
RIGOROUS NUMERICS FOR NONLINEAR DIFFERENTIAL
EQUATIONS USING CHEBYSHEV SERIES

JEAN-PHILIPPE LESSARD∗ AND CHRISTIAN REINHARDT†

Abstract. A computational method based on Chebyshev series to rigorously compute solutions
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1. Introduction. In this paper, we propose a rigorous numerical method based
on the Chebyshev polynomials to compute solutions of nonlinear differential equa-
tions. More explicitly, the field of rigorous numerics develops algorithms that provide
approximate solutions to a problem together with precise bounds within which exact
solutions are guaranteed to exist in the mathematically rigorous sense. In this con-
text, the main idea of our proposed approach is to expand the solution of a given
differential equation using its Chebyshev series, plug the expansion in the equation,
obtain an equivalent infinite dimensional problem of the form f(x) = 0 to solve in
a Banach space of rapidly decaying Chebyshev coefficients and to get the existence,
via a fixed point argument, of a genuine solution of f(x) = 0 nearby a numerical
approximation of a finite dimensional projection of f . The fixed point argument is
solved by using the radii polynomials (e.g. see [1]), which provide an efficient way of
constructing a set on which the contraction mapping theorem is applicable.

Before proceeding further, it is worth mentioning that a similar approach based
on Fourier series is widely used in the field of rigorous numerics to compute solutions
of differential equations with periodic profiles. For instance, time periodic solutions
of ODEs [2, 3], stationary solutions of PDEs with periodic or Neumann boundary
conditions [4, 5, 6, 7], time periodic solutions of delay differential equations [8, 9]
and invariant sets of infinite dimensional maps [10] have been successfully computed
using Fourier series and rigorous numerics. However, while being a well established
tool in the scientific computing literature [12, 15, 19, 20, 21, 22], to the best of our
knowledge, this is the first time that a method based on Chebyshev series is presented
to rigorously compute solutions of nonlinear differential equations. Since this includes
a large class of non-periodic solutions to ODEs (e.g. solutions of initial value problems
(IVPs) and boundary value problems (BVPs) with non periodic boundary values), in
the realm of the rigorous numerical approach described above, we believe that our
proposed approach is a valuable contribution to the field of rigorous numerics. Also,
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since Chebyshev series are Fourier series in disguise [12], the mathematical machinery
developed in the last ten years to prove existence of solutions with periodic profiles
can directly be transferred to prove existence of non periodic solutions. To give a few
examples, the analytic estimates introduced in [4, 6, 10, 13] and the Banach space
of rapidly decaying coefficients used in [3, 4] can be applied here. In addition, let us
mention the work [14] where the authors develop an analogue to Taylor models based
on interpolation with Chebyshev polynomials. However, it seems that their methods
have not yet been applied to rigorously solve nonlinear differential equations. Finally
also in [11] Chebyshev interpolation is used in a rigorous numerical algorithm, but in
a different context, namely to approximate non polynomial nonlinearities.

In the present work, we focus our attention to analytic vector fields of the form

du

dt
= Ψ(u), Ψ : Rn → Rn, (1.1)

where we aim at computing rigorously solutions of IVPs and BVPs associated to
(1.1). Even if we present the method in this context, we strongly believe that a
similar approach could be adapted to directly prove existence of solutions of higher
order differential equations without rewriting them as a first order equation. We give
some more details on this idea in Section 4.

The Chebyshev polynomials are defined by T0(t) = 1, T1(t) = t and Tk+1(t) =
2tTk(t)−Tk−1(t) for k ≥ 1. They lead to an analogue of the Fourier expansion for non
periodic functions on an interval and, as mentioned earlier, they are Fourier series in
disguise, as Tk(cos θ) = cos(kθ). The following standard result can be found in [15].

Theorem 1.1. Every Lipschitz continuous function v : [−1, 1]→ R has a unique
representation as an absolutely and uniformly convergent series v(t) =

∑∞
k=0 akTk(t).

The following result, which can also be found in [15], shows that the coefficients
ak of the Chebyshev series of an analytic function v decay exponentially fast to zero.

Theorem 1.2. Let a function v analytic in [−1, 1] be analytically continuable to
the open ρ-ellipse Eρ for some ρ > 1 where it satisfies |v(z)| ≤ M for all z ∈ Eρ for
some M . Then its Chebyshev coefficients satisfy |ak| ≤ 2Mρ−k, with |a0| ≤M in the
case k = 0.

The ellipse Eρ (with foci at ±1) is defined by fixing ρ > 1 and considering the
image of the circle with radius ρ in the complex plane C under the map z 7→ 1

2 (z+z−1).
The following Corollary 1.3 which is a consequence of Theorem 1.1 and Theorem 1.2
plays a fundamental role in the design of our approach.

Corollary 1.3. Assume that Ψ : Rn → Rn is real analytic and let u : [−1, 1]→
Rn be a solution of (1.1). Then each component uj of u is real analytic and has a
unique representation as an absolutely and uniformly convergent series of the form
uj(t) =

∑∞
k=0(aj)kTk(t). Also, for each j ∈ {1, . . . , n}, the sequence of Chebyshev

coefficients {(aj)k}k≥0 of uj decreases to zero faster than any algebraic decay, that
is, for any decay rate s > 1, there exists a constant Cj = Cj(s) < ∞ such that

|(aj)k| ≤ Cj
ks , for k ≥ 1.

