I. Chalendar, K. Kellay and T. J. Ransford, Binomial sums, moments and invariant subspaces, Israel J. Math., 115 (2000), 303-320.

Abstract

The main result of this paper is that if a sequence of complex numbers $\left(a_{n}\right)_{n \geq 0}$ satisfies $$
\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k} a_{k}=O\left(n^{r}\right) \quad \text { and } \quad \sum_{\substack{k=0 \\ k \text { odd }}}^{n}\binom{n}{k} a_{k}=O\left(n^{r}\right) \quad \text { as } n \rightarrow \infty
$$ for some integer $r \geq 0$, then $a_{n}=0$ for all $n>r$. As an application, we deduce a localized form of a theorem of Allan about nilpotent elements in Banach algebras, and this in turn leads to an invariant-subspace theorem. As a further application, we prove a variant of Carleman's theorem on the unique determination of probability distributions by their moments. The paper concludes with a quantitative form of the main result.

