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Abstract. We study the extent to which the pseudospectra of a matrix determine other aspects

of its behaviour, such as the growth of its powers and its unitary equivalence class.

1. Pseudospectra. The philosophy behind the interest in pseudospectra, and in par-

ticular the philosophy of Trefethen and Embree’s book [15], is that, to predict accurately

the growth of the norms of the powers of a matrix A, it is important to study not only

the spectrum of A, but also its pseudospectra.

Let us illustrate this by an example. Consider the 32×32 tridiagonal matrix A defined

below.

A :=





















0 1

1/4 0 1

. . .
. . .

. . .

1/4 0 1

1/4 0





















n ‖An‖
10 8.98

20 78.44

40 4442.09

100 485866.04

200 1043599.98

400 544597.34

1000 36339.67

2000 388.50

4000 0.04

Its eigenvalues are cos(jπ/33), j = 1, . . . , 32. In particular, the spectral radius of A is

strictly less than 1, so we should expect that An → 0 as n → ∞. However, as shown

in the table on the right, the operator norms ‖An‖ (defined with respect to the usual

Euclidean norm on vectors) actually become very large before finally decaying. This sort

of transient behaviour is significant in applications, and it is important to understand it

and predict when it will happen.
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One way to do this is by looking at the resolvent (A−zI)−1. Given an N×N matrix A

with eigenvalues in the unit disk, we always have

M ≤ sup
n

‖An‖ ≤ eNM, (1)

where M := sup|z|>1 ‖(A− zI)−1‖(|z|− 1). The left-hand inequality in (1) is elementary:

just expand (A−zI)−1 as a Laurent series and use the triangle inequality. The right-hand

inequality is a version of the Kreiss matrix theorem [9, 13]. At first sight, it is not obvious

that M is any easier to compute than ‖An‖. However, using the fact that

‖(A − zI)−1‖ = 1/smin(A − zI), (2)

where smin denotes the minimum singular value, one can in fact compute resolvent norms

very rapidly. The Matlab toolbox EigTool produces pictures of level curves of the norm

of the resolvent. For instance, with A as in the example above, we obtain the contour

maps below (the dots are the eigenvalues of A, and the unit circle has been drawn in).

Fig. 1. Pseudospectra of A := triadiag(32, 1

4
, 0, 1)
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Looking at the right-hand picture at z = 1.01, we can read off that ‖(A− zI)−1‖ > 107,

and so, by the easy half of (1), it follows that supn ‖An‖ > 105, all this without costly

computation of matrix powers.

The level curves of the resolvent (or rather, their interiors) are called pseudospectra.

More precisely, for each ǫ > 0, the ǫ-pseudospectrum of A is defined to be

σǫ(A) := {z ∈ C : ‖(A − zI)−1‖ > 1/ǫ}.
The book of Trefethen and Embree [15] gives an extensive account of the theory of

pseudospectra, as well as applications in numerous fields, including atmospheric science,

control theory, ecology, hydrodynamic stability, lasers, magnetohydrodynamics, Markov

chains, matrix iterations, rounding error analysis, operator theory, quantum mechanics,

and numerical solution of differential equations.

The general philosophy is that pseudospectra tell us more about the behaviour of

(non-normal) matrices than spectra. This article, which draws substantially on the papers

[5, 11], is intended as a survey of the author’s recent researches into the precise nature of

the link between the pseudospectra of a matrix and other aspects of its behaviour.
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2. Do pseudospectra determine matrix behaviour?. Let A and B be two N × N

matrices with identical pseudospectra. In other words, they satisfy the relation

‖(A − zI)−1‖ = ‖(B − zI)−1‖ (z ∈ C). (3)

What other properties must they share? In particular:

(i) Does (3) imply that ‖An‖ = ‖Bn‖ for all n?

(ii) Can we even go as far as to conclude that A and B are unitarily equivalent?

Notice that this is a bit different from the usual sort of problem in this subject, where

typically the hypothesis is an upper bound for ‖(A − zI)−1‖, and the conclusion would

be an upper bound for ‖An‖. Here, we are assuming an exact knowledge of the resolvent

norm, and the desired conclusion is correspondingly more ambitious.

Obviously questions (i) and (ii) have a positive answer if N = 1, and it is a simple

exercise to see that this remains true if N = 2.