Consider a Chebyshev expansion of a solution u of the analytic vector field (1.1)

u(t) = a0 + 2
∑
k≥1

akTk(t), (1.2)

where ak =
(
(a1)k, (a2)k, · · · , (an)k

)T ∈ Rn. Letting ‖ak‖∞ = maxj=1,...,n{|(aj)k|}
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and defining the weights

ωsk
def
=

{
1, if k = 0

|k|s, if k 6= 0,
(1.3)

one has by Corollary 1.3 that for any given s > 1

‖a‖s def
= sup

k≥0
{‖ak‖∞ωsk} <∞. (1.4)

The philosophy of our method is therefore to rigorously compute solutions u of an
IVP or a BVP associated to (1.1) first by recasting them as solutions of an operator
equation

F (u) = 0, (1.5)

and then to use Chebyshev series to transform (1.5) into an equivalent problem of the
form

f(x) = 0, (1.6)

to solve in a Banach space Xs of algebraically decaying Chebyshev coefficients. We
now introduce the operators (1.5) and (1.6), first for IVPs and then for BVPs.

Initial value problems. The first class of problems we address in the present work
are initial value problems associated to the vector field (1.1). Integrating (1.1) from
−1 to t, one has that finding a solution u with initial condition u(−1) = p0 ∈ Rn
is equivalent to finding a solution u of F (u) = 0, where the nonlinear operator F is
given by

F (u)(t)
def
= p0 +

∫ t

−1

Ψ(u(s))ds− u(t), t ∈ [−1, 1]. (1.7)

The fact that t ∈ [−1, 1] is not a restriction since in the autonomous vector field (1.1), a
re-scaling of time could be considered. The goal is to develop a rigorous computational
method based on Chebyshev series to compute solutions of (1.7). Given the Chebyshev
expansion (1.2) of u with a = (ak)k≥0 the infinite vector of Chebyshev coefficients,
consider the Chebyshev expansion of Ψ(u) given by

Ψ(u(t)) = c0 + 2
∑
k≥1

ckTk(t), (1.8)

where ck = ck(a) =
(
(c1)k, (c2)k, · · · , (cn)k

)T ∈ Rn. In particular, if Ψ(u) is a polyno-
mial vector field, then since Chebyshev polynomials satisfy Tk(cos θ) = cos(kθ), ck is
given by discrete convolutions involving the coefficients of a. Plugging (1.2) and (1.8)
in (1.7), and using the properties Tk(−1) = (−1)k and Tk(1) = 1 for all k,

∫
T0(s)ds =

T1(s),
∫
T1(s)ds = (T2(s)+T0(s))/4 and

∫
Tk(s)ds = 1

2

(
Tk+1(s)
k+1 − Tk−1(s)

k−1

)
for k ≥ 2,

one gets that

F (u)(t) = f̃0 + 2
∑
k≥1

f̃kTk(t),
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where f̃0
def
= p0 − a0 + c0 − c1

2 − 2
∑
j≥2

(−1)j

j2−1 cj and f̃k
def
= ck−1−ck+1

2k − ak, for k ≥ 1.

Denote x = a and define f(x) = (fk(x))k≥0 component-wise by

fk(x)
def
=


p0 − a0 − 2

∞∑
j=1

(−1)jaj , k = 0,

2kak + ck+1 − ck−1, k ≥ 1.

(1.9)

f given by (1.9) is called the IVP-operator and finding a solution u of (1.7) is equivalent
to finding a zero of the IVP-operator. To see this, note that fk = −2kf̃k for k ≥ 1
and that if 2kak = ck−1 − ck+1 for all k ≥ 1 we have that

p0 − a0 + c0 −
c1
2
− 2

∞∑
j=2

(−1)j

j2 − 1
cj = p0 − a0 − 2

∞∑
j=1

(−1)jaj . (1.10)

Boundary value problems. A second class of problems that we address in the
present work are boundary value problems associated to the vector field (1.1), that
is solutions u satisfying the differential equations (1.1) in [−1, 1] while satisfying the
boundary condition

G(u(−1), u(1)) = 0, (1.11)

where G : R2n → Rp is an affine map, with p the number of boundary conditions.
Letting p1 = u(1), integrating the vector field (1.1) from t to 1 and appending the
boundary condition (1.11) results in the integral operator defined by

F (θ, u)(t)
def
=

 G(u(−1), u(1))

u(t) +

∫ 1

t

Ψ(u(s))ds− p1

 , (1.12)

where G(u(−1), u(1)) and/or p1 depend on a parameter θ ∈ Rp. For a concrete
example for how the map G is chosen we refer the reader to equation (3.11). Denote by
x = (θ, a) the infinite dimensional vector of unknowns. Following the same approach
as the one used to derive the IVP-operator, we plug (1.2) and (1.8) in (1.12), use
standard properties of the Chebyshev polynomials and then we define the operator
f(x) = (fk(x))k≥−1 given component-wise by

fk(x) =


η(θ, a), k = −1,

a0 + 2

∞∑
j=1

aj − p1 k = 0,

2kak + ck+1 − ck−1, k ≥ 1,

(1.13)

where η ∈ Rp is a function of a = (ak)k≥0 and possibly of θ that represents the
boundary condition (1.11) expressed using the Chebyshev expansion of u. We call
the operator f(x) = (fk(x))k≥−1 given by (1.13) the BVP-operator. Hence, using
a similar observation to (1.10), finding a solution u of the boundary value problem
(1.12) is equivalent to finding a zero of the BVP-operator.

