T. Ransford and M. Valley, Subharmonicity in von Neumann algebras, *Studia Math.*, 170 (2005), 219–226.

Abstract

Let \mathcal{M} be a von Neumann algebra with unit $1_{\mathcal{M}}$. Let τ be a faithful, normal, semifinite trace on \mathcal{M} . Given $x \in \mathcal{M}$, denote by $\mu_t(x)_{t\geq 0}$ the generalized *s*-numbers of *x*, defined by

 $\mu_t(x) = \inf\{ \|xe\| : e \text{ is a projection in } \mathcal{M} \text{ with } \tau(1_{\mathcal{M}} - e) \le t \} \quad (t \ge 0).$

We prove that, if D is a complex domain and $f: D \to \mathcal{M}$ is a holomorphic function, then, for each $t \geq 0$,

$$\lambda \mapsto \int_0^t \log \mu_s(f(\lambda)) \, ds$$

is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.