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Abstract

We propose a method to compute solutions of infinite dimensional nonlinear opera-
tors f(x) = 0 with tridiagonal dominant linear parts. We recast the operator equation
into an equivalent Newton-like equation x = T (x) = x − Af(x), where A is an ap-
proximate inverse of the derivative Df(x̄) at an approximate solution x̄. We develop
rigorous computer-assisted bounds to show that T is a contraction near x̄, which yields
existence of a solution. Since Df(x̄) does not have an asymptotically diagonal dom-
inant structure, the computation of A is not straightforward. This paper provides
a method to obtain A and proposes a new rigorous computational method to prove
existence of solutions of nonlinear operators with tridiagonal dominant linear parts.
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1 Introduction

Tridiagonal operators arise naturally in the theory of orthogonal polynomials, ordinary
differential equations (ODEs), continued fractions, numerical analysis of partial differential
equations (PDEs), integrable systems, quantum mechanics and solid state physics. Some
differential operators can be represented by infinite tridiagonal matrices acting in sequence
spaces, as it is the case for instance for differentiation in frequency space of the Hermite
functions. Other examples come from the study of ODEs like the Mathieu equation, the
spheroidal wave equation, the Whittaker-Hill equation and the Lamé equation.

While there exist many well developed methods and efficient algorithms in the literature
for solving linear tridiagonal matrix equations and computing their inverses, our proposed
method has a different flavour. We aim at developing a computational method to prove, in a
mathematically rigorous and constructive sense, existence of solutions of infinite dimensional
nonlinear operators of the form

f(x) = L(x) +N(x) = 0, (1)
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where L is a tridiagonal linear operator and N is a nonlinear operator. The domain of the
operator f is the space of algebraically decaying sequences

Ωs
def
=

{
x = (xk)k≥0 : ‖x‖s def

= sup
k≥0
{|xk|ks} <∞

}
. (2)

The assumptions on the linear and nonlinear parts of (1) are that L : Ωs → Ωs−sL and
N : Ωs → Ωs−sN , for some sL > sN . Intuitively, this means that the linear part dominates
the nonlinear part. Since Ωs1 ⊂ Ωs2 for s1 > s2, one has that f : Ωs → Ωs−sL .

General nonlinear operators f(x) = 0 defined on Ωs arise in the study of bounded
solutions of finite and infinite dimensional dynamical systems. For instance, x = (xk)k≥0

may be the infinite sequence of Fourier coefficients of a periodic solution of an ODE, a
periodic solution of a delay differential equation (DDE) or an equilibrium solution of a PDE
with Dirichlet, periodic or Neumann boundary conditions. The unknown x may also be the
infinite sequence of Chebyshev coefficients of a solution of a boundary value problem (BVP),
the Hermite coefficients of a solution of an ODE defined on an unbounded domain or the
Taylor coefficients of the solution of a Cauchy problem. In case the differential equation is
smooth, the decay rate of the coefficients of x will be algebraic or even exponential [1]. In
this paper, we chose to solve (1) in the weighed `∞ Banach space Ωs which corresponds to
Ck solutions. In order to exploit the analyticity of the solutions, we could follow the idea
of [2] and solve (1) in weighed `1 Banach spaces. This choice of space is not considered in
the present paper.

In recent years, there has been several successful attempts in solving f(x) = 0 in Ωs

using the field of rigorous numerics. This field aims at constructing algorithms that provide
an approximate solution to the problem together with precise bounds within which the exact
solution is guaranteed to exist in the mathematically rigorous sense. Equilibria of PDEs
[3, 4, 5], periodic solutions of DDEs [6], fixed points of infinite dimensional maps [7] and
periodic solutions of ODEs [8, 9] have been computed using such methods.

One popular idea in rigorous numerics is to recast the problem f(x) = 0 as a problem of
looking for the fixed points of a Newton-like equation of the form T (x) = x−Af(x), where
A is an approximate inverse of Df(x̄), where x̄ is a numerical approximations obtained
by computing on a finite dimensional projection of f . In [3, 4, 6, 7, 9, 5], the nonlinear
equations under study have asymptotically diagonal or block-diagonal dominant linear parts
which facilitates the computation of approximate inverses. In contrast, the present work
considers problems with tridiagonal dominant linear parts. To the best of our knowledge,
this is first attempt to compute rigorously solutions of such problems. While our proposed
approach is designed for the moment for a specific class of operators (see assumptions (4)
and (5)), we believe it is a first step toward solving rigorously more complicated nonlinear
operators with tridiagonal dominant linear parts.

The paper is organized as follows. In Section 2, we present the method to compute,
with the help of the computer, pseudo-inverses of tridiagonal operators of a certain class. In
Section 3, we recast the problem f(x) = 0 as a fixed point problem T (x) = x−Af(x) where
A is a pseudo-inverse, and we present the rigorous computational method to prove existence
of fixed points of T . In Section 4, we present an application and finally in Section 5, we
conclude by presenting some interesting future directions.

2 Computing pseudo-inverses of tridiagonal operators

Given three sequences (λk)k≥0, (µk)k≥0, (βk)k≥0 and x ∈ Ωs, define formally the tridiagonal
linear operator L(x) = (Lk(x))k≥0 of (1) by
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Lk(x) = λkxk−1 + µkxk + βkxk+1, k ≥ 1 (3)

and L0(x) = µ0x0 + β0x1. Assume that there exist real numbers sL > 1, 0 < C1 ≤ C2 and
an integer k0 such that

∀ k ≥ 1,

∣∣∣∣ λkksL
∣∣∣∣ , ∣∣∣ µkksL ∣∣∣ ,

∣∣∣∣ βkksL
∣∣∣∣ ≤ C2 and ∀ k ≥ k0, C1 ≤

∣∣∣ µk
ksL

∣∣∣ . (4)

Assume further the existence of δ ∈
(

0,
1

2

)
and k0 ≥ 0 such that

∀ k ≥ k0,

∣∣∣∣λkµk
∣∣∣∣ , ∣∣∣∣βkµk

∣∣∣∣ ≤ δ. (5)

Therefore under assumptions (4) and (5), L defined by (3) is a tridiagonal operator such
that L : Ωs → Ωs−sL . Indeed, for x ∈ Ωs, then

‖L(x)‖s−sL = sup
k≥0
{|Lk(x)|ks−sL}

≤ C2

(
sup
k≥0
{|xk−1|ks}+ sup

k≥0
{|xk|ks}+ sup

k≥0
{|xk+1|ks}

)
<∞.