Let us introduce the notation x = (xk)k≥k0
and f = (fk)k≥k0

, with k0 ∈ {−1, 0}.
If x is the vector of unknowns of the IVP-operator (1.9), then k0 = 0 and x = (xk)k≥k0 ,
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with xk = ak ∈ Rn for k ≥ 0. If x is the vector of unknown of the BVP-operator
(1.13), then k0 = −1 and x = (xk)k≥k0

, with x−1 = θ ∈ Rp and xk = ak ∈ Rn
for k ≥ 0. Similarly, if f is the IVP-operator (1.9), then k0 = 0 and if f is the
BVP-operator (1.13), then k0 = −1 and f = (fk)k≥k0 , with f−1 = η ∈ Rp.

Given θ ∈ Rp, let ‖θ‖∞ = max{|θ1|, |θ2|, . . . , |θp|}. Recall the weights (1.3). As a
consequence of Corollary 1.3, we define the IVP-operator and the BVP-operator on
the Banach space of decaying Chebyshev coefficients given by

Xs = {x = (xk)k≥k0
: ‖x‖s def

= sup
k≥k0

{‖xk‖∞ωsk} <∞}, (1.14)

with k0 = 0 in case of the IVP-operator and with k0 = −1 in case of the BVP-
operator. The rest of the paper aims at introducing the rigorous method to prove
existence of solutions of f(x) = 0 within Xs using the notion of the radii polynomials.

The paper is organized as follows. In Section 2, we introduce the rigorous com-
putational method to prove existence of solutions of f(x) = 0 within Xs, where f is
either the IVP-operator (1.9) or the BVP-operator (1.13). In Section 3, we present
some applications. In Section 3.1, rigorous computations of IVPs in the Lorenz equa-
tions are introduced while in Section 3.2, we compute symmetric connecting orbits
for the Gray-Scott equation. Note that the symmetric connecting orbits are obtained
by computing solutions of a BVP with one of the boundary values in the stable man-
ifold. We conclude the paper in Section 4 by presenting some possible extensions and
improvements.

2. Rigorous computations. In this section, we introduce the rigorous compu-
tational method to compute x ∈ Xs that are solutions of f(x) = 0, where the operator
f is either the IVP-operator (1.9) or the BVP-operator (1.13). Let us formalize the
definition of the operator f on Xs.

Lemma 2.1. Consider the Banach space Xs with s > 1, the vector field (1.1), let
x = (xk)k≥k0 ∈ Xs and define u(t) = a0 + 2

∑
k≥1 akTk(t), where ak = xk for k ≥ 0.

Assume that the coefficients (ck)k≥0 of the Chebyshev series of Ψ(u) given by (1.8)
satisfy

‖c‖s = sup
k≥0
{‖ck‖∞ωsk} <∞. (2.1)

Consider f either the IVP-operator (1.9) or the BVP-operator (1.13). Then, f :
Xs → Xs−1. Also, if x ∈ Xs is a solution of f(x) = 0, then x ∈ Xs0 for any s0 > 1.
Finally, u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where F is the integral

operator (1.7) (respectively (1.12)) if and only if x = (xk)k≥k0
∈ Xs solves f(x) = 0

where f is the IVP-operator (1.9) (respectively the BVP-operator (1.13)).
Before presenting the proof of Lemma 2.1, it is important to remark that the

hypothesis (2.1) is met for all polynomial vector fields, since for any s > 1, Ωs
def
=

{a = (ak)k∈N : ak ∈ R, ‖a‖s < ∞} is an algebra under the discrete convolution.
More precisely for any a, b ∈ Ωs, there exists a constant α = α(a, b) < ∞ such that
|(a ∗ b)k| = |

∑
k1+k2=k

ki∈Z
a|k1|b|k2|| ≤ α

ωsk
(e.g. see [4] for the case s ≥ 2 and see [16] for

the case s ∈ (1, 2) for rather sharp values for α). This implies that a ∗ b ∈ Ωs, and
hence that (Ωs, ∗) is an algebra. For ease of notation we will henceforth omit the ∗.

Proof. (of Lemma 2.1) Consider x = (xk)k≥k0
∈ Xs and define u(t) = a0 +

2
∑
k≥1 akTk(t), with ak = xk for k ≥ 0. In case k0 = −1, one clearly has that

‖fk0
(x)‖∞ = ‖η(x)‖∞ < ∞. As ‖a‖s < ∞ is equivalent to ‖ak‖∞ ≤ ‖a‖sωsk

, it follows,
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since s > 1, that ‖∑∞j=1(−1)kak‖∞ ≤
∑∞
j=1

1
js <∞. That implies that ‖f0(x)‖∞ <

∞. Now, there exists a constant α1 < ∞ such that ‖fk(x)‖∞ = ‖2kak + ck+1 −
ck−1‖∞ ≤ 2‖a‖s

ωs−1
k

+ ‖c‖s
ωsk+1

+ ‖c‖s
ωsk−1

≤ α1

ωs−1
k

for all k ≥ 1. Thus ‖f(x)‖s−1 < ∞ and

therefore f(x) ∈ Xs−1.
Assume now that x ∈ Xs is a solution of f(x) = 0. Hence, for any k ≥ 1,

fk(x) = 2kak + ck+1 − ck−1 = 0 which implies that ak = − 1
2k (ck+1 − ck−1). Since

c = (ck)k≥0 satisfies (2.1), there exists a constant α2 <∞ such that

sup
k≥1
{‖ak‖∞ωs+1

k } ≤ sup
k≥1
{ 1

2k
(‖ck+1‖∞ + ‖ck−1‖∞)ωs+1

k } ≤ α2.