However, for N ≥ 3 the answer to question (ii) is a resounding “no”. Here is a

simple example. Let A := diag(1, 1, 0) and B := diag(1, 0, 0). A calculation shows that

‖(A − zI)−1‖ = max{|z − 1|−1, |z|−1} = ‖(B − zI)−1‖, so (3) is certainly satisfied.

However, A and B are of different rank, so they are not even similar, let alone unitarily

equivalent.

Now we turn to question (i). We begin with a positive result in this direction. The

following theorem, which is well known, is a consequence of results relating pseudospectra

to numerical range (see [15, §17]). For convenience, we give a direct proof.

Theorem 2.1. Let A and B be N × N matrices satisfying (3). Then

1/2 ≤ ‖A‖/‖B‖ ≤ 2. (4)

Proof. Let ξ ∈ CN with ‖ξ‖2 = 1. Then, as z → 0, we have

〈(I − zA)−1ξ, ξ〉 = 1 + z〈Aξ, ξ〉 + O(|z|2).
On the other hand, we also have

|〈(I − zA)−1ξ, ξ〉| ≤ ‖(I − zA)−1‖ = ‖(I − zB)−1‖ ≤ 1 + |z|‖B‖ + O(|z|2).
Comparing the two, it follows that |〈Aξ, ξ〉| ≤ ‖B‖. Hence also |〈A∗ξ, ξ〉| ≤ ‖B‖. Hence

also |〈Hjξ, ξ〉| ≤ ‖B‖, where H1 := (A + A∗)/2 and H2 := (A − A∗)/2i. Now H1, H2 are

self-adjoint matrices, so there exist ξ1, ξ2 ∈ CN of norm one such that |〈Hjξj , ξj〉 = ‖Hj‖.
Thus ‖Hj‖ ≤ ‖B‖ for j = 1, 2, and finally ‖A‖ = ‖H1 + iH2‖ ≤ ‖H1‖ + ‖H2‖ ≤ 2‖B‖,
giving the right-hand side of (4). The left-hand side follows by symmetry.

It turns out that this result cannot be substantially improved. Greenbaum and Tre-

fethen [7] gave an example of a pair of matrices A, B satisfying (3) such that ‖A‖ 6= ‖B‖,
thereby answering question (i) in the negative. Here we present a generalization of their

construction which further shows that the constant 2 appearing in Theorem 2.1 is sharp.

Theorem 2.2. For each N ≥ 7, there exist N ×N matrices A, B satisfying (3) such that

‖A‖ = 1 and ‖B‖ = 2 cos
( π

N − 1

)

.
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Proof. Let Sn denote the n×n shift matrix, with 1’s just above the main diagonal and 0’s

elsewhere. Set A := SN−2 ⊕ S2 and B := SN−2 ⊕ βS2, where β > 1 is a constant to be

chosen later. Clearly ‖A‖ = 1 and ‖B‖ = β. To verify (3), it suffices to show that

‖(I − zS2)
−1‖ ≤ ‖(I − zSN−2)

−1‖ (z ∈ C)

‖(I − zβS2)
−1‖ ≤ ‖(I − zSN−2)

−1‖ (z ∈ C).

Now, for n = 2, a direct calculation gives

‖(I − zS2)
−1‖ =

|z|
2

+

√

1 +
|z|2
4

≤ 1 +
|z|
2

+
|z|2
8

(z ∈ C).

For n ≥ 3, we have the lower bound

‖(I − zSn)−1‖ ≥ 1 + |z| cos
( π

n + 1

)

+ |z|2 cos
( 2π

n + 1

)

(z ∈ C). (5)

To see this, consider the vector ξ ∈ Cn given by ξj := sin(jπ/(n + 1)), j = 1, . . . , n. It is

an eigenvector of Sk
n +S∗k

n for each k ∈ {1, . . . , n− 1}, with eigenvalue 2 cos(kπ/(n+ 1)).

Also ξj ≥ 0 for all j. Hence, for t ≥ 0,

〈(I − tSn)−1ξ, ξ〉 =

n−1
∑

k=0

tk〈Sk
nξ, ξ〉 ≥

2
∑

k=0

tk〈Sk
nξ, ξ〉

=
(

1 + t cos
( π

n + 1

)

+ t2 cos
( 2π

n + 1

))

‖ξ‖2
2.

This proves (5) when z is positive, and the general case then follows, because Sn is

unitarily equivalent to eiθSn for all θ.