From now on, assume for sake of simplicity that sN = 0, that is the nonlinear part N of
(1) satisfies N : Ωs → Ωs. Note that any combination of convolutions satisfies this property
by the algebra property of Ωs for s > 1 [5, 10]. Assume that using a finite dimensional
projection f (m) : Rm → Rm of (1), we computed a numerical approximation x̄, that is
f (m)(x̄) ≈ 0. We identify x̄ ∈ Rm and x̄ = (x̄, 0, 0, 0, 0, . . . ) ∈ Ωs. The idea is to construct
a ball

Bx̄(r) = x̄+B0(r) = x̄+ {x ∈ Ωs : ‖x‖s ≤ r} = {x ∈ Ωs : ‖x− x̄‖s ≤ r}

centered at x̄ containing a unique solution of (1) by showing that a certain Newton-like
operator T (x) = x − Af(x) is a contraction on Bx̄(r). This requires constructing A an
approximate inverse of Df(x̄) = L(x̄) + DN(x̄). In order to do so, the structures of L(x̄)
and DN(x̄) need to be understood. From (3) and (4), L(x̄) is a tridiagonal operator with
entries growing to infinity at the rate ksL . Moreover, since DN(x̄) : Ωs → Ωs, then it is a
bounded linear operator. As mentioned above, the expectation is that the coefficients of x̄
decay fast to zero. Therefore, a reasonable approximation A† for Df(x̄) is given by

A† =


D 0

βm−1

λm µm βm
0 λm+1 µm+1 βm+1

 , (6)

with D
def
= Df (m)(x̄) for m large enough. Again we assume that m ≥ k0. We wish to find

its inverse in terms of D, (βk)k≥m−1, (µk)k≥m and (λk)k≥m. We assume therefore that

A†x = y, (7)
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where x and y are the infinite vectors

x =


x0

x1

.

.

 , y =


y0

y1

.

.

 .

The infinite part of (7) writes
µm βm 0 0 ...
λm+1 µm+1 βm+1 0 ...

0 λm+2 µm+2 βm+2 ...
. . . . ...




xm
xm+1

.

.

 =


ym − λm xm−1

ym+1

.

.

 . (8)

We introduce the notations of the book of P.G. Ciarlet from Theorem 4.3-2 on page 142
in [11]. Note that only the δn are really useful:

a2 = λm+1, a3 = λm+2, ..., b1 = µm, b2 = µm+1, ..., c1 = βm, c2 = βm+1,

and (δn)n∈N defined by the induction formula

δ0 = 1, δ1 = b1, and δn = bn δn−1 − an cn−1 δn−2, for n ≥ 2.

Let define the tridiagonal operator T by

T =


b1 c1 0 0 ...
a2 b2 c2 0 ...
0 a3 b3 c3 ...
. . . . ...

 . (9)

For any infinite vector x = (x0, . . . , xk, . . .)
T , we introduce the notation

xF = (x0, . . . , xm−1)T and xI = (xm, . . . , xm+k, . . .)
T .

Using the notation e1 = (1, 0, 0, 0, 0, · · · )T , the system (8) becomes

TxI = yI − λm xm−1e1.

From Theorem 4.3-2 in [11], we compute an LU -decomposition of the above tridiagonal
operator in (9) as T = LIUI , where

LI =


1 0 0 ...

a2
δ0
δ1

1 0 ...

0 a3
δ1
δ2

1 ...

. . . ...

 and UI =


δ1
δ0

c1 0 ...

0 δ2
δ1

c2 ...

0 0 δ3
δ2

...

. . . ...

 . (10)

Hence, the system (8) becomes LIzI = yI − λm xm−1e1 combined with UIxI = zI , that is
1 0 0 ...

a2
δ0
δ1

1 0 ...

0 a3
δ1
δ2

1 ...

. . . ...




zm
zm+1

.

.

 =


ym − λm xm−1

ym+1

.

.

 , (11)
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combined with 
δ1
δ0

c1 0 ...

0 δ2
δ1

c2 ...

0 0 δ3
δ2

...

. . . ...




xm
xm+1

.

 =


zm
zm+1

.

 . (12)

Both infinite systems (11) and (12) can be solved explicitly.
System (11) leads to

zm = ym − λmxm−1,

and for any k ≥ 1

zm+k = ym+k +

k∑
l=1

(−1)l ak−l+2 .. ak+1
δk−l
δk

ym+k−l + (−1)k+1 a2 .. ak+1
δ0
δk
λmxm−1

which we rewrite with infinite matrix/vectors notations as

zI = LI
−1[yI − λm xm−1e1] = LI

−1yI − λmxm−1 vI , (13)

where

zI =



zm
zm+1

zm+2

...


, yI =



ym
ym+1

ym+2

...


, vI = LI

−1e1 =



1

−a2
δ0
δ1

a3 a2
δ0
δ2

−a4 a3 a2
δ0
δ3

...


.

The second system (12) leads to the infinite sum (for any k ≥ 0)

xm+k =
δk
δk+1

zm+k +

∞∑
l=1

(−1)l
δk

δk+l+1
ck+1 .. ck+l zm+k+l,

which we also rewrite with infinite matrix/vector notations as

xI = UI
−1zI . (14)

Coupling (13) and (14), we end up with

xI = UI
−1zI = UI

−1[LI
−1yI − λmxm−1 vI ] = UI

−1LI
−1yI − λmxm−1wI , (15)

where wI = U−1
I vI . Denoting

(
UI
−1LI

−1
)
l0

the first line of the infinite matrix UI
−1LI

−1

(remember that (wI)0 denotes the first element of wI), we can rewrite the first line of (15)
as

xm =
(
UI
−1LI

−1
)
l0
yI − λmxm−1 (wI)0 . (16)

Then, we investigate the finite part of the linear system (7). It writes

D


x0

x1

.

.
xm−2

xm−1

+


0
0
.
.
0

βm−1 xm

 =


y0

y1

.

.
ym−2

ym−1

 ,
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or, according to (16),

D


x0

x1

.

.
xm−2

xm−1

+ βm−1


0
0
.
.
0(

UI
−1LI

−1
)
l0
yI − λmxm−1 (wI)0

 =


y0

y1

.

.
ym−2

ym−1

 .