That shows that x = (xk)k≥k0 ∈ Xs+1. Repeating the same argument inductively
and using the fact that Xs1 ⊂ Xs2 for any s1 ≥ s2, one gets that x ∈ Xs0 for all
s0 > 1. Finally, the fact that u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where

F is the integral operator (1.7) (respectively (1.12)) if and only if x = (xk)k≥k0
∈ Xs

solves f(x) = 0 where f is the IVP-operator (1.9) (respectively the BVP-operator
(1.13)) is trivial by construction.

A consequence of Lemma 2.1 is that if one shows the existence of x ∈ Xs such
that f(x) = 0 (for some s > 1) where f is the IVP-operator (1.9) (respectively
the BVP-operator (1.13)), then the coefficients (ak)j decay faster than any algebraic
decay and u(t) given by (1.2) is a solution of the IVP defined by (1.1) and u(−1) = p0

(respectively the BVP defined by (1.1) and (1.11)).
The strategy to find solutions of (1.6) is to consider an equivalent fixed point

operator T : Xs → Xs whose fixed points are in one-to-one correspondence with
the zeros of f . More precisely, the operator T is a Newton-like operator about an
approximate solution x̄ of f . In order to compute this numerical approximation
we introduce a Galerkin projection. Let m > 1 and define the finite dimensional
projection Πm : Xs → Xs

m by Πmx = (xk)m−1
k=k0

. The Galerkin projection of f is
defined by

f (m) : Xs
m → Xs

m : xF 7→ Πmf(xF , 0∞), (2.2)

where 0∞ = (I − Πm)0. Identifying (xF , 0∞) with xF ∈ Xs
m
∼= Rp+nm we think

of f (m) : Rp+nm → Rp+nm, where p = 0 for k0 = 0. Now assume that we have
computed x̄F ∈ Rp+nm such that f (m)(x̄F ) ≈ 0 and let x̄ = (x̄F , 0∞) ∈ Xs. Let
Bx̄(r) = x̄+B(r), the closed ball in Xs of radius r centered at x̄, where

B(r) =

{
x ∈ Xs : ‖x‖s = sup

k≥k0

{‖xk‖∞ωsk} ≤ r
}

=
∏
k≥k0

[
− r

ωsk
,
r

ωsk

]d(k)

, (2.3)

where d(−1) = p and d(k) = n for k ≥ 0. In order to define the fixed point operator

T , we introduce Am ≈
(
Df (m)(x̄F )

)−1
a numerical inverse of Df (m)(x̄F ). Assume

that the finite dimensional matrix Am is invertible (this hypothesis can be rigorously
verified with interval arithmetic). Define the linear invertible operator A : Xs → Xs+1

by

(Ax)k =

{
(Am(Πmx))k, k = k0, . . . ,m− 1(

1
2k

)
xk, k ≥ m. (2.4)

Define the Newton-like operator T : Xs → Xs about the numerical solution x̄ by

T (x) = x−Af(x). (2.5)
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The goal is to determine (if possible) a positive radius r of the ball Bx̄(r) so
that T : Bx̄(r) → Bx̄(r) is a contraction. Assuming that such an r > 0 exists, an
application of the contraction mapping theorem yields the existence of a unique fixed
point x̃ of T within the closed ball Bx̄(r). By invertibility of the linear operator A,
one can conclude that x̃ is the unique solution of f(x) = 0 in the ball Bx̄(r). By
construction, this unique solution represents a solution u(t) of the IVP-operator (1.7)
or the boundary value problem (1.12), depending on the situation. Hence, all we
need to do is to find r > 0 such that T : Bx̄(r) → Bx̄(r) is a contraction. This task
is achieved with the notion of the radii polynomials (originally introduced in [1] to
compute equilibria of PDEs), which provide an efficient way of constructing a set on
which the contraction mapping theorem is applicable. Their construction depends on
some bounds that we introduce shortly. Before that, we introduce the notation � and
≺ to denote component-wise (strict) inequality, that is given two vectors u, v ∈ Rd,
(d ≥ 1), u � v if and only if uk ≤ vk for all k = 1, . . . , d and u ≺ v if and only if
uk < vk for all k = 1, . . . , d. In addition we write for the component-wise absolute
value of y ∈ Rd |y| = (|y1|, . . . , |yd|) ∈ Rd. Consider now the bound Y = (Yk)k≥k0

satisfying ∣∣∣[T (x̄)− x̄
]
k

∣∣∣ � Yk, k ≥ k0, (2.6)

where Yk ∈ Rn+ for k ≥ 0. If k0 = −1, then Yk0
∈ Rp+. Consider the bound

Z(r) = (Zk(r))k≥k0
satisfying

sup
ξ1,ξ2∈B(r)

∣∣∣[DT (x̄+ ξ1)ξ2
]
k

∣∣∣ � Zk(r), k ≥ k0, (2.7)

where Zk(r) ∈ Rn+ for k ≥ 0. If k0 = −1, then Zk0
(r) ∈ Rp+. If the vector field (1.1)

is polynomial, then it is possible to obtain a polynomial expansion in r for Zk(r). As
a matter of fact, in this case, the degree of the polynomial Zk(r) is the same as the
degree of the polynomial vector field Ψ(u). In case the analytic vector field Ψ(u) is
not polynomial, a rigorous general strategy to get a polynomial expression in r for
Zk(r) would have to be incorporated in our approach. We now make the following
important assumption. Assume that there exists a number M ≥ m where m is the
dimension of the Galerkin projection (2.2) such that the bounds Y and Z satisfying
(2.6) and (2.7) are such that

A1. Yk = 0 ∈ Rn for all k ≥M .

