B. J. Cole and T. J. Ransford, Subharmonicity without upper semicontinuity, J. Funct. Anal., 147 (1997), 420–442.

Abstract

Let Ω be an open subset of \mathbf{R}^d $(d \ge 2)$. Given $x \in \Omega$, a *Jensen measure* for x is a Borel probability measure μ , supported on a compact subset of Ω , such that each subharmonic function u on Ω satisfies

$$u(x) \le \int u \, d\mu. \tag{(*)}$$

A function u on Ω (subject to certain measurability conditions, much weaker for example than upper semicontinuity) is called *quasi-subharmonic* if it satisfies (*) for each $x \in \Omega$ and each Jensen measure μ for x.

Our first result is that u is quasi-subharmonic on Ω if and only if its upper semicontinuous regularization u^* is subharmonic on Ω and equal to u outside a set of capacity zero. This easily implies, for example, Cartan's classical theorem on the supremum of a locally bounded family of subharmonic functions.

Our second result is a converse to Cartan's theorem: provided that Ω has a Green's function, every quasi-subharmonic function on Ω is the supremum of some family of subharmonic functions.

These ideas eventually lead to the following duality theorem. If ϕ is a Borel function locally bounded above on Ω , and if Ω has a Green's function, then for each $x \in \Omega$,

$$\sup \Big\{ v(x) : v \text{ subharmonic on } \Omega, \ v \le \phi \Big\} = \inf \Big\{ \int \phi \, d\mu : \mu \text{ is a Jensen measure for } x \Big\}.$$

We also investigate to what extent these results carry over to plurisubharmonic functions.