Defining

K = D − βm−1λm


0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0
0 0 ... 0 (wI)0

 ,

together with its inverse K−1 and resp. last column (K−1)cm−1, last line (K−1)lm−1, and
last (“south-east”) element (K−1)m−1,m−1 of this inverse, we end up with

xF = K−1yF − βm−1

{(
UI
−1LI

−1
)
l0
yI
}

(K−1)cm−1

= K−1yF − βm−1

({
(K−1)cm−1

}
⊗
{(

U−1
I LI

−1
)
l0

})
yI , (17)

with the tensor product notation. The last line of this identity reads

xm−1 = (K−1)lm−1 yF − βm−1

{(
UI
−1LI

−1
)
l0
yI
}

(K−1)m−1,m−1 . (18)

Coming back to (15) and using (18) we see that

xI = UI
−1LI

−1yI − λmxm−1wI

= UI
−1LI

−1yI

−λm
[
(K−1)lm−1 yF − βm−1

{(
UI
−1LI

−1
)
l0
yI
}

(K−1)m−1,m−1

]
wI

= UI
−1LI

−1yI − λm wI
{

(K−1)lm−1 yF

}
+βm−1λm (K−1)m−1,m−1 wI

{(
UI
−1LI

−1
)
l0
yI

}
= −λm

({
wI

}
⊗
{

(K−1)lm−1

})
yF (19)

+

(
UI
−1LI

−1 + βm−1λm (K−1)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
l0

})
yI .

Putting together (17) and (19), we end up with

(A†)−1 =

 K−1 −βm−1

({
(K−1)cm−1

}
⊗
{(

U−1
I LI

−1
)
l0

})
−λm

{
wI

}
⊗
{

(K−1)lm−1

}
UI
−1LI

−1 + Λ̃

 .
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where

Λ̃ = βm−1λm (K−1)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
l0

}
.

Now to get an approximate (pseudo) inverse of A† we would like to get a numerical ap-
proximation of K−1. However the definition of K involves (wI)0 which cannot be computed
explicitly. By definition wI = U−1

I L−1
I e1 so using again the computations made in this

section we get

(wI)0 =
(
U−1
I vI

)
0

=
δ0
δ1
vm +

∞∑
l=1

(−1)l
δ0
δl+1

c1 . . . cl vm+l

=
δ0
δ1

+

∞∑
l=1

δ2
0

δlδl+1
c1 . . . cl a2 . . . al+1.

So given a computational parameter L, we define

w̃ =
δ0
δ1

+

L−1∑
l=1

δ2
0

δlδl+1
c1 . . . cl a2 . . . al+1, (20)

and

K̃ = D − βm−1λm


0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0
0 0 ... 0 w̃

 .

Now we can consider Am a numerically computed inverse of K̃ and then define the
approximate (pseudo) inverse of A† as

A =

 Am −βm−1

({
(Am)cm−1

}
⊗
{(

U−1
I LI

−1
)
l0

})
−λm

{
wI

}
⊗
{

(Am)lm−1

}
UI
−1LI

−1 + Λ

 ,

(21)
where

Λ = βm−1λm (Am)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
l0

}
.

Lemma 2.1. Assuming m ≥ k0 and δ < 1
2 , U−1

I : Ωs → Ωs+sL .

Proof. Let zI ∈ Ωs and xI = U−1
I zI . Using (14) and the formula above, we get

|xm+k| ≤
|δk|
|δk+1|

|zm+k|+
∞∑
l=1

|δk|
|δk+l+1|

|ck+1| .. |ck+l| |zm+k+l|

≤ |δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
|δk|
|δk+l+1|

|bk+1| .. |bk+l| |zm+k+l| . (22)
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Now remember that for all k ≥ 2, δk = bk δk−1 − ak ck−1δk−2, so

|δk|
|δk−1| |bk|

≥ 1− |ak| |ck−1| |δk−2|
|bk| |δk−1|

≥ 1− δ2 |bk−1| |δk−2|
|δk−1|

.

We introduce uk =
|δk|

|δk−1| |bk|
which then satisfies


u1 = 1

uk ≥ 1− δ2

uk−1
, ∀ k ≥ 2.

The study of the inductive sequence defined as above in the equality case yields that for any

k, γ ≤ uk ≤ 1, where γ = 1
2 +

√
1
4 − δ2 is the largest root of x = 1− δ2

x (see figure 1).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) δ = 0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) δ = 0.5

Figure 1: The iterations of un+1 = 1− δ2/un with u1 = 1.

We can then rewrite (22) to get

|xm+k| ≤
|δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
|δk| .. |δk+l|

|δk+1| .. |δk+l+1|
|bk+1| .. |bk+l| |zm+k+l|

≤ |δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
1

uk+1
..

1

uk+l

|δk+l|
|δk+l+1|

|zm+k+l|

≤
∞∑
l=0

(
δ

γ

)l |δk+l|
|δk+l+1|

|zm+k+l|

≤
∞∑
l=0

(
δ

γ

)l
1

γ |bk+l+1|
|zm+k+l|

≤ ‖zI‖s
C1γ

∞∑
l=0

(
δ

γ

)l
1

(k + l + 1)
sL (m+ k + l)

s .
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Finally, since δ <
1

2
< γ,

|xm+k| (m+ k)
s+sL ≤ ‖zI‖s

C1γ

1

1− δ
γ

(m+ k)
s+sL

(k + 1)
sL (m+ k)

s

and xI ∈ Ωs+sL .

Lemma 2.2. Assuming m ≥ k0 and δ < 1
2 , L−1

I : Ωs → Ωs.

Proof. Let yI ∈ Ωs and zI = L−1
I yI . Using (13) and the formula above

(
without the last

term since we do not consider here L−1
I (yI − λm xm−1e1)

)
, we get

|zm+k| ≤ |ym+k|+
k∑
l=1

|δk−l|
|δk|

|ak−l+2| .. |ak+1| |ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
|δk−l|
|δk|

|bk−l+2| .. |bk+1| |ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
|δk−l| .. |δk−1|
|δk−l+1| .. |δk|

|bk−l+1| |bk−l+2| .. |bk+1|
|bk−l+1|

|ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
1

uk−l+1
..