A2. There exists a uniform polynomial bound Z̄M (r) ∈ Rn+ such that for all k ≥M ,

Zk(r) � Z̄M (r)

ωsk
. (2.8)

Before introducing the radii polynomials, let us briefly talk about these two as-
sumptions. If the vector field Ψ(u) is polynomial, then the nonlinear terms ck(ā) are
convolutions terms of the form (ā(j1)ā(j2) · · · ā(j`))k which are eventually equal to zero
for large enough k since āk = 0 for k ≥ m. Hence, by construction of A defined in
(2.4) and of the bound Y as in (2.6), there exists an M such that Yk can be defined
to be 0 ∈ Rn for k ≥ M . Again in case the vector field Ψ(u) is polynomial, there
are some analytic convolution estimates (e.g. the ones developed in [4]) that allow
computing Z̄M (r) satisfying (2.8). The computation of the uniform polynomial bound
Z̄M (r) is presented explicitly in the examples of Section 3.
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Definition 2.2. Denote by 1n ∈ Rn the vector whose components are all 1. We
define the finite radii polynomials (pk(r))M−1

k≥k0
by

pk(r) = Yk + Zk(r)− r

ωsk
1n, k = k0, . . . ,M − 1, (2.9)

and the tail radii polynomial by

pM (r) = Z̄M (r)− r1n. (2.10)

The following result justifies the construction of the radii polynomials of Defini-
tion 2.2.

Theorem 2.3. If there exists r > 0 such that pk(r) ≺ 0 for all k = k0, . . . ,M ,
then T : Bx̄(r)→ Bx̄(r) is a contraction and therefore there exists a unique x̃ ∈ Bx̄(r)
such that T (x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof. See Corollary 3.6 in [4, 16, 1].
The strategy to rigorously compute solutions of the IVP-operator f given in (1.7)

and the BVP-operator f given in (1.12) is therefore to construct the radii polynomials
of Definition 2.2, to verify (if possible) the hypothesis of Theorem 2.3, and to use the
result of Lemma 2.1 to conclude that u(t) = a0 +2

∑
k≥1 akTk(t) is a solution of F = 0

where F is either the integral operator given by (1.7) or the operator given by (1.12)
While the computation of the bound Y satisfying (2.6) is rather straightforward,

the computation of the polynomial bound Z(r) satisfying (2.7) is more involved. In
order to simplify its computation, we introduce the linear invertible operator A† :
Xs → Xs−1 by

(A†x)k =

{
(Df (m)(x̄F )(Πmx))k, k = k0, . . . ,m− 1

(2k)xk, k ≥ m. (2.11)

and we use the factorization T (x) = x−Af(x) = (I−AA†)x−A(f(x)−A†x). Letting
ξ1 = wr, ξ2 = vr with w, v ∈ B(1), one has that

DT (x̄+ ξ1)ξ2 = (I −AA†)ξ2 −A
(
Df(x̄+ ξ1)ξ2 −A†ξ2

)
=
[
(I −AA†)v

]
r −A

(
Df(x̄+ wr)vr −A†vr

)
,

(2.12)

where the first term is of the form εr, for ε = (I −AA†)v ∈ Xs very small, and where
the coefficient of r in [Df(x̄ + wr)vr − A†vr]k should be small as the dimension of
the Galerkin projection m is large. Hence, for m large enough, the coefficient in r
of Zk(r) should be small. That should increase the chances of the coefficient of r in
the radii polynomials defined in Definition 2.2 to be negative, and therefore increase
the chances of verifying the hypothesis of Theorem 2.3. We are now ready to present
some applications.

3. Applications. In this section, we present two applications. The first applica-
tion, presented in Section 3.1, concerns initial value problems in the Lorenz equations.
More precisely, we use the notion of radii polynomials to compute rigorously solutions
of the IVP-operator f given by (1.9). This yields rigorous enclosures of solutions of
the integral operator (1.7), where Ψ(u) is the vector field arising in the Lorenz equa-
tions. The second application, presented in Section 3.2, concerns projected boundary
value problems in the Gray-Scott equation. More precisely, we use the notion of radii
polynomials to compute rigorously solutions of the BVP-operator f given by (1.13)
where one of the boundary value is in the stable manifold of a steady state. This
yields rigorous enclosures of several symmetric connecting orbits for the Gray-Scott
equation.



9

3.1. Initial value problem in the Lorenz equations. Consider the Lorenz
equations re-scaled by a time factor L given by

du

dt
= Ψ(u) = L

 σ(u2 − u1)
ρu1 − u2 − u1u3

u1u2 − βu3

 (3.1)

at the classical parameter values σ = 10, ρ = 28 and β = 8/3.
The Chebyshev coefficients (1.8) of (3.1) are given explicitly by

ck = L

 σ((a2)k − (a1)k)
ρ(a1)k − (a2)k − (a1a3)k

(a1a2)k − β(a3)k

 (3.2)

with

(anam)k =
∑

k1+k2=k

ki∈Z

(an)|k1|(am)|k2|

for n = 1, m = 1, 2 and k ≥ 0. Given an initial condition p0, this results in an explicit
expression f(x) for the IVP-operator (1.9). We now present rigorous numerical results
illustrating the performance of our method.

Theorem 3.1. Consider

p1
0 = (8.102574164767477, 9.551574461919124, 24.429705657930224)

p2
0 = (−0.208252089096454,−0.454566900892446, 0)

p3
0 = (4.102702069909453, 8.936495309135337, 0.5789130478426856).

