mathfrak{h}^{n} \rightarrow \mathbb{C}$
- $\left.f_{i}\right|_{k} \gamma=f_{i}$ for all $\left.\gamma \in \Gamma_{\bar{a}_{i}}(\mathfrak{n})\right)$
- Fourier coefficients at $\mathfrak{m} \subset \mathcal{O}_{F}: C_{\mathfrak{f}}(\mathfrak{m})$
- $k=\left(k_{1}, \ldots, k_{n}\right)$ with $k_{1} \equiv \cdots \equiv k_{n} \equiv 0 \bmod 2$
- \mathbf{f} is primitive $\Leftrightarrow \mathbf{f}$ is a normalized eigenform in $\mathcal{S}_{k}^{\text {new }}(\mathfrak{n})$.
- $\Pi_{k}(\mathfrak{n})$: a set of all primitive forms of weight k and level \mathfrak{n}.
- Rankin-Selberg convolution of $\mathbf{f} \in \Pi_{k}(\mathfrak{q})$ and $\mathbf{g} \in \Pi_{/}(\mathfrak{n})$ is defined as

$$
L(\mathbf{f} \otimes \mathbf{g}, s)=\zeta_{F}^{\mathfrak{n q}}(2 s) \sum_{\mathfrak{m} \subset \mathcal{O}_{F}} \frac{C_{\mathfrak{f}}(\mathfrak{m}) C_{\mathfrak{g}}(\mathfrak{m})}{\mathrm{N}(\mathfrak{m})^{s}}
$$

Main Theorem I (Level Aspect)

Theorem (Hamieh, T.)

Let $\mathbf{g} \in \Pi_{/}(\mathfrak{n})$ and $\mathbf{g}^{\prime} \in \Pi_{l^{\prime}}\left(\mathfrak{n}^{\prime}\right)$, with the weights I and I^{\prime} being in $2 \mathbb{N}^{n}$. Let $k \in 2 \mathbb{N}^{n}$ be fixed, and suppose that there exist infinitely many prime ideals \mathfrak{q} such that

$$
L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right)=L\left(\mathbf{f} \otimes \mathbf{g}^{\prime}, \frac{1}{2}\right)
$$

for all $\mathbf{f} \in \Pi_{k}(\mathfrak{q})$. Then $\mathbf{g}=\mathbf{g}^{\prime}$.

Main Theorem II (Weight Aspect)

Theorem (Hamieh, T.)

Let $\mathbf{g} \in \Pi_{/}(\mathfrak{n})$ and $\mathbf{g}^{\prime} \in \Pi_{l^{\prime}}\left(\mathfrak{n}^{\prime}\right)$, with the weights I and I^{\prime} being in $2 \mathbb{N}^{n}$. Let \mathfrak{q} be a fixed prime ideal. If

$$
L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right)=L\left(\mathbf{f} \otimes \mathbf{g}^{\prime}, \frac{1}{2}\right)
$$

for all $\mathbf{f} \in \Pi_{k}(\mathfrak{q})$ for infinitely many $k \in 2 \mathbb{N}^{n}$, then $\mathbf{g}=\mathbf{g}^{\prime}$.

Main Idea

$$
\text { Let } \omega_{\mathfrak{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1}
$$

Main Idea

$$
\text { Let } \omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M+E
$$

Main Idea

$$
\text { Let } \omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M+E
$$

Main Idea

$$
\text { Let } \omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathfrak{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M+E
$$

asymptotically.

Main Idea

$$
\text { Let } \omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M+E
$$

asymptotically. Further analyzation of the above expression will allow us to conclude that if

$$
L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right)=L\left(\mathbf{f} \otimes \mathbf{g}^{\prime}, \frac{1}{2}\right)
$$

for all $\mathbf{f} \in \Pi_{k}(\mathfrak{q})$ (for infinitely many k or \mathfrak{q}), then $C_{\mathbf{g}}(\mathfrak{p})=C_{\mathbf{g}^{\prime}}(\mathfrak{p})$.