1

uk

|bk+1|
|bk−l+1|

|ym+k−l| ,

where we use the sequence uk introduced in the previous proof. So we get

|zm+k| ≤
k∑
l=0

(
δ

γ

)l |bk+1|
|bk−l+1|

|ym+k−l| ,

and

|zm+k| (m+ k)
s ≤ C2 ‖y‖s

C1

k∑
l=0

(
δ

γ

)l(
k + 1

k + 1− l

)sL ( m+ k

m+ k − l

)s
,

and it is enough to show that given 0 < θ < 1 and q ≥ 0,

k−1∑
l=1

θl
(

k

k − l

)q
is bounded

uniformly in k to prove that zI ∈ Ωs. Indeed,

k−1∑
l=1

θl
(

k

k − l

)q
≤

[ k
2 ]∑
l=1

θl
(

k

k − l

)q
+

k−1∑
l=[ k

2 ]+1

θl
(

k

k − l

)q

≤ 2q
[ k
2 ]∑
l=1

θl + θ[
k
2 ]+1 k

2
kq

≤ 2q

1− θ + θ[
k
2 ]+1 k

q+1

2
,

which is bounded uniformly in k since the last term goes to 0 when k goes to +∞, and the
proof is complete.
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Proposition 2.3. Assuming m ≥ k0 and δ < 1
2 , A : Ωs → Ωs+sL .

Proof. Consider y = (yF , yI)
T ∈ Ωs. Let x = (xF , xI)

T = Ay. Then, by definition of the
operator A in (21),

xF = AmyF − βm−1

({
(Am)cm−1

}
⊗
{(

U−1
I LI

−1
)
l0

})
yI

= AmyF − βm−1

{(
UI
−1LI

−1
)
l0
yI
}

(Am)cm−1.

By the previous lemmas, UI
−1LI

−1yI ∈ Ωs+sL, in particular
(
UI
−1LI

−1
)
l0
yI =

(
UI
−1LI

−1yI
)

0
is well defined and so is xF .

Again using (21),

xI = −λm
({

wI

}
⊗
{

(Am)lm−1

})
yF + UI

−1LI
−1yI + ΛyI .

Remember that wI = U−1
I LI

−1e1, and therefore wI ∈ Ωs for any s, so according to the
previous lemmas and the definition of Λ (see (21)), xI ∈ Ωs+sL .

3 Computations of fixed points of the operator T

Our main motivation for computing approximate inverses is to prove existence, in a math-
ematically rigorous sense, of a fixed point of the Newton-like operators T in a set centered
at a numerical approximation x̄. The Newton-like operator has the form

T (x) = x−Af(x), (23)

where A is the approximate inverse (21) of Df(x̄) computed using the theory of Section 2.
By Proposition 2.3, A : Ωs → Ωs+sL . Since f : Ωs → Ωs−sL , then T : Ωs → Ωs.

Before proceeding further, we endow Ωs with the operation of discrete convolution.
More precisely, given x = (xk)k≥0, y = (yk)k≥0 ∈ Ωs, extend x, y symmetrically by x̃ =
(xk)k∈Z, ỹ = (yk)k∈Z where x̃−k = xk, ỹ−k = yk, for k ≥ 1. The discrete convolution of x
and y is denoted by x ∗ y and defined by

(x ∗ y)k =
∑

k1+k2=k

k1,k2∈Z

x̃k1 ỹk2 .

It is known that for s > 1, (Ωs, ∗) is an algebra under discrete convolution (e.g. see [10]),
that is, given x, y ∈ Ωs, x ∗ y ∈ Ωs. This fact will be especially useful when computing in
practice the Z bounds as defined in the following results.

Theorem 3.1. For fixed s > 1, consider T : Ωs → Ωs with T = (Tk)k≥0, Tk ∈ R. Assume
that there exists a point x̄ ∈ Ωs and vectors Y = {Yk}k≥0 and Z = {Zk(r)}k≥0 with
Yk, Zk(r) ∈ R satisfying

|(T (x̄)− x̄)k| ≤ Yk (24)

and
sup

b1,b2∈B0(r)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣ ≤ Zk(r), ∀ k ≥ 0. (25)

If there exists r > 0 such that ‖Y + Z(r)‖s < r, then the operator T is a contraction in
Bx̄(r) and there exists a unique x̂ ∈ Bx̄(r) that satisfies T (x̂) = x̂.

10



Proof. We perform the proof in two parts:

i) ‖T (x)− x̄‖s < r for all x ∈ Bx̄(r). This implies that T (Bx̄(r)) ⊂ Bx̄(r);

ii) T is a contraction, that is there exists κ ∈ (0, 1) such that for every x, y ∈ Bx̄(r), one
has that ‖T (x)− T (y)‖s ≤ κ‖x− y‖s.

For all k ≥ 0 and for any x, y ∈ Bx̄(r), the Mean Value Theorem implies that

Tk(x)− Tk(y) = DTk(z)(x− y)

for some z = z(k) ∈ {tx + (1 − t)y : t ∈ [0, 1]} ⊂ Bx̄(r). Since r (x−y)
‖x−y‖s ∈ B0(r) then from

(25)

|Tk(x)− Tk(y)| =
∣∣∣∣DTk(z)

r(x− y)

‖x− y‖s

∣∣∣∣ 1

r
‖x− y‖s ≤

Zk(r)

r
‖x− y‖s. (26)

The triangular inequality applied component-wise using y = x̄ above gives

|Tk(x)− x̄k| ≤ |Tk(x)− Tk(x̄)|+ |Tk(x̄)− x̄k| ≤ Zk(r) + Yk

and hence
|Tk(x)− x̄k| ≤ |Yk + Zk(r)|.

Therefore for any x ∈ Bx̄(r)

‖T (x)− x̄‖s = sup
k≥0
{|Tk(x)− x̄k|ωsk} ≤ sup

k≥0
{|Yk + Zk(r)|ωsk} = ‖Y + Z(r)‖s < r.

This proves that T (Bx̄(r)) ⊂ Bx̄(r). From (26), we obtain that for any x, y ∈ Bx̄(r),

|Tk(x)− Tk(y)| ≤ |Zk(r)|
r ‖x− y‖s and thus

‖T (x)− T (y)‖s ≤
‖Z(r)‖s

r
‖x− y‖s. (27)

Since ‖Z(r)‖s ≤ ‖Y + Z(r)‖s < r, then

κ
def
=
‖Z(r)‖s

r
< 1,

and we can conclude that T : Bx̄(r) → Bx̄(r) is a contraction. An application of the
Contraction Mapping Theorem on the complete metric space Bx̄(r) gives the existence and
unicity of a solution x̂ of the equation T (x) = x in Bx̄(r).