Let s1 = 2.5, s2 = 2.7 and s3 = 2.4. For p0 ∈ {p1
0, p

2
0, p

3
0} consider the IVP-operator

f given by (1.9) with ck as in (3.2). For each L in Table 3.1 there exists a unique
solution x̃ ∈ Xs1,2,3 of f(x) = 0 in a ball Bx̄(r̄p1,2,3

0
) ⊂ Xs of radius r̄p1,2,3

0
centered at

an approximate solution x̄.

L 0.5 1 1.5 2 2.5 3
mp1

0
50 150 200 250 450 500

mp2
0

300 failed failed failed failed failed

mp3
0

100 200 400 500 failed failed

r̄p1
0

1.87× 10−8 2.19× 10−7 4.97× 10−7 1.15× 10−6 7.88× 10−6 1.01× 10−5

r̄p2
0

9.87× 10−6 −− −− −− −− −−
r̄p3

0
6.79× 10−7 1.26× 10−6 8.57× 10−6 1.37× 10−5 −− −−

Table 3.1: Given p1,2,30 and a fixed L, these are corresponding values of the Galerkin pro-
jection dimension m

p
1,2,3
0

and the radius r̄
p
1,2,3
0

of a ball around the approximate solution x̄

in Xs in which the radii polynomials approach was successful. The number of modes m
p
1,2,3
0

one needs in order to find this ball where the mapping T is a contraction can be seen as a
measure of numerical difficulty to run the proof. Note that the corresponding integration
time is equal to 2L, i.e. the corresponding solution u of the unrescaled equation (3.1) is
defined on [−L,L] with u(−L) = p1,2,30 .

Before we discuss the proof via an application of Theorem 2.3 we comment on
the choice of the initial conditions: p1

0 is chosen to lie approximately on the unstable
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manifold of the positive eye equilibrium (
√
β(ρ− 1),

√
β(ρ− 1), ρ − 1), p2

0 lies ap-
proximately on the unstable manifold of the origin whereas p3

0 is taken randomly. As
one can see in Table 3.1, the data of the verification method depends strongly on the
choice of the initial condition. We assume that this stems from the presence of poles
of the complex extension of the solutions u : [−1, 1] → R3 of (3.1) whose position in
the complex plane changes depending on the initial condition and the scaling factor
L. By Theorem 1.2 this influences the decay rate of the Chebyshev coefficients. This
is illustrated in Figure 3.1. We refer to Figure 3.2 for a representation in phase space
of two solutions of Theorem 3.1.

The proof of Theorem 3.1 can be found in the MATLAB programs proofLo-
renz1.m, proofLorenz2.m and proofLorenz3.m at [17]. It relies on Theorem 2.3 and
uses the package Intlab [18] for the interval computations and the package Chebfun
[19]. In order to apply Theorem 2.3 the construction of the radii polynomials as de-
fined in (2.9) and (2.10) is crucial. After the following remark we aim to give some
details about the derivation of the bounds defined in (2.6), (2.7) and (2.8) involved in
the construction of the polynomials.

−1 −0.5 0 0.5 1
−20

−10

0

10

20

30

t/L

u 1
(t)

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

t/L

u 2
(t)

−1 −0.5 0 0.5 1
−10

0

10

20

30

40

50

t/L

u 3
(t)

0 50 100 150
10−20

10−10

100

1010

k

|(a
k)
1|

0 50 100 150
10−20

10−10

100

1010

k

|(a
k)
2|

0 50 100 150
10−20

10−10

100

1010

k

|(a
k)
3|

Fig. 3.1: Comparison of the componentwise solution profiles of a solution u : [−1, 1] → R3

of the Lorenz equations for the initial condition p10 (blue), p20 (red) and p30 (green) for L = 0.5
and of the decay rates of their Chebyshev coefficient sequences.

Remark 3.1. Consider an approximate solution x̄ and a corresponding unique
genuine solution x̃ ∈ Bx̄(r) ⊂ Xs of f(x) = 0 for a decay rate s > 1 and a radius
r > 0. Via the expansion (1.2) the sequences of Chebyshev coefficients x̄ and x̃
correspond to functions ū and ũ respectively, where ũ solves (3.1) with respective
initial condition p0. Given s > 1, the inequality ‖x̄− x̃‖s ≤ r can be used to get that

‖ū− ũ‖C0
def
= sup

t∈[−1,1]

‖ū(t)− ũ(t)‖∞ ≤ ‖ā0 − ã0‖∞ + 2 sup
t∈[−1,1]

∞∑
k=1

‖āk − ãk‖∞ |Tk(t)|︸ ︷︷ ︸
≤1

≤
(

1 + 2

∞∑
k=1

1

ωsk

)
r ≤

(
3 +

2

s− 1

)
r.
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Fig. 3.2: Profile in phase space of the solution (u1, u2, u3) of the Lorenz equations starting
at (a) the initial condition p10 for integration time 6 (corresponding to L = 3); (b) the initial
condition p30 for integration time 4 (corresponding to L = 2).

We now turn to the computations of the bounds involved in the construction of
the radii polynomials.

3.1.1. Bounds required to construct the radii polynomials. Note here
that k0 = 0, p = 0 and n = 3. Choose a time scaling factor L. Consider f the IVP-
operator (1.9) with ck given in (3.2). Recalling (2.2), consider a Galerkin projection
dimensionm and an approximate solution x̄ = ā = (āF , 0∞), that is f (m)(āF ) ≈ 0. Set
the computational parameter M arising in hypotheses A1 and A2 to M = 2m − 1.
With this choice, A1 is fulfilled and we can directly compute Y0, . . . , YM−1 from
(2.6) using interval arithmetic. Concerning the computation of Z1(r), . . . , ZM−1(r)
satisfying (2.7) and Z̄M (r) satisfying (2.8) we follow a three step process.

