J. Mashreghi and T. J. Ransford, Binomial sums and functions of exponential type, Bull. London Math. Soc 37 (2005), 15-24.

Abstract

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of complex numbers, and, for $n \geq 0$, let

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \quad \text { and } \quad c_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} a_{k} .
$$

We prove a number of results relating the growth of the sequences $\left(b_{n}\right)$ and $\left(c_{n}\right)$ to that of $\left(a_{n}\right)$. For example, given $p \geq 0$, if $b_{n}=O\left(n^{p}\right)$ and $c_{n}=O\left(e^{\epsilon \sqrt{n}}\right)$ for all $\epsilon>0$, then $a_{n}=0$ for all $n>p$. Also, given $0<\rho<1$, we have $b_{n}, c_{n}=O\left(e^{\epsilon n^{\rho}}\right)$ for all $\epsilon>0$ iff $n^{1 / \rho-1}\left|a_{n}\right|^{1 / n} \rightarrow 0$. We further show that, given $\beta>1$, if $b_{n}, c_{n}=O\left(\beta^{n}\right)$, then $a_{n}=O\left(\alpha^{n}\right)$, where $\alpha=\sqrt{\beta^{2}-1}$, thereby proving a conjecture of Chalendar, Kellay and Ransford.
The principal ingredients of the proofs are a Phragmén-Lindelöf theorem for entire functions of zero exponential type, and an estimate for the expected value of $e^{\phi(X)}$, where X is a Poisson random variable.