Now we are going to see how to get such bounds Y (Section 3.2) and Z(r) (Section 3.3)
as well as how to find in an efficient way a r > 0 such that ‖Y + Z(r)‖s < r (Section 3.4).
We start by computing some estimate to control the action of U−1

I L−1
I .

3.1 Some preliminary computations

Suppose yI = (ym, ym+1, . . .)
T

is a given infinite vector. We want to bound component wise
xI = U−1

I L−1
I yI . Let θ = δ

γ . Again introducing zI = L−1
I yI and using the computations

made in the proof of lemma 2.1 and lemma 2.2, we get

|xm+k| ≤
1

γ

+∞∑
l=0

θl
1

|bk+l+1|
|zm+k+l|

11



and

|zm+k| ≤
k∑
l=0

θk−l
|bk+1|
|bl+1|

|ym+l| .

Putting the two together,

|xm+k| ≤
1

γ

+∞∑
l=0

k+l∑
j=0

θk+2l−j |ym+j |
|bj+1|

=
1

γ

 k∑
j=0

|ym+j |
|bj+1|

+∞∑
l=0

θk+2l−j +

+∞∑
j=k+1

|ym+j |
|bj+1|

+∞∑
l=j−k

θk+2l−j


=

1

γ

 k∑
j=0

|ym+j |
|bj+1|

θk−j

1− θ2
+

+∞∑
j=k+1

|ym+j |
|bj+1|

θj−k

1− θ2


=

1

γ(1− θ2)

 k∑
j=0

θk−j
|ym+j |
|bj+1|

+

+∞∑
j=k+1

θj−k
|ym+j |
|bj+1|


= η

 k∑
j=0

θk−j
|ym+j |
|µm+j |

+

+∞∑
j=k+1

θj−k
|ym+j |
|µm+j |

 ,

with

η =
1

γ(1− θ2)
.

In particular, for wI = (wm, wm+1, . . .)
T def

= U−1
I L−1

I e1 we have for all k ≥ 0

|wm+k| ≤ ηθk
1

|µm|
. (28)

More generally, if y is such that ym+k = 0 for any k ≥ K, then

∀ k ≤ K − 2, |xm+k| ≤ η
(

k∑
l=0

θk−l
|ym+l|
|µm+l|

+

K−1∑
l=k+1

θl−k
|ym+l|
|µm+l|

)
(29)

and

∀ k ≥ K − 1, |xm+k| ≤ ηθk
K−1∑
l=0

|ym+l|
θl |µm+l|

. (30)

We will also need a bound of |xm+k| (m+ k)s+sL that is uniform in k for k large enough.

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

+∞∑
l=k+1

θl−k
(
m+ k

m+ l

)s+sL)

≤ η‖yI‖s
C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
.

12



We assume here that m ≥ 2 (which will always be the case in practice), fix a computational
parameter M ∈ N such that

M ≥ max

−m ln
√
θ − s− sL − 1−

√
(m ln

√
θ + s+ sL + 1)2 − 4m ln

√
θ

2 ln
√
θ

,
4

(ln θ)
2 ,m

 ,

(31)
and say that for all k < M ,

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
. (32)

Then for k ≥M , we split the remaining sum

k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
=

[ k
2 ]−1∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

k−[
√
k]−1∑

l=[ k
2 ]

θk−l
(
m+ k

m+ l

)s+sL
+

k∑
l=k−[

√
k]

θk−l
(
m+ k

m+ l

)s+sL

≤ θ k
2
k

2

(
m+ k

m

)s+sL
+ θ
√
k k

2
2s+sL +

1

1− θ

(
m+ k

m+ k −
√
k − 1

)s+sL
≤ θM

2
M

2

(
m+M

m

)s+sL
+ θ
√
MM

2
2s+sL +

1

1− θ

(
m+M

m+M −
√
M − 1

)s+sL
.

(33)

Let us detail a bit why the last inequality holds. First consider, for x > 0, ϕ1(x) =
θ

x
2 x(m+ x)s+sL , whose derivative is

ϕ′1(x) =
√
θ
x
((

ln
√
θ
)
x(m+ x)s+sL + (m+ x)

s+sL + (s+ sL)x (m+ x)
s+sL−1

)
= (m+ x)

s+sL−1
√
θ
x
((

ln
√
θ
)

(m+ x)x+ (m+ x) + (s+ sL)x
)

= (m+ x)
s+sL−1

√
θ
x
((

ln
√
θ
)
x2 +

(
m ln

√
θ + s+ sL + 1

)
x+m

)
.

Notice that since 0 < θ < 1, the discriminant of ln
√
θx2 +

(
m ln

√
θ + s+ sL + 1

)
x+m

∆ =
(
m ln

√
θ + s+ sL + 1

)2

− 4m ln
√
θ,

is positive but still, by the definition of M in (31), for any x ≥ M ϕ′1(x) ≤ 0 and so
ϕ1(k) ≤ ϕ1(M) for all k ≥M . Then consider ϕ2(x) = θ

√
xx.

ϕ′2(x) = θ
√
x

(
ln θ

2
√
x
x+ 1

)
=
θ
√
x

2

(√
x ln θ + 2

)
,

so for x ≥ 4

(ln θ)2
, ϕ′2(x) ≤ 0 and so ϕ2(k) ≤ ϕ2(M) for all k ≥ M . Finally we consider

13



ϕ3(x) =
m+ x

m+ x−√x− 1
and then,

ϕ′3(x) =
m+ x−√x− 1− (m+ x)

(
1− 1

2
√
x

)
(m+ x−√x− 1)

2

= − x+ 2
√
x−m

2
√
x (m+ x−√x− 1)

2

so for x ≥ m, ϕ′3(x) ≤ 0 and ϕ3(k) ≤ ϕ3(M) for all k ≥M . Putting all this together we get
(33). So we can define

χ = χ(θ,m,M, s, sL)
def
= θ

M
2
M

2

(
m+M

m

)s+sL
+θ
√
MM

2
2s+sL+

1

1− θ

(
m+M

m+M −
√
M − 1

)s+sL
,

(34)
and state that for all k ≥M

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
χ+

θ

1− θ

)
. (35)

Finally, we need to bound the error made by using w̃ instead of (wI)0 for the definition
(21) of A. Using (5) together with the sequence (ul) introduced in the proof of Lemma 2.1,
we get

|(wI)0 − w̃| ≤
∞∑
l=L

|δ0|2
|δl| |δl+1|

|c1| . . . |cl| |a2| . . . |al+1|

≤ |δ0||δ1|
∞∑
l=L

δ2l

(
1

u1
· · · 1

ul

)(
1

u2
· · · 1

ul+1

)