Main Idea

$$
\text { Let } \omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}
$$

For any prime ideal \mathfrak{p} of F (away from bad primes), we consider a twisted first moment,

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} M+E
$$

asymptotically. Further analyzation of the above expression will allow us to conclude that if

$$
L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right)=L\left(\mathbf{f} \otimes \mathbf{g}^{\prime}, \frac{1}{2}\right)
$$

for all $\mathbf{f} \in \Pi_{k}(\mathfrak{q})$ (for infinitely many k or \mathfrak{q}), then $C_{\mathbf{g}}(\mathfrak{p})=C_{\mathbf{g}^{\prime}}(\mathfrak{p})$. The desired results follow from the strong multiplicity one theorem.

some complications we encounter:

some complications we encounter:

- the technical nature of adèlic Hilbert modular forms
some complications we encounter:
- the technical nature of adèlic Hilbert modular forms
- the infinitude of the group of units in F

Twisted First Moment

Recall: $\omega_{\mathbf{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}$

$$
\sum_{\mathfrak{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathbf{f}}^{-1}
$$

Twisted First Moment

Recall: $\omega_{\mathfrak{f}}=\frac{(4 \pi)^{k-1}\left|d_{F}\right|^{1 / 2}\langle\mathbf{f}, \mathbf{f}\rangle_{\mathfrak{q}}}{\Gamma(k-1)}$

$$
\begin{aligned}
& \sum_{\mathfrak{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathbf{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1} \\
= & 2 \sum_{\mathfrak{m} \subset \mathcal{O}_{F}} \frac{C_{\mathbf{g}}(\mathfrak{m})}{\sqrt{\mathrm{N}(\mathfrak{m})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n q})}{d} V\left(\frac{4^{n} \pi^{2 n} \mathrm{~N}(\mathfrak{m}) d^{2}}{\mathrm{~N}\left(\mathfrak{D}_{F}^{2} \mathfrak{n q}\right)}\right) \\
& \quad \times \sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} \omega_{\mathfrak{f}}^{-1} C_{\mathfrak{f}}(\mathfrak{m}) C_{\mathfrak{f}}(\mathfrak{p})
\end{aligned}
$$

$$
V(y)=\frac{1}{2 \pi i} \int_{(3 / 2)} y^{-u} \prod_{j=1}^{n} \frac{\Gamma\left(u+\frac{\left|k_{j}-l_{j}\right|+1}{2}\right) \Gamma\left(u+\frac{k_{j}+l_{j}-1}{2}\right)}{\Gamma\left(\frac{\left|k_{j}-l_{j}\right|+1}{2}\right) \Gamma\left(\frac{k_{j}+l_{j}-1}{2}\right)} G(u) \frac{d u}{u} .
$$

Petersson Trace Formula

Proposition (Torotabas, 2011)

Let $k \in 2 \mathbb{Z}_{>0}^{n}$, and let \mathfrak{a} and \mathfrak{b} be fractional ideals of F. If $\alpha \in \mathfrak{a}^{-1}$ and $\beta \in \mathfrak{b}^{-1}$, we have

$$
\sum_{\mathfrak{f} \in \Pi_{k}(\mathfrak{q})} \omega_{\mathfrak{f}}^{-1} C_{\mathfrak{f}}(\alpha \mathfrak{a}) C_{\mathfrak{f}}(\beta \mathfrak{b})+(\text { Oldforms })=\boldsymbol{1}_{\alpha \mathfrak{a}=\beta \mathfrak{b}}
$$

- \mathfrak{m} : integral ideal of $F \Longrightarrow \mathfrak{m}=\alpha \mathfrak{a}$ for some $\mathfrak{a} \in C I^{+}(F)$ and $0 \ll \alpha \in \mathfrak{a}^{-1}$
- Similarly, $\mathfrak{p}=\beta \mathfrak{b}$ with some $\mathfrak{b} \in C^{+}(F)$ and $0 \ll \beta \in \mathfrak{b}^{-1}$.

