SOUS-GROUPES ET ISOMORPHISMES. LE THÉORÈME DE CAYLEY

ALEXANDRE GIROUARD

3. Sous-groupes

Définition 3.1. Soit G un groupe. Un sous-ensemble $H \subset G$ est un sous-groupe si la restriction de l'opération de G à H fait de celui-ci un groupe. On notera alors H < G.

Exemple 3.2.

- Le sous-groupe trivial $\{e\} < G$.
- -G < G.
- $-2\mathbb{Z}<\mathbb{Z}$.

Lemme 3.3. Soit G un groupe. Si un sous-ensemble non vide H de G vérifie

$$\forall a, b \in H, \quad ab^{-1} \in H$$

alors H est un sous-groupe de G.

Lemme 3.4. Soit G un groupe. Si un sous-ensemble non vide H de G vérifie

$$\forall a, b \in H, \quad ab \in H$$

$$\forall a \in H, \quad a^{-1} \in H$$

alors H est un sous-groupe de G.

Exemple 3.5. Soit G un groupe abélien. Alors $H = \{x : x^2 = e\}$ est un sous-groupe de G.

Exercice 3.6. Soit G un groupe abélien. Montrez que

$$H = \{x^2 \,:\, x \in G\}$$

est un sous-groupe de G.

Exercice 3.7. Soit H un sous-ensemble non vide fini d'un groupe G. Montrez que H est un sous-groupe de G si et seulement si

$$\forall a, b \in H, \quad ab \in H.$$

Exemple 3.8. Les sous-ensembles suivants sont des sous-groupes de $GL(n, \mathbb{R})$:

- Les matrices diagonales inversibles.
- $-SL(n,\mathbb{R})$ et $SL(n,\mathbb{Z})$
- $-O(n), SO(n) = SL(n, \mathbb{R}) \cup O(n).$

Exercice 3.9. Soit G un groupe. Le centre de G est l'ensemble des éléments de G qui commutent avec tous les autres éléments. C'est-àdire :

$$Z(G) = \{ g \in G : \forall h \in G, gh = hg \}.$$

- Montrez que le centre Z(G) est un sous-groupe de G.
- Trouvez le centre des groupes \mathbb{Z} et D_4 .

Exemple 3.10. Soit a un élément d'un groupe G. Le sous-ensemble

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

est un sous-groupe de G. C'est le sous-groupe engendré par a.

Définition 3.11. L'ordre d'un groupe est sa cardinalité. L'ordre d'un élément a est l'ordre du sous-groupe engendré par a.

Exemple 3.12. L'ordre de chaque $0 \neq n \in \mathbb{Z}$ est infini.

Exercice 3.13. Soit $\alpha \in [0,1[$. Soit $R \in Isom(\mathbb{R}^2)$ une rotation d'angle $\alpha \pi$. Montrez que l'ordre de R est fini si et seulement si α est un nombre rationnel.

4. ISOMORPHISMES

Définition 4.1. Soit G et \bar{G} des groupes. Une bijection $\phi: G \to \bar{G}$ est un isomorphisme si

$$\forall a, b \in G, \quad \phi(ab) = \phi(a)\phi(b).$$

Deux groupes sont dits isomorphes si il existe un isomorphisme entre eux.

Exemple 4.2. L'application $\phi: \mathbb{Z} \to 2\mathbb{Z}$ définie par

$$\phi(n) = 2n$$

est un isomorphisme.

Exemple 4.3. Soit $G = \mathbb{R}$ muni de l'addition et $\overline{G} = \mathbb{R}_{>0}$ muni de la multiplication. L'application $\phi : G \to \overline{G}$ définie par

$$\phi(x) = \exp(x)$$

est un isomorphisme.

Exemple 4.4. Soit G un groupe. Pour chaque $g \in G$ l'application $\phi_q: G \to G$ définie par

$$\phi_a(x) = gxg^{-1}$$

est un isomorphisme. On l'appelle la conjugaison par g.

5. LE THÉORÈME DE CAYLEY

Les groupes de permutation sont très importants en théorie des groupes.

Théorème 5.1. Chaque groupe G est isomorphe à un sous-groupe du groupe de ses permutations Sym(G).

Démonstration. Étant donné $g \in G$, définissons l'application $T_g : G \to G$ par

$$T_g(x) = gx.$$

L'application T_g est une bijection. Montrons tout d'abord quelle est injective : Supposons que $T_g(x) = T_g(y)$. C'est-à-dire que gx = gy. En multipliant à gauche par g^{-1} on obtient x = y. Elle est aussi surjective puisque, étant donné $x \in G$, $T_g(g^{-1}x) = x$.

Comme T_g est une bijection, c'est un élément de $\operatorname{Sym}(G)$. Considérons

$$H = \{T_g : g \in G\} \subset \text{Sym}(G).$$

Montrons que H est un sous-groupe de Sym(g).

- Comme $\mathbf{e} = T_e \in H$, H est non vide.
- Soient $T_g, T_h \in H$, alors $T_g \circ T_h = T_{gh} \in H$.
- Soit $T_g \in H$, alors $T_{g^{-1}} \in H$ est l'inverse de T_g . En effet,

$$T_{g^{-1}} \circ T_g = T_{g^{-1}g} = T_e = \mathbf{e},$$

$$T_g \circ T_{g^{-1}} = T_{gg^{-1}} = T_e = \mathbf{e}.$$

On définit $\phi:G\to H$ par

$$\phi(g) = T_g.$$

L'application ϕ est clairement surjective (par définition de H). Montrons qu'elle est injective. Si $\phi(g) = \phi(h)$ alors $T_g = T_h$. En particulier,

$$g = ge = T_q(e) = T_h(e) = he = h.$$

Aussi,

$$\phi(gh) = T_{gh} = T_g \circ T_h = \phi(g)\phi(h)$$

puisque pour chaque $x \in G$

$$T_{gh}x = (gh)x = g(T_hx) = T_g \circ T_h(x).$$

L'application ϕ est donc un isomorphisme.

Exercice 5.2. Construire explicitement un isomorphisme entre le groupe dihédral D_3 et un sous-groupe de $S_6 = Sym\{1, 2, 3, 4, 5, 6\}$.