A. Nokrane and T. J. Ransford, Schwarz's Lemma for Algebroid Multifunctions, Complex Variables Theory Appl., 45 (2001), 183–196.

Abstract

Let $U = \{z \in \mathbf{C} : |z| < 1\}$, let a_1, \ldots, a_n be holomorphic functions on U, and set

$$F(z) = \{ w \in \mathbf{C} : w^n + a_1(z)w^{n-1} + \dots + a_{n-1}(z)w + a_n(z) = 0 \} \qquad (z \in U).$$

We show that

$$\Delta_{\tau}(F(z_1), F(z_2)) \le \tau(z_1, z_2)^{1/n} \qquad (z_1, z_2 \in U),$$

where Δ_{τ} denotes the Hausdorff distance between two sets, measured with respect to the hyperbolic pseudo-metric τ on U. We further show that

$$D_{\tau}(F(z_1), F(z_2)) \le k(\tau(z_1, z_2)^{2/n}) \qquad (z_1, z_2 \in U),$$

where D_{τ} denotes the matching distance between two *n*-tuples, again measured with respect to τ , and where k is the elliptic modulus function. Two examples are given relating to the sharpness of these inequalities.