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THE TEACHING OF MATHEMATICS 

A One-Sentence Proof That Every Prime p -1 (mod 4) 
Is a Sum of Two Squares 

D. ZAGIER 
Depurtmet~tof Muthemutics, University of Maryland, College Park, M D  20742 

The involution on the finite set S = {(x,y, z) E N3: x 2  + 4yz = p } defined by 

( x + 2 z , z ,  y - x - z )  i f x < y - z  

( 2 y - x , y , x - y + z )  i f y - z < x < 2 ~  

( x  - 2y,  x - y + z, y )  if x > 2y 

has exactly one fixed point, so IS1 is odd and the involution defined by (x, y,z) -
(x,z,  y )  also has a fixed point. 

This proof is a simplification of one due to Heath-Brown [I] (inspired, in turn, by 
a proof given by Liouville). The verifications of the implicitly made assertions-that 
S is finite and that the map is well-defined and involutory (i.e., equal to its own 
inverse) and has exactly one fixed point-are immediate and have been left to the 
reader. Only the last requires that p be a prime of the form 4k + 1, the fixed point 
then being ( l , l , k). 

Note that the proof is not constructive: it does not give a method to actually find 
the representation of p as a sum of two squares. A similar phenomenon occurs with 
results in topology and analysis that are proved using fixed-point theorems. Indeed, 
the basic principle we used: "The cardinalities of a finite set and of its fixed-point 
set under any involution have the same parity," is a combinatorial analogue and 
special case of the corresponding topological result: "The Euler characteristics of a 
topological space and of its fixed-point set under any continuous involution have 
the same parity." 

For a discussion of constructive proofs of the two-squares theorem, see the 
Editor's Corner elsewhere in this issue. 
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Inverse Functions and their Derivatives 

ERNSTSNAPPER 
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If the concept of inverse function is introduced correctly, the usual rule for its 
derivative is visually so obvious, it barely needs a proof. The reason why the 
standard, somewhat tedious proofs are given is that the inverse of a function f (x )  is 