The first step is to use (2.12) and to compute polynomials zk(r) = z
(1)
k r + z

(2)
k r2 for

k ≥ 0 with z
(l)
k ∈ R3, such that

[
Df(x̄+ rw)rv −A†rv

]
k

= zk(r), where w, v ∈ B(1).
Note that B(1) is given by (2.3) with r = 1. We remark that we have to distinguish
the cases k = 0, 1 ≤ k ≤ m − 1 and m ≤ k. A straightforward calculation leads to
the expressions summarized in Table 3.2. Note that vIi is defined for i = 1, 2, 3 by

(vIi )k =

{
0, k = 0, . . . ,m− 1

(vi)k, k ≥ m.

Our next goal is to compute polynomials Z̃k(r) = Z̃
(1)
k r + Z̃

(2)
k r2 ∈ R3 such that∣∣∣z(l)

k

∣∣∣ � Z̃(l)
k , for l = 1, 2 and k = 0, . . . ,M − 1 (3.3)

and Z̃M (r) = Z̃
(1)
M r + Z̃

(2)
M r2 ∈ R3 such that

|z(l)
k | �

Z̃
(l)
M

ωsk
, for l = 1, 2 and k ≥M. (3.4)

To obtain the bounds Z̃
(1)
k for k = 0, . . . ,M − 1 define the finite sums
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k = 0

z
(1)
0 −2

∞∑
j=m

(−1)
j
vj

k = 1, . . . ,m− 1

z
(1)
k L


 0

−(ā3v
I
1)k+1 − (ā1v

I
3)k+1

(ā1v
I
2)k+1 + (ā2v

I
2)k+1

 −
 0

−(ā3v
I
1)k−1 − (ā1v

I
3)k−1

(ā1v
I
2)k−1 + (ā2v

I
2)k−1




z
(2)
k L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

 −
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1


k ≥ m

z
(1)
k L



σ((v2)k+1 − (v1)k+1)

ρ(v1)k+1 − (v2)k+1
−β(v3)k+1

 +

 0
−(ā3v1)k+1 − (ā1v3)k+1
(ā1v2)k+1 + (ā2v2)k+1


 −


σ((v2)k−1 − (v1)k−1)

ρ(v1)k−1 − (v2)k−1
−β(v3)k−1

 +

 0
−(ā3v1)k−1 − (ā1v3)k−1
(ā1v2)k−1 + (ā2v2)k−1





z
(2)
k L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

 −
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1



Table 3.2: Formulas for z
(l)
k , for k ≥ 0 and for l = 1, 2.

Σk,Ii
def
=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωs,I|k−k1|
, for k = 0, . . . ,M − 1,

Σki
def
=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωs|k−k1|
, for k = 0, . . . ,M,

where

1

ωs,Ik

def
=

{
0, 0 ≤ k ≤ m− 1
1
ωsk
, k ≥ m.

To define the uniform bound Z̃
(1)
M for k ≥M we set for i = 1, 2, 3

ΣM−1
i = (|āi|)0 +

m−1∑
k1=1

(|āi|)k1

(
1 +

1

(1− k1

M−1 )s

)
.

In order to compute Z̃
(2)
k for k = 0, . . . ,M and Z̃

(2)
M we employ estimates whose

detailed explanation can be found in [4]. For M ≥ 6 and s ≥ 2, define the constant

γM = 2

(
M

M − 1

)s
+

(
4 ln(M − 2)

M
+
π2 − 6

3

)(
1

M
+

1

2

)s−2

,

and in addition define

α2,M
k =



1 + 2

M∑
k1=1

1
ω2s
k1

+ 2
M2s−1(2s−1) , k = 0

M∑
k1=1

2ks

ωsk1
ωsk+k1

+ 2ks

(k+M+1)s(M−1)s(s−1) + 2 +

M∑
k1=1

2ks

ωsk1
ωsk−k1

, 1 ≤ k ≤M − 1

2 + 2

M∑
k1=1

1
ωsk1

+ 2
Ms−1(s−1) + γM , k ≥M.
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This yields that ∣∣∣∣∣ ∑
k1+k2=k

1

ωk1ωk2

∣∣∣∣∣ ≤ α2,M
k

ωsk
, for k ≥ 0.

One can use these definitions to obtain upper bounds for |zk(r)| (k ≥ 0). These new
resulting bounds can be found in Table 3.3.

k = 0

Z̃
(1)
0

2
(s−1)(m−1)s−1

1
1
1


k = 1, . . . ,m− 1

Z̃
(1)
k L


 0

Σ
k+1,I
3 + Σ

k+1,I
1

Σ
k+1,I
1 + Σ

k+1,I
2

 +

 0

Σ
k−1,I
3 + Σ

k−1,I
1

Σ
k−1,I
1 + Σ

k−1,I
2




Z̃
(2)
k L

α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1


0

2
2


k = m, . . . ,M − 1

Z̃
(1)
k L

 1
ωs
k+1

 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
k+1
3 + Σ

k+1
1

Σ
k+1
1 + Σ

k+1
2


 + L

 1
ωs
k−1

 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
k−1
3 + Σ

k−1
1

Σ
k−1
1 + Σ

k−1
2




Z̃
(2)
k L

α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1


0

2
2


k = M

Z̃
(1)
M L

(1 + ( M
M−1

)s)

 2|σ|
|ρ| + 1
|β|

 + (1 + ( M
M−1

)s)

 0

Σ
M−1
3 + Σ

M−1
1

Σ
M−1
1 + Σ

M−1
2




Z̃
(2)
M L

[
(1 + ( M

M−1
)s)α

2,M−1
M−1

] 0
2
2



Table 3.3: Formulas for Z̃
(l)
k , for k = 0, . . . ,M and for l = 1, 2.