$$
\sum_{\mathbf{f} \in \Pi_{k}(\mathfrak{q})} L\left(\mathbf{f} \otimes \mathbf{g}, \frac{1}{2}\right) C_{\mathfrak{f}}(\mathfrak{p}) \omega_{\mathfrak{f}}^{-1}=M_{\mathfrak{p}}^{\mathbf{g}}(k, \mathfrak{q})+E_{\mathfrak{p}}^{\mathbf{g}}(k, \mathfrak{q})-E_{\mathfrak{p}}^{\mathbf{g}}(k, \mathfrak{q}, \text { old })
$$

where

$$
\begin{aligned}
& M_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q})=2 \frac{C_{\mathfrak{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} \sum_{d=1}^{\infty} \frac{\mathrm{a}_{d}(\mathfrak{n q})}{d} V_{1 / 2}\left(\frac{4^{n} \pi^{2 n} \mathrm{~N}(\mathfrak{p}) d^{2}}{\mathrm{~N}\left(\mathfrak{D}_{F}^{2} \mathfrak{n q}\right)}\right), \\
& E_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q})=\sum_{\{\overline{\mathfrak{a}}\}} \sum_{\alpha \in\left(\mathfrak{a}^{-1}\right) \gg 0 / \mathcal{O}_{\mathcal{F}}^{\times+}} \frac{C_{\mathfrak{g}}(\alpha \mathfrak{a})}{\sqrt{\mathrm{N}(\alpha \mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n q})}{d} V_{1 / 2}\left(\frac{4^{n} \pi^{2 n} \mathbf{N}(\alpha \mathfrak{a}) d^{2}}{\mathrm{~N}\left(\mathfrak{P}_{F}^{2} \mathfrak{n q}\right)}\right) \\
& \times \sum_{\substack{\bar{c}^{2}=\overline{\mathfrak{a} b} \\
c \in \mathfrak{c}}} \frac{K I(\epsilon \alpha, \mathfrak{a} ; \beta, \mathfrak{b} ; c, \mathfrak{c})}{\mathrm{N}(\boldsymbol{c c})} \prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\epsilon_{j} \alpha_{j} \beta_{j}\left[\mathfrak{a b c} \mathbf{c}^{-2}\right]_{j}}}{\left|c_{j}\right|}\right), \\
& \epsilon \in \mathcal{O}_{F}^{\times+} / \mathcal{O}_{F}^{x 2}
\end{aligned}
$$

$E_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q}$, old $)=\sum_{\mathfrak{m} \subset \mathcal{O}_{F}} \frac{C_{\mathfrak{g}}(\mathfrak{m})}{\sqrt{\mathrm{N}(\mathfrak{m})}} \sum_{d=1}^{\infty} \frac{\mathrm{a}_{d}(\mathfrak{n q})}{d} V_{1 / 2}\left(\frac{4^{n} \pi^{2 n} \mathrm{~N}(\mathfrak{m}) d^{2}}{\mathrm{~N}\left(\mathfrak{D}_{F}^{2} \mathfrak{n q}\right)}\right) \sum_{\mathbf{f} \in \Pi_{k}\left(\mathcal{O}_{F}\right)} \frac{C_{\mathfrak{f}}(\mathfrak{p}) C_{\mathfrak{f}}(\mathfrak{m})}{\omega_{\mathfrak{f}}}$

Level Aspect

Lemma

$$
M_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q})=\frac{C_{\mathfrak{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} \gamma_{-1}(F) \prod_{\mathfrak{l} \mathfrak{\mathfrak { n }}}\left(1-\mathrm{N}(\mathfrak{l})^{-1}\right) \log (\mathrm{N}(\mathfrak{q}))+O(1)
$$

where $\gamma_{-1}(F)$ is the residue in the Laurent expansion of $\zeta_{F}(2 u+1)$ at $u=0$.

Lemma

We have $E_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q})=O\left(\mathrm{~N}(\mathfrak{q})^{-\frac{1}{2}+\epsilon}\right)$.

Lemma

We have $E_{\mathfrak{p}}^{\mathfrak{g}}(k, \mathfrak{q}$, old $)=O\left(\mathrm{~N}(\mathfrak{q})^{-\frac{1}{2}+\epsilon}\right)$.