Returning to our construction, we now see that it suffices that

1 +
β|z|
2

+
β2|z|2

8
≤ 1 + |z| cos

( π

N − 1

)

+ |z|2 cos
( 2π

N − 1

)

(z ∈ C).

This will hold provided that β ≤ 2 cos(π/(N − 1)) and β2 ≤ 8 cos(2π/(N − 1)). If we

choose β := 2 cos(π/(N − 1)), then both constraints are satisfied provided that N ≥ 7.

What about higher powers ‖An‖/‖Bn‖? What is the analogue of (4) in this case?

Actually, there isn’t one. This is because of the following surprising result, proved in [11].

Recall that a positive sequence (αn) is submultiplicative if αn+m ≤ αnαm for all n, m.

Theorem 2.3. Let N ≥ 7 and let (αn) and (βn) be arbitrary submultiplicative sequences.

Then there exist N × N matrices A, B satisfying (3) such that

‖An‖ = αn and ‖Bn‖ = βn

(

2 ≤ n ≤ (N − 3)/2
)

.

Proof. This is similar in spirit to the previous proof, but this time using weighted shifts.

For the details, we refer to [11, Theorem 1.1].

3. Super-identical pseudospectra. The results in the previous section indicate that

pseudospectra do not determine matrix behaviour, at least when ‘behaviour’ is interpreted

in the sense of the questions (i) and (ii). An examination of the examples reveals that

this is because some parts of a matrix can ‘hide behind’ others in such a way that they

cannot be detected using resolvent norms alone. A more powerful tool is needed.
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One possibility, suggested by results such as the Hille–Yosida theorem, is to consider

the generalized resolvent norms ‖(A − zI)−k‖ for k ≥ 1. However, this is unsatisfactory

for at least two reasons. Firstly, it is still insufficient to distinguish between the simple

matrix pair A := diag(1, 1, 0) and B := diag(1, 0, 0). Secondly, and perhaps even more

importantly, the whole point of pseudospectra is to avoid the costly computation of matrix

powers, so it is illogical to incorporate powers as part of the definition.

In fact, these same practical considerations suggest another possibility. Recall that

the singular values sk(A) of an N × N matrix A are the square roots of the eigenvalues

of AA∗, ordered so that s1(A) ≥ s2(A) ≥ · · · ≥ sN (A). In particular s1(A) = ‖A‖ and

sN (A) = 1/‖A−1‖. The latter equation leads immediately to the formula (2), which is

how resolvent norms are actually calculated in practice, the point being that singular

values are relatively inexpensive to compute. The condition (3) that matrices A and B

have identical pseudospectra can be expressed in the equivalent form:

sN(A − zI) = sN (B − zI) (z ∈ C).

Viewed in this way, the condition has a natural extension. The following definition was

formulated in [5], which is also the source for the results in the rest of this section.

Definition 3.1. Two N × N matrices A and B have super-identical pseudospectra if

sk(A − zI) = sk(B − zI) (z ∈ C, k = 1, . . . , N). (6)

Once again, we pose the following questions:

(i) Does (6) imply that ‖An‖ = ‖Bn‖ for all n?

(ii) Can we even go as far as to conclude that A and B are unitarily equivalent?

To investigate these questions, it is convenient first to reformulate condition (6) in terms

of trace identities. We write tr(A) to denote the trace of A.

Theorem 3.2. Let A and B be N × N matrices. The following are equivalent:

• A and B have super-identical pseudospectra.

• tr([(A − zI)(A∗ − zI)]k) = tr([(B − zI)(B∗ − zI)]k) for z ∈ C and k ≥ 0.

• tr([(A − zI)(A∗ − zI)]k) = tr([(B − zI)(B∗ − zI)]k) for z ∈ C and k ∈ {1, . . . , N}.

Proof. By definition of singular value, condition (6) is equivalent to demanding that,

for each z ∈ C, the matrices (A − zI)(A − zI)∗ and (B − zI)(B − zI)∗ have the same

eigenvalues (counting multiplicities). Now, if two N ×N matrices C and D have the same

eigenvalues, then clearly tr(Ck) = tr(Dk) for all k ≥ 0. Conversely, if tr(Ck) = tr(Dk) for

k ∈ {1, . . . , N}, then, thanks to Newton’s identities, C and D have the same eigenvalues.

The final condition in Theorem 3.2 is a set of identities between polynomials in (z, z)

of bidegree (N, N). We therefore immediately obtain the following corollary.