≤ 1

|µm|
∞∑
l=L

θ2l

=
θ2L

|µm| (1− θ2)
. (36)

3.2 Computation of the Y bounds

Now and for the rest of this paper we assume for the sake of clarity that the nonlinearity N
of f in (1) is a polynomial of degree two. The generalization to a polynomial nonlinearity
of higher degree requires only the use of the estimates developed in [5] to bound terms like(

x1 ∗ . . . ∗ xp
)
n

where x1, . . . , xp ∈ B0(r). Moreover, as long as one is interested in problems with non-
linearities built from elementary functions of mathematical physics (powers, exponential,
trigonometric functions, rational, Bessel, elliptic integrals, etc.), our method is applicable.
Indeed, since these nonlinearities are themselves solutions of first or second order linear
ODEs, they can be appended to the original problem of interest in order to obtain a strictly
polynomial nonlinearity, albeit in a higher number of variables. This standard trick is
explained in more details in [12].

The first step is to bound
|T (x̄)− x̄| = |Af(x̄)| ,
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where here and in the following, |·| applied to vectors or matrices must be understood
component-wise. Note that since we suppose that f is at most quadratic and x̄ is constructed
such that x̄k = 0 for all k ≥ m, we have that (f(x̄))m+k = 0 for all k ≥ m − 1. According
to (21),

|(Af(x̄))F | ≤ |Am (f(x̄))F |+ |βm−1|
∣∣(U−1

I L−1
I (f(x̄))I

)
0

∣∣ ∣∣(Am)cm−1

∣∣ ,
so using (29) with K = m− 1, we can set

YF = |Am (f(x̄))F |+ |βm−1| η
(
m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

)∣∣(Am)cm−1

∣∣ .
Using (21) again,

|(Af(x̄))I | ≤ |λm|
(∣∣(Am)lm−1 f(x̄)F

∣∣+
∣∣∣βm−1 (Am)m−1,m−1

(
U−1
I L−1

I f(x̄)I
)

0

∣∣∣) |wI |+∣∣U−1
I L−1

I f(x̄)I
∣∣ ,

so using (28), (29) and (30) (again with K = m− 1), we can set

Ym+k =

(∣∣(Am)lm−1 f(x̄)F
∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ η

k∑
l=0

θk−l
|f(x̄)|m+l

|µm+l|
+ η

m−2∑
l=k+1

θl−k
|f(x̄)|m+l

|µm+l|
, ∀ 0 ≤ k ≤ m− 3

and

Ỹm+k =

(∣∣(Am)lm−1 f(x̄)F
∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ ηθk
m−2∑
l=0

|f(x̄)|m+l

θl |µm+l|
, ∀ k ≥ m− 2.

We then take an integer M such that

M ≥ max

(
m− 2,

−s
ln θ
−m

)
. (37)

This yields that

∀ k ≥M, Ỹm+k ≤ Ỹm+M

ωsm+M

ωsm+k

.

Therefore we can set

Ym+k = Ỹm+k, ∀ m− 2 ≤ k ≤M and Ym+k = Ym+M

ωsm+M

ωsm+k

, ∀ k > M.

You will see in Section 3.4 the rationale behind this choice.

3.3 Computation of the Z bounds

For y, z ∈ B0(r), we need to bound

DT (x̄+ y) z = (I −ADf (x̄+ y)) z =
(
I −AA†

)
z −A

(
Df (x̄+ y)−A†

)
z.
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3.3.1 Estimates for (I − AA†)z

According to (6) and (21),

(
AA†z

)
F

= Am

DzF +

 0
...

βm−1zm


− βm−1

(
U−1
I L−1

I (TzI + λmzm−1e1)
)

0
(Am)cm−1

= AmDzF + βm−1zm (Am)cm−1 − βm−1 (zm + λmzm−1 (wI)0) (Am)cm−1

= AmK̃zF + βm−1λm (w̃ − (wI)0) zm−1 (Am)cm−1 ,

and so ((
I −AA†

)
z
)
F

=
(
I −AmK̃

)
zF + βm−1λm (w̃ − (wI)0) zm−1 (Am)cm−1 .

Again using (6) and (21), we get

(
AA†z

)
I

= −λm (Am)lm−1

DzF +

 0
...

βm−1zm


wI +

(
U−1
I L−1

I + Λ
)

(TzI + λmzm−1e1)

= zI + λmwI(
− (Am)lm−1DzF − βm−1 (Am)m−1,m−1 zm + zm−1 + βm−1 (Am)m−1,m−1 (zI + λmzm−1wI)0

)
= zI + λm

(
− (Am)lm−1DzF + zm−1 + βm−1λm (Am)m−1,m−1 zm−1 (wI)0

)
wI

= zI + λm

(
zm−1 − (Am)lm−1 K̃zF + βm−1λm (Am)m−1,m−1 zm−1 (w̃ − (wI)0)

)
wI

= zI + λm

((
I −AmK̃

)
lm−1

zF + βm−1λm (Am)m−1,m−1 zm−1 (w̃ − (wI)0)

)
wI

and so((
I −AA†

)
z
)
I

= −λm
(

(I −AmK)lm−1 zF + βm−1λm (Am)m−1,m−1 zm−1 (w̃ − (wI)0)
)
wI .

We introduce W s =

(
1

ωs0
, . . . ,

1

ωsk
, . . .

)T
. For z ∈ B0(r) we have, using (36),

∣∣(I −AA†) z∣∣
F
≤
(∣∣∣I −AmK̃∣∣∣W s

F +
|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|cm−1

)
r

and, using also (28),

∣∣(I −AA†) z∣∣
m+k

≤
(∣∣∣I −AmK̃∣∣∣

lm−1
W s
F +

|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|m−1,m−1

)
ηθk
|λm|
|µm|

r, ∀ k ≥ 0.

As in Section 3.2, we then assume (37) and define Z1 by

Z1
F =

(∣∣∣I −AmK̃∣∣∣W s
F +

|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|cm−1

)
r,
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Z1
m+k =

(∣∣∣I −AmK̃∣∣∣
lm−1

W s
F +

|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|m−1,m−1

)
ηθk
|λm|
|µm|

r, ∀ 0 ≤ k ≤M,

and

Z1
m+k = Z1

m+M

ωsm+M

ωsm+k

, ∀ k > M.