Error Term

$$
\begin{aligned}
E_{\mathfrak{p}}^{\mathbf{g}}(k, \mathfrak{q}) & =\sum_{\{\overline{\mathfrak{a}}\}} \sum_{\alpha \in\left(\mathfrak{a}^{-1}\right) \gg 0 / \mathcal{O}_{F}^{\times+}} \frac{C_{\mathfrak{g}}(\alpha \mathfrak{a})}{\sqrt{\mathrm{N}(\alpha \mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n q})}{d} V_{1 / 2}\left(\frac{4^{n} \pi^{2 n} \mathrm{~N}(\alpha \mathfrak{a}) d^{2}}{\mathrm{~N}\left(\mathfrak{Q}_{\mathcal{F}}^{2} \mathfrak{n q}\right)}\right) \\
& \times \sum_{\substack{\overline{\mathfrak{c}}^{2}=\overline{\mathrm{a} b} \\
c \mathfrak{c}^{-1} \backslash\{0\} \\
\epsilon \in \mathcal{O}_{F}^{\times+} \backslash \mathcal{O}_{F}^{\times 2}}} \frac{K I(\epsilon \alpha, \mathfrak{a} ; \beta, \mathfrak{b} ; c, \mathfrak{c})}{\mathrm{N}(c \mathfrak{c})} \prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\epsilon_{j} \alpha_{j} \beta_{j}\left[\mathfrak{a b c}^{-2}\right]_{j}}}{\left|c_{j}\right|}\right)
\end{aligned}
$$

Error Term

$$
\begin{aligned}
E_{\mathfrak{p}}^{\mathbf{g}}(k, \mathfrak{q}) & =\sum_{\{\overline{\mathfrak{a}}\}} \sum_{\substack{\alpha \in\left(\mathfrak{a}^{-1}\right) \gg 0 / \mathcal{O}_{F}^{\times+}}} \frac{C_{\mathfrak{g}}(\alpha \mathfrak{a})}{\sqrt{\mathrm{N}(\alpha \mathfrak{a})}} \sum_{d=1}^{\infty} \frac{a_{d}(\mathfrak{n q})}{d} V_{1 / 2}\left(\frac{4^{n} \pi^{2 n} \mathrm{~N}(\alpha \mathfrak{a}) d^{2}}{\mathrm{~N}\left(\mathfrak{P}_{F}^{2} \mathfrak{n q}\right)}\right) \\
& \times \sum_{\substack{\overline{\mathrm{c}}^{2}=\overline{\mathfrak{a} b} \\
c \in \mathfrak{c}^{-1} \mathfrak{q} \backslash\{0\}}} \frac{K l(\epsilon \alpha, \mathfrak{a} ; \beta, \mathfrak{b} ; c, \mathfrak{c})}{\mathrm{N}(c \mathfrak{c})} \prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\epsilon_{j} \alpha_{j} \beta_{j}\left[\mathfrak{a b c} \mathfrak{c}^{-2}\right]_{j}}}{\left|c_{j}\right|}\right)
\end{aligned}
$$

Now consider

$$
\sum_{c \in \mathfrak{c}^{-1} \mathfrak{q} \backslash\{0\} / \mathcal{O}_{F}^{\times+}} \sum_{\eta \in \mathcal{O}_{F}^{\times+}} \frac{K I(\alpha, \mathfrak{a} ; \beta, \mathfrak{b} ; c \eta, \mathfrak{c})}{|\mathrm{N}(c)|} \prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\alpha_{j} \beta_{j}\left[\mathfrak{a b c} \mathfrak{c}^{-2}\right]_{j}}}{\eta_{j}\left|c_{j}\right|}\right)
$$

The J-Bessel function is defined as

$$
J_{u}(x)=\int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)}\left(\frac{x}{2}\right)^{s} d s \quad x>0,0<\sigma<\Re(u)
$$