Corollary 3.3. Let F be a uniqueness set for polynomials in (z, z) of bidegree (N, N).

Two N × N matrices A and B have super-identical pseudospectra iff

sk(A − zI) = sk(B − zI) (z ∈ F, k = 1, . . . , N).
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The interest of this result is that the uniqueness sets F may be finite. In fact it is

easy to construct such sets having (N + 1)2 elements. Thus, despite initial appearances,

the condition that A, B have super-identical pseudospectra is actually a finite condition.

The next task is to find a more explicit expression for the polynomials in (z, z) ap-

pearing in Theorem 3.2. This is a combinatorial problem. It boils down to identifying the

coefficients fijk(X, Y ) in the expression:

tr([(I + ξX)(I + ηY )]k) =
∑

i,j

fijk(X, Y )ξiηj . (7)

Let W be the set of all words in two non-commuting variables x, y. Given w ∈ W and

v ∈ W \ {1}, we denote by dv(w) the number of times the word v appears in w. Define

gijl(X, Y ) :=
∑

{

tr(w(X, Y )) : w ∈ W, dx(w) = i, dy(w) = j, dxy(w) = l
}

. (8)

Theorem 3.4. For all i, j, k ≥ 0, we have

fijk(X, Y ) =
∑

l≥0

(

k + l

i + j

)

gijl(X, Y ).

Also, for all i, j, l ≥ 0, we have

gijl(X, Y ) =
∑

k≥0

(−1)i+j+k+l

(

i + j + 1

k + l + 1

)

fijk(X, Y ).

Proof. The first identity is proved using a non-commutative binomial theorem. The sec-

ond one is deduced using an inversion formula. For the details, see [5, Theorem 2.7].

From this, we immediately deduce the following corollary.

Corollary 3.5. Let A and B be N × N matrices. The following are equivalent:

• A and B have super-identical pseudospectra.

• gijl(A, A∗) = gijl(B, B∗) for all i, j, l ≥ 0.

• gijl(A, A∗) = gijl(B, B∗) for i, j ∈ {l, . . . , N} and l ∈ {1, . . . , N}.

We can now give a partial affirmative answer to question (i), not just for powers, but

for arbitrary polynomials. The following theorem should be contrasted with Theorem 2.3.

Theorem 3.6. Let A and B be N×N matrices with super-identical pseudospectra. Then,

for every polynomial p(z),

1/
√

N ≤ ‖p(A)‖/‖p(B)‖ ≤
√

N.

Proof. By Corollary 3.5, we have gij0(A, A∗) = gij0(B, B∗) for all i, j, in other words

tr(A∗jAi) = tr(B∗jBi). It follows that, for any polynomial p, we have tr(p(A)∗p(A)) =

tr(p(B)∗p(B)), or in other words,
∑N

1 s2
k(p(A)) =

∑N

1 s2
k(p(B)). Hence

‖p(A)‖2 = s2
1(p(A)) ≤

N
∑

k=1

s2
k(p(A)) =

N
∑

k=1

s2
k(p(B)) ≤ Ns2

1(p(B)) = N‖p(B)‖2.

Likewise ‖p(B)‖2 ≤ N‖p(A)‖2.
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4. Examples in low dimensions. Can we replace
√

N by 1 in the preceding theorem?

In order to investigate this further, we explore in more detail what happens in low di-

mensions, namely N = 3, 4 (recall that the cases N = 1, 2 were already settled in §2).

To this end, we make use of an old result due to Frobenius [6, §3], which is very useful

when working with trace identities. Though elementary, it does not appear to be so well

known, so we digress a moment to discuss it.

Let X1, X2, . . . , Xm be N × N matrices. Let σ ∈ Sm be a permutation, say σ =

(a1 . . . ai)(b1 . . . bj) . . . (c1 . . . ck) when written as a product of disjoint cycles. We define

trσ(X1, . . . , Xm) := tr(Xa1
· · ·Xai

) tr(Xb1 · · ·Xbj
) . . . tr(Xc1

· · ·Xck
).

The properties of trace ensure this is well defined. We write ǫ(σ) for the signature of σ.

