L. Baribeau, D. Brunet, T. Ransford and J. Rostand, **Iterated function systems, capacity and Green's functions**, *Comput. Methods Funct. Theory*, 4 (2004), No. 1, 47–58.

Abstract

Let $f_1, \ldots, f_m : \mathbb{C} \to \mathbb{C}$ be maps satisfying

$$a_j|z-w| \le |f_j(z) - f_j(w)| \le b_j|z-w|$$
 $(z, w \in \mathbb{C}, \ j = 1, \dots, m),$

where $0 < a_j \leq b_j < 1$ (j = 1, ..., m). Let E be the attractor of this iterated function system, namely the unique compact subset of \mathbb{C} satisfying $E = \bigcup_{1}^{m} f_j(E)$. Assume that E does not reduce to a singleton (i.e. that the maps f_j have no common fixed point).

We give a lower bound for the logarithmic capacity c(E) of E in terms of the diameter diam(E) and the constants $a_1, \ldots, a_m, b_1, \ldots, b_m$. We further prove that

 $c(E \cap \overline{D}(w, r)) \ge Cr^{\alpha} \qquad (w \in E, \ 0 < r \le \operatorname{diam}(E)),$

where C > 0 and $\alpha = \max_j (\log a_j / \log b_j)$, and deduce that E is non-thin at every point of itself. Finally, in the case where $a_j = b_j$ for each j (so all the f_j are similarities), we give a simple proof that the Green's function of E is Hölder continuous, and obtain estimates for the exponent of Hölder continuity.