We have

$$
J_{u}(x) \ll x^{1-\delta} \quad \text { for } \quad 0 \leq \delta \leq 1
$$

The J-Bessel function is defined as

$$
J_{u}(x)=\int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)}\left(\frac{x}{2}\right)^{s} d s \quad x>0,0<\sigma<\Re(u)
$$

We have

$$
J_{u}(x) \ll x^{1-\delta} \quad \text { for } \quad 0 \leq \delta \leq 1
$$

$$
\prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\alpha_{j} \beta_{j}\left[\mathfrak{a b c} c^{-2}\right]_{j}}}{\eta_{j}\left|c_{j}\right|}\right) \ll \prod_{j=1}^{n}\left(\frac{\sqrt{\alpha_{j} \beta_{j}\left[\mathfrak{a b c} c^{-2}\right]_{j}}}{\eta_{j}\left|c_{j}\right|}\right)^{1-\delta_{j}}
$$

The J-Bessel function is defined as

$$
J_{u}(x)=\int_{(\sigma)} \frac{\Gamma\left(\frac{u-s}{2}\right)}{\Gamma\left(\frac{u+s}{2}+1\right)}\left(\frac{x}{2}\right)^{s} d s \quad x>0,0<\sigma<\Re(u)
$$

We have

$$
J_{u}(x) \ll x^{1-\delta} \quad \text { for } \quad 0 \leq \delta \leq 1
$$

$$
\prod_{j=1}^{n} J_{k_{j}-1}\left(\frac{4 \pi \sqrt{\alpha_{j} \beta_{j}\left[\mathfrak{a b c} c^{-2}\right]_{j}}}{\eta_{j}\left|c_{j}\right|}\right) \ll \prod_{j=1}^{n}\left(\frac{\left.\sqrt{\alpha_{j} \beta_{j}[\mathfrak{a b c}-2}\right]_{j}}{\eta_{j}\left|c_{j}\right|}\right)^{1-\delta_{j}},
$$

where $\delta_{j}=0$ if $\eta_{j} \geq 1$, and $\delta_{j}=\delta$ for some fixed $\delta>0$ otherwise.

Controlling the totally positive units

Key Observation (Luo, 2003)

$$
\sum_{\eta \in \mathcal{O}_{F}^{\times+}} \prod_{\eta_{j}<1} \eta_{j}^{\delta}<\infty
$$

Controlling the totally positive units

Key Observation (Luo, 2003)

$$
\sum_{\eta \in O_{\mathcal{F}}^{\times}+\eta_{j}<1} \prod_{1} \eta_{j}^{\delta}<\infty .
$$

$$
\begin{aligned}
& \sum_{c} \sum_{\eta} \frac{K I}{|\mathrm{~N}(c)|} \prod_{j} J_{k_{j}-1} \\
& \ll \sum_{\eta \in \mathcal{O}_{F}^{\times+}} \prod_{\eta_{j}<1} \eta_{j}^{\delta} \sum_{c \in \mathfrak{r}^{-1} \mathfrak{q} \backslash\{0\} / \mathcal{O}_{F}^{\times+}}|c|^{\delta-1} \frac{\mathrm{~N}((\alpha \mathfrak{a}, \beta \mathfrak{b}, \mathfrak{c}))^{1 / 2}}{\mathrm{~N}(\mathfrak{c})^{3 / 2-\delta}} .
\end{aligned}
$$

Weight Aspect

Lemma

$$
M_{\mathfrak{p}}^{\mathfrak{g}}(\boldsymbol{k}, \mathfrak{q})=\frac{C_{\mathbf{g}}(\mathfrak{p})}{\sqrt{\mathrm{N}(\mathfrak{p})}} \gamma_{-1}^{\mathfrak{n q}}(F) \log \boldsymbol{k}+O(1)
$$

where $\gamma^{\mathrm{nq}}(F)$ is the residue in the Laurent expansion of $\zeta_{F}^{\mathfrak{n q}}$ at 1.

Lemma

$$
E_{\mathfrak{p}}^{\mathfrak{g}}(\boldsymbol{k}, \mathfrak{q})=O(1)
$$

Thank you!