Theorem 4.1 (Frobenius’ identity). Let X1, . . . , XN+1 be N × N matrices. Then
∑

σ∈SN+1

ǫ(σ) trσ(X1, . . . , XN+1) = 0. (9)

If we take X1 = · · · = XN = A and XN+1 = B, then Frobenius’ identity becomes

tr(pA(A)B) = 0, where pA(z) is a polynomial of degree N whose coefficients depend on

A. As this holds for all B, it follows that pA(A) = 0. If A has distinct eigenvalues, then

necessarily these are roots of pA(z). Hence pA is a multiple of the characteristic polynomial

of A, and the identity pA(A) = 0 is nothing other than the Cayley–Hamilton theorem.

Thus Frobenius’ identity can be regarded as a polarized form of the Cayley–Hamilton

theorem, and indeed it can be proved this way (see [3]). Here we give a more direct proof.

Proof of Theorem 4.1. Since the expression (9) is multilinear in X1, . . .XN+1, it suffices

to prove it in the case when each Xi is one of the basic matrices Ejk. Here Ejk denotes

the matrix which has a 1 in the jk-th entry and zeros everywhere else.

An elementary computation shows that

tr(Ej1k1
Ej2k2

· · ·Ejlkl
) = δ(k1, j2)δ(k2, j3) . . . δ(kl, j1),

where, as usual, δ(k, j) := 1 if k = j and := 0 if k 6= j. Hence,

trσ(Ej1k1
, . . . , EjN+1kN+1

) = δ(jσ(1), k1)δ(jσ(2), k2) . . . δ(jσ(N+1), kN+1).

Thus
∑

σ∈SN+1

ǫ(σ) trσ(Ej1k1
, . . . , EjN+1kN+1

) =
∑

{ǫ(σ) : jσ(i) = ki for all i}.

Now k1, . . . , kN+1 ∈ {1, . . . , N}, so, by the pigeonhole principle, there exist distinct p, q

such that kp = kq. Let τ be the transposition (p, q). Then jσ(i) = ki for all i iff jστ(i) = ki

for all i. Also ǫ(σ) = −ǫ(στ). It follows that the last sum above is equal to minus itself,

and is therefore zero. This completes the proof.

There is a sense in which every other trace identity for matrices is a consequence of

Frobenius’ identity. For more details about this converse result, which is due indepen-

dently to Procesi and Razmyslov, see [4, 8, 10]. We do not need it here.

Returning now to pseudospectra, the following result improves Corollary 3.5 when

N = 3.
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Theorem 4.2. The 3 × 3 matrices A and B have super-identical pseudospectra iff
{

trAi = tr Bi i = 1, 2, 3

tr(AiA∗j) = tr(BiB∗j) 1 ≤ i ≤ j ≤ 2.
(10)

Proof. By Corollary 3.5, the conditions are certainly necessary. To prove sufficiency, we

need to show that (A − zI)(A − zI)∗ and (B − zI)(B − zI)∗ have the same eigenvalues

for all z ∈ C, and for this it suffices to show that

tr((A − zI)(A∗ − zI)) = tr((B − zI)(B∗ − zI))

tr([(A − zI)(A∗ − zI)]2) = tr([(B − zI)(B∗ − zI)]2)

det((A − zI)(A∗ − zI)) = det((B − zI)(B∗ − zI)).

The first and the third of these equations follow easily from (10). The second would

likewise follow if we knew that tr(AA∗AA∗) = tr(BB∗BB∗). It is here that Frobenius’

identity comes into play. Taking X1 = X2 = A and X3 = X4 = A∗ in Theorem 4.1, we

obtain

4 tr(AA∗AA∗) + 2 tr(A2A∗2) + 4 tr(A) tr(AA∗2) + 4 tr(A∗) tr(A2A∗)

+ tr(A2) tr(A∗2) + 2 tr2(AA∗) + tr2(A) tr(A∗2)

+ tr(A2) tr2(A∗) + tr2(A) tr2(A∗) + 4 tr(A) tr(A∗) tr(AA∗) = 0.

All the terms but the first are governed by (10). Hence the first term is also.

Corollary 4.3. Let A and B be 3×3 matrices with super-identical pseudospectra. Then,

for every polynomial p(z), the matrices p(A) and p(B) have super-identical pseudospectra.

In particular ‖p(A)‖ = ‖p(B)‖.

Proof. The conditions (10) for A, B imply the same conditions for p(A), p(B).

Thus our question (i) has an affirmative answer if N = 3. Next, we turn to N = 4.

Theorem 4.4. The 4 × 4 matrices A and B have super-identical pseudospectra iff










tr Ai = trBi i = 1, 2, 3, 4

tr(AiA∗j) = tr(BiB∗j) 1 ≤ i ≤ j ≤ 3

tr(AA∗AA∗) = tr(BB∗BB∗).