We are now in position to take the last step in defining Zk(r) = Z
(1)
k r + Z

(2)
k r2

for k = 0, . . . ,M − 1 specified in (2.7) and Z̄M (r) = Z̄
(1)
M r+ Z̄

(2)
M r2 given by (2.8). As

previously mentioned, by definition of A and A†, there is a small ε such that for all
k ≥ 0, ∣∣[(I −AA†)rv]

k

∣∣ � rε13.

In particular for k ≥ m we have ε = 0 by definition of A and A† given respectively

by (2.4) and (2.11). We let Vl = (Z̃
(l)
0 , . . . , Z̃

(l)
m−1) ∈ R3m for l = 1, 2 to obtain for

k = 0, . . . ,m− 1

Z
(1)
k = [|Am|V1]k + ε13

Z
(2)
k = [|Am|V2]k ,

(3.5)

where the absolute value is taken component-wise and for k = m, . . . ,M − 1

Z
(l)
k =

1

2k
Z̃

(l)
k , for l = 1, 2. (3.6)

Finally we set

Z̄
(l)
M =

1

2M
Z̃

(l)
M , for l = 1, 2. (3.7)

Combining the bounds Y0, . . . , YM−1 and the bounds (3.5), (3.6) and (3.7) completes
the construction of the radii polynomials defined in (2.9) and (2.10).
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3.2. The Gray-Scott equation. Consider the Gray-Scott equation re-scaled
by a time factor L given by{

v′′1 = L2
(
v1v

2
2 − λ(1− v1)

)
v′′2 = L2

(
1
γ (v2 − v1v

2
2)
)
,

(3.8)

where γ and λ are real parameters. The Gray-Scott system serves as a model for a
continuously fed unstirred autocatalytic reaction. The homoclinic solutions we seek
represent non-trivial stationary spatial patterns in the form of pulses. See [23] and
the references therein for more details on the significance of the equation. Letting
u1 = v1, u2 = v′1, u3 = v2, u4 = v′2 and u = (u1, u2, u3, u4)T , we re-write (3.8) as the
vector field

du

dt
= Ψ(u) =


u2

L2
(
λu1 + u1u

2
3 − λ

)
u4

L2
(

1
γu3 − 1

γu1u
2
3

)
 . (3.9)

Hence, the Chebyshev coefficients (1.8) of (3.9) are given explicitly by

ck =


(a2)k

L2
(
λ(a1)k + (a1a

2
3)k − λδk,0

)
(a4)k

L2
(

1
γ (a3)k − 1

γ (a1a
2
3)k

)
 , (3.10)

where δk,0 is the Kronecker delta function and where

(a1a
2
3)k =

∑
k1+k2+k3=k

ki∈Z

(a1)|k1|(a3)|k2|(a3)|k3|.

We are interested in computing symmetric homoclinic orbits at p = (1, 0, 0, 0)T .
Consider P (θ) to be a parameterization of the local stable manifold W s

loc(p) at the
steady state p. In order to compute P we employ the parametrization method de-
veloped in [24], [25] and [26]. The philosophy is to use a power series expansion to
solve an invariance equation for P and thereby compute a multivariate polynomial
approximation PN to P . In addition the a-posteriori verification enables to find a
domain V and a bound δ such that ‖P (θ) − PN (θ)‖∞ < δ for all θ ∈ V . For details
on the implementation and the a-posteriori verification we refer the reader to [27].

We interpret symmetric homoclinic orbits as solutions of a BVP with the bound-
ary value u(1) = P (θ), that is u(1) ∈W s

loc(p). We impose an even symmetry condition
of the orbit (v1, v2) with v′1(−1) = u2(−1) = 0 and v′2(−1) = u4(−1) = 0. Hence,
the boundary condition (1.11) reads as G(u(−1), u(1)) = (u2(−1), u4(−1))T ∈ R2,
p1 = P (θ) and then the operator (1.12) is given by

F (θ, u)(t) =


u2(−1)
u4(−1)

u(t) +

∫ 1

t

Ψ(u(s))ds− P (θ)

 . (3.11)
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To obtain the first component η of (1.13), we use that Tk(−1) = (−1)k for all k ≥ 0
to get

η(θ, a) =

(
(a2)0 + 2

∞∑
k=1

(−1)k(a2)k, (a4)0 + 2

∞∑
k=1

(−1)k(a4)k

)T
. (3.12)

Together with (3.10) we obtain an explicit expression f(x) = fγ,λ(x) for the BVP-
operator (1.13) tailored to the problem of finding even homoclinics in the Gray-Scott
system (3.9).

It is shown in [23] that for parameter values γλ = 1 and λ > 4 there exists a
family of even symmetric homoclinics. More precisely for all (λ, γ) in the parameter
set

C0 =

{
(γ,

1

γ
) : 0 < γ <

2

9

}
,

the functions given by

v1(t) = 1− 3γ

1 +Q cosh( t√
γ )

and v2(t) =
3

1 +Q cosh( t√
γ