V. Havin and J. Mashreghi, Admissible majorants for model subspaces of $H^2(\mathbf{R})$, Part II: fast winding of the generating inner function, *Can. J. Math.*, 55 (2003), 1264–1301.

Abstract

This paper is a continuation of [1]. We consider the model subspaces $K_{\Theta} = H^2 \ominus \Theta H^2$ of the Hardy space H^2 generated by an inner function Θ in the upper half plane. Our main object is the class of admissible majorants for K_{Θ} , denoted by Adm Θ and consisting of all functions ω defined on **R** such that there exists an $f \neq 0$, $f \in K_{\Theta}$ satisfying $|f(x)| \leq \omega(x)$ almost everywhere on **R**. Firstly, using some simple Hilbert transform techniques, we obtain a general multiplier theorem applicable to any K_{Θ} generated by a meromorphic inner function. In contrast with [1], we consider the generating functions Θ such that the unit vector $\Theta(x)$ winds up fast as x grows from $-\infty$ to ∞ . In particular, we consider $\Theta = B$ where B is a Blaschke product with "horizontal" zeros, i.e., almost uniformly distributed in a strip parallel to and separated from **R**. It is shown, among other things, that for any such B, any even ω decreasing on $(0, \infty)$ with a finite logarithmic integral is in Adm B (unlike the "vertical" case treated in [1]), thus generalizing (with a new proof) a classical result related to Adm $\exp(i\sigma z)$, $\sigma > 0$. Some oscillating ω 's in Adm B are also described. Our theme is related to the Beurling–Malliavin multiplier theorem devoted to Adm $\exp(i\sigma z)$, $\sigma > 0$, and to de Branges' space $\mathcal{H}(E)$.

[1] V. Havin and J. Mashreghi, Admissible majorants for model subspaces of $H^2(\mathbf{R})$, Part I: slow winding of the generating inner function, Can. J. Math., to appear.