(11)

Proof. This is similar to the proof of Theorem 4.2, though evidently more complicated.

This time we need to use Frobenius’ identity three times, with (X1, X2, X3, X4, X5) =

(A, A, A, A∗, A∗), (A, A, A∗, A∗, AA∗) and (A, A, A, A∗, A∗2). The details are omitted.

If we try to repeat the proof of Corollary 4.3 for N = 4, we run up against an obstacle.

It is not clear whether (11) implies tr(p(A)p(A)∗p(A)p(A)∗) = tr(p(B)p(B)∗p(B)p(B)∗),

even for p(z) = z2. In fact, after playing with this for a while, we are actually led to the

following counterexample, which shows finally that the answer to question (i) is negative.

(This counterexample was already presented in [5], but with a different proof, and without

any explanation of how it was derived.)
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Theorem 4.5. Let α, β ∈ (π/4] and let

A :=









0 secα 0 1

0 0 secβ csc β 0

0 0 0 csc α

0 0 0 0









and B :=









0 secβ 0 1

0 0 secα csc α 0

0 0 0 cscβ

0 0 0 0









.

Then A, B have super-identical pseudospectra, and ‖A2‖/‖B2‖ = cosα/ cosβ.

Proof. One checks that A and B satisfy (11), so they have super-identical pseudospectra.

Also, a simple computation gives ‖A2‖ = cscα secβ csc β and ‖B2‖ = cscβ secα csc α,

which proves the final statement in the theorem.

5. Unitary equivalence. In providing a negative answer to question (i), we have at

the same time answered negatively question (ii): there exist 4 × 4 matrices with super-

identical pseudospectra that are not unitarily equivalent. Actually, for question (ii) there

is a simpler counterexample, which works even when N = 3. Let

A :=





0 1 0

0 0 2

0 0 0



 ,

and let B be the transpose of A. Then A and B have super-identical pseudospectra,

because this is always true for mutually transpose matrices. But they are not unitarily

equivalent, because tr(AA∗A2A∗2) 6= tr(BB∗B2B∗2) (the first is 4 and the second is 16).

However, this is not the end of the story. Unitary equivalence can itself be character-

ized in terms of trace identities. The following theorem is due to Specht [12]. Recall that

W denotes the set of all words in two non-commuting variables.

Theorem 5.1. Two N × N matrices A and B are unitarily equivalent if and only if

tr w(A, A∗) = tr w(B, B∗) for every word w ∈ W .

This result bears a marked resemblance to Corollary 3.5, which provides an analogous

characterization of matrices with super-identical pseudospectra. To further compare these

two characterizations, it is convenient to introduce some notation. The following definition

is taken from [5], which is also the source for the rest of this section.

Definition 5.2. Let N ≥ 1 and let X, Y be generic N × N matrices.

• IN denotes the algebra generated by the polynomials {trw(X, Y ) : w ∈ W}.
• FN denotes the subalgebra of IN generated by the family {fijk(X, Y ) : i, j, k ≥ 0}

defined in (7). Equivalently, it is the subalgebra generated by {gijl(X, Y ) : i, j, l ≥ 0}
defined in (8).

The characterizations described above can be succinctly summarized as follows:

A, B have super-identical pseudospectra ⇐⇒ f(A, A∗) = f(B, B∗) for all f ∈ FN

A, B are unitarily equivalent ⇐⇒ f(A, A∗) = f(B, B∗) for all f ∈ IN .

Also, the example given at the beginning of this section shows that tr(XY X2Y 2) ∈ I3\F3.

In fact, it is known that I3 is generated by F3 and tr(XY X2Y 2) (see [14, Theorem 4.1]).

For N ≥ 4, the situation is much more complicated. It is known that a minimal generating
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set for I4 contains 32 elements, and for I5 this number rises to 173 (see [1]). From their

definition, the algebras F4 and F5 have somewhat smaller generating sets. Thus, it would

appear that the gap between IN and FN widens as N grows. Theorem 4.5 lends support

to this impression. The following result is therefore perhaps a little surprising.

Theorem 5.3. For each N , the algebra IN is algebraic over FN . In other words, given

h ∈ IN , there exist f0, . . . , fk ∈ FN , with f0 6= 0, such that f0h
k + f1h

k−1 + · · ·+ fk = 0.