By the definition of M ,
∣∣(I −AA†) z∣∣ ≤ Z1, for all z ∈ B0(r).

3.3.2 Estimates for A
(
Df (x̄ + y) − A†) z

We assumed that the nonlinear part N was polynomial of degree 2 so Df (x̄+ y) can be
written as a finite Taylor expansion:

Df (x̄+ y) = Df (x̄) +D2f (x̄) (y)

and (
Df (x̄+ y)−A†

)
z =

(
Df (x̄)−A†

)
z +D2f (x̄) (y, z).

If we denote by σ the coefficient of degree 2 of f , we have that D2f (x̄) (y, z) = 2σ(y ∗ z).
We then bound the convolution product using

Lemma 3.2. Let s ≥ 2, x, y ∈ Ωs, K ≥ 6 and L ≥ 1 computational parameters.

∀ k ≥ 0, |(x ∗ y)k| ≤ αsk(K)
‖x‖s‖y‖s

ωsk
,

where

αsk(K) =



1 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
, k = 0

2 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
+

k−1∑
l=1

ks

ls(k − l)s , 1 ≤ k < K

2 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
+ 2

(
K

K − 1

)s
+

(
4 ln(K − 2)

K
+
π2 − 6

3

)(
2

K
+

1

2

)s
, k ≥ K.

Proof. See [13] for a proof of this bound and [10] for a similar bound for 1 < s < 2.

It is important to notice here that αsk(K) = αsK(K) for all k ≥ K. For the rest of this
paper we assume that m is taken ≥ 6 which will allow us to use Lemma 3.2 with K = m.
For y, z ∈ B0(r), we get ∣∣D2f (x̄) (y, z)

∣∣ ≤ 2 |σ|αs(m)W sr2,

We define
C2 = 2 |σ|αs(m)W s

so that for all y, z ∈ B0(r) ∣∣D2f (x̄) (y, z)
∣∣ ≤ C2r2.
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Now we focus on the order one term. According to the definition (6) of A†, we have

((
Df(x̄)−A†

)
z
)
F

= (Df(x̄)z)F −Df (m)(x̄)zF −


0
0
.
.
0

βm−1 zm


= 2σ ((x̄ ∗ z)F − (x̄ ∗ zF )F ) ,

where in the convolution product, zF must be understood as the infinite vector (zF , 0, . . . , 0, . . .)
T .

So ((
Df(x̄)−A†

)
z
)

0
= 0

and for all z ∈ B0(r),

∣∣(Df(x̄)−A†
)
z
∣∣
k
≤ 2 |σ| r

m−1∑
l=m−k

|x̄l|
ωsk+l

, ∀ 1 ≤ k ≤ m− 1.

Then, remembering that Df(x̄) = L+DN(x̄) and (6), we get that((
Df(x̄)−A†

)
z
)
I

= (DN(x̄)z)I = 2σ (x̄ ∗ z)I ,

so using Lemma 3.2, for all z ∈ B0(r),

∣∣(Df(x̄)−A†
)
z
∣∣
m+k

≤ 2 |σ|αsm+k(m) ‖x̄‖s
ωsm+k

r, ∀ k ≥ 0.

Putting both together we define

C1
0 (x̄) = 0, C1

k(x̄) = 2 |σ|
m−1∑
l=m−k

|x̄l|
ωsk+l

, ∀ 1 ≤ k ≤ m− 1,

and

C1
m+k(x̄) =

2 |σ|αsm(m) ‖x̄‖s
ωsm+k

, ∀ k ≥ 0,

to get that for all z ∈ B0(r) ∣∣(Df(x̄)−A†
)
z
∣∣ ≤ C1(x̄)r.

Finally, ∣∣A (Df (x̄+ y)−A†
)
z
∣∣ ≤ |A| (C1(x̄)r + C2r2

)
,

and we are left to bound |A|C1(x̄) and |A|C2.

According to (21),(
|A|C1(x̄)

)
F
≤ |Am|C1

F (x̄) + |βm−1|
∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
|Am|cm−1 ,

and using (32)

∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
≤ η‖C1

I (x̄)‖s
C1(1− θ)ωs+sLm

≤ 2η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

.
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so we set

D1
F (x̄) = |Am|C1

F (x̄) +
2 |βm−1| η |σ|αsm(m)‖x̄‖s

C1(1− θ)ωs+sLm

|Am|cm−1 .

Still according to (21),(
|A|C1(x̄)

)
I
≤ |λm| |Am|lm−1 C

1
F (x̄) |wI |+

∣∣U−1
I L−1

I C1
I (x̄)

∣∣+ |λm| |βm−1| |Am|m−1,m−1

∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
|wI |

≤ |λm|
(
|Am|lm−1 C

1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

)
|wI |+

∣∣U−1
I L−1

I C1
I (x̄)

∣∣ .
Now we take some M as in (31) and use (28), (32) and (35) to set

D1
m+k(x̄) =

(
|Am|lm−1 C

1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θk

+
2η |σ|αsm(m)‖x̄‖s

C1ω
s+sL
m+k

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
, ∀ 0 ≤ k < M,

D1
m+M (x̄) =

(
|Am|lm−1 C

1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θM

+
2η |σ|αsm(m)‖x̄‖s

C1ω
s+sL
m+M

(
χ+

θ

1− θ

)
,

and

D1
m+k(x̄) = D1

m+M (x̄)
ωsm+M

ωsm+k

, ∀ k > M

so that
|A|C1(x̄) ≤ D1(x̄).

Similarly, we set

D2
F = |Am|C2

F +
2 |βm−1| η |σ|αsm(m)

C1(1− θ)ωs+sLm

|Am|cm−1 ,

D2
m+k =

(
|Am|lm−1 C

2
F +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)

C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θk

+
2η |σ|αsm(m)

C1ω
s+sL
m+k

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
, ∀ 0 ≤ k < M,

D2
m+M =

(
|Am|lm−1 C

2
F +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)

C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θM +
2η |σ|αsm(m)

C1ω
s+sL
m+M

(
χ+

θ

1− θ

)
,

and

D2
m+k = D2

m+M

ωsm+M

ωsm+k

, ∀ k > M

so that
|A|C2 ≤ D2.