Proof. It is known that IN has transcendence degree N2 + 1 over C (see [2, pp.65,186]).

The theorem amounts to proving that the same is true of FN . The most direct way

to achieve this would be to exhibit an explicit set of N2 + 1 algebraically independent

elements of FN . We do not know how to do this. Instead, the proof involves a somewhat

indirect estimation of transcendence degree using partial derivatives. For the details, we

refer to [5, §4].

This algebraicity theorem has the following consequence for pseudospectra. We write

CN×N for the set of N × N matrices with the usual topology and Lebesgue measure.

Theorem 5.4. Given N ≥ 1, there exist an integer m and a closed subset E of CN×N

of measure zero such that every super-identical-pseudospectral equivalence class in CN×N

is either contained in E or is a union of at most m unitary equivalence classes.

Proof. It is known that IN is finitely generated (see [10, Theorem 3.4(a)]). Let h1, . . . , hr

be a set of generators for IN . By Theorem 5.3, each hi is algebraic over FN , so satisfies

a polynomial equation

fi0h
mi

i + fi1h
mi−1
i + · · · + fimi

= 0,

where fi0, fi1, . . . , fimi
∈ FN and fi0 6= 0. Set m := m1 . . . mr and

E := {A ∈ CN×N : f10(A, A∗) · · · fr0(A, A∗) = 0}.
Then E is a closed set of measure zero (in fact it is a real-algebraic subvariety), and also

it is a union of super-identical-pseudospectral equivalence classes.

It remains to show that, if A1, . . . , Am+1 ∈ CN×N \ E have super-identical pseudo-

spectra, then at least two of them are unitarily equivalent. For each i, j, we have

fi0(Aj , A
∗
j )hi(Aj , A

∗
j )

mi + fi1(Aj , A
∗
j )hi(Aj , A

∗
j )

mi−1 + · · · + fimi
(Aj , A

∗
j ) = 0.

Since fik ∈ FN , the coefficients fik(Aj , A
∗
j ) are independent of j. Also fi0(Aj , A

∗
j ) 6= 0 for

all j. Thus the numbers hi(A1, A
∗
1), . . . , hi(Am+1, A

∗
m+1) all satisfy the same polynomial

of degree mi. Denote by Ri the set of roots of this polynomial. Thus
(

h1(Aj , A
∗
j ), . . . , hr(Aj , A

∗
j )

)

∈ R1 × · · · × Rr (j = 1, . . . , m + 1).

The cardinality of R1 ×· · ·×Rr is at most m1 · · ·mr = m, so by the pigeonhole principle

there exist distinct j, k ∈ {1, . . . , m + 1} such that
(

h1(Aj , A
∗
j ), . . . , hr(Aj , A

∗
j )

)

=
(

h1(Ak, A∗
k), . . . , hr(Ak, A∗

k)
)

.

Because the hi generate IN , we deduce that h(Aj , A
∗
j ) = h(Ak, A∗

k) for all h ∈ IN .

Therefore Aj and Ak are unitarily equivalent.
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Theorem 5.4 can be viewed as a sort of discreteness theorem. For example, given

A ∈ CN×N \ E, if B is any matrix satisfying (6) and p(z) is any polynomial, then not

only must we have 1/
√

N ≤ ‖p(A)‖/‖p(B)‖ ≤
√

N , but there are at most m possibilities

for the value of ‖p(B)‖.
It seems likely that Theorem 5.4 is actually true with E = ∅. The most natural

way to prove this would seem to be via an improved version of Theorem 5.3, in which

‘algebraic’ is replaced by ‘integral’ (this means that f0 may be taken to be 1). Unfortu-

nately, this ‘improved version’ is known to be false. It is shown in [5, Theorem 4.12] that

tr(X2Y 2X2Y 2) is not integral over F4. The problem of whether we can take E = ∅ is

still open.

6. Conclusion. Modeling of experiments by linear dynamical systems gives rise to the

problem of estimation of ‖An‖ or of ‖etA‖. For non-normal matrices, standard eigenvalue

analysis tells only part of the story, and can sometimes even be misleading. We get more

information by looking at level curves of the resolvent (pseudospectra), which can be

rapidly computed using singular values. However, pseudospectra alone are not sufficient

to determine matrix behaviour, and the notion of super-identical pseudospectra leads

to more satisfactory results. The challenge now is to convert these results into practical

algorithms.
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