Finally we can set
Z2 = D1(x̄)r +D2r2

and Z = Z1 + Z2 is such that, for all y, z ∈ B0(r)

|DT (x̄+ y) z| ≤ Z.
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3.4 Radii polynomials and interval arithmetic

We are now left to find a radius r > 0 such that for every k ≥ 0, the radii polynomials
{Pk(r)}k satisfy

Pk(r)
def
= Yk + Zk(r)− r

ωsk
< 0.

Note that since we constructed Y and Z so that for every k ≥M

Ym+k = Ym+M

ωsm+M

ωsm+k

and Zm+k = Zm+M

ωsm+M

ωsm+k

,

it is enough to find a r > 0 such that for all 0 ≤ k ≤ m + M , Pk(r) < 0. To do so, we
compute numerically for each 0 ≤ k ≤ m+M

Ik
def
= {r > 0 | Pk(r) < 0},

and

I
def
=

m+M⋂
k=0

Ik.

If I is empty then the proof fails, and we should try again with some larger parameters
m and M . If I is non empty, we pick an r ∈ I and check rigorously, using the interval
arithmetic package INTLAB [14], that for all 0 ≤ k ≤ m+M , Pk(r) < 0 which according to
Theorem 3.1 proves that T defined in (23) is a contraction on Bs(x̄, r), yielding the existence
of a unique solution of f(x) = 0 in Bs(x̄, r).

4 An example application

Equations of the following form

− (2 + cos ξ)u′′(ξ) + u(ξ) = −σu(ξ)2 + g(ξ) (38)

u′(0) = u′(π) = 0,

where g is a 2π-periodic even smooth function, fall into the framework developed in Section 2.
Indeed consider the cosine Fourier expansions of u and g

u(ξ) =
∑
k∈Z

xk cos(kξ), g(ξ) =
∑
k∈Z

gk cos(kξ).

Then (38) can be rewritten as f(x) = 0, where

f0(x)
def
= x0 + x1 + σ (x ∗ x)0 − g0

and for all k ≥ 1

fk(x)
def
=

1

2
(k − 1)2xk−1 + (1 + 2k2)xk +

1

2
(k + 1)2xk+1 + σ (x ∗ x)k − gk. (39)

Then we do have that the linear part of (39) is as in (3), given by

Lk(x) = λkxk−1 + µkxk + βkxk+1,

with
µ0

def
= 1, β0

def
= 1,
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and for all k ≥ 1

λk
def
=

1

2
(k − 1)2, µk

def
= (1 + 2k2) and βk

def
=

1

2
(k + 1)2.

Let’s fix some m ≥ 2. With

C1 = 2, C2 = 3 and δ =
1

4

(m+ 1)2

m2 + 1
2

,

we have

∀ k ≥ 1,

∣∣∣∣λkk2

∣∣∣∣ , ∣∣∣µkk2

∣∣∣ , ∣∣∣∣βkk2

∣∣∣∣ ≤ C2,

together with

∀ k ≥ m, C1 ≤
∣∣∣µk
k2

∣∣∣ and

∣∣∣∣λkµk
∣∣∣∣ , ∣∣∣∣βkµk

∣∣∣∣ ≤ δ.
We now focus on the example where

g(ξ)
def
=

1

2
+ 3 cos(ξ) +

1

2
cos(2ξ),

so that u(ξ) = cos(ξ) is a trivial solution for σ = 0. In the next section we are going to
use rigorous computation to prove the existence of solutions for σ 6= 0 and compute those
solutions.

4.1 Results

Starting from σ = 0 we first use standard pseudo-arclength continuation techniques to
numerically get some non trivial approximate solutions for σ 6= 0. We computed 1250
different solutions (half for σ > 0 and the other half for σ < 0). See Figure 2 for a diagram
summing up those computations, where each point represent a solution of (38).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

�

kxk

Figure 2: Branch of solutions of (38).

Then we use the rigorous computation method described in this paper to prove, for each
numerical solution, the existence of a true solution in a small neighbourhood of the numerical
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approximation. We keep m = 20 Fourier coefficient for the numerical computation and use
M = 20 and the decay rate s = 2 for the proof. The bounds of Lemma 3.2 as well as the
error on ω̃ (36) are computed with L = 100. For each numerical solution the proof succeeds.
More precisely, the I defined in Section 3.4 on which all radii polynomials should be negative
always contains [4 × 10−11, 10−4] and we prove rigorously using interval arithmetic that
indeed they all are negative for r = 10−10. Hence the hypotheses of Theorem 3.1 hold and
we have that within a ball of radius r = 10−10 in Ωs centered on the numerical approximation
lays a unique solution to (38). Therefore the existence of the solutions represented Figure 2
is rigorously proven, within a margin of error that is to small to be depicted. The codes to
perform the proofs can be found at [17].

Notice that existence of solutions of (38) could certainly have been obtained in different
and more classical ways, for example using perturbative methods when σ is close to 0,
or using a variational approach (that is, considering (38) as the Euler-Lagrange equation
related to the critical points of a functional), or even using topological tools such as the
Leray-Schauder theory. The advantage of our method is that it gives us more quantitative
information than those approaches: indeed it enables to provide more than one solution for
some values of σ, and, maybe more importantly, it gives a very precise localization of this
(or these) solution(s) in terms of Fourier coefficients (something that looks very hard to
obtain with qualitative PDEs methods).

5 Conclusion

A first interesting future direction of research would be to adapt our proposed approach
to rigorously compute connecting orbits of ODEs using spectral methods. For instance, we
would like to investigate the possibility of combining Hermite spectral methods with our
approach to compute homoclinic orbits (e.g. see [15, 16]). Since the differential operator in
frequency space of the Hermite functions is tridiagonal, adapting our approach to this class
of operator could lead to a new rigorous numerical method for connecting orbits.

It would also be interesting to adapt our method to the case of looking for solutions in
the sequence space

`1ν = {x = (xk)k≥0 : ‖x‖ν def
=
∑
k≥0

|xk|νk <∞}

for some ν ≥ 1. With this choice of Banach space, we could exploit the fact that `1ν is
naturally a Banach algebra under discrete convolutions. This could greatly simplify the
nonlinear analysis.

Note that assumption (5) requires the tridiagonal operator to have symmetric ratios
between the diagonal terms and the upper and lower diagonal terms. This is a restriction
that we hope could be relaxed. Since many interesting problems involve tridiagonal operators
with non symmetric ratios (as in the case of differentiation in frequency space of the Hermite
functions), we believe that this is a promising route to follow.

Finally, generalizing our approach to problems with block-tridiagonal structures could
also be a valuable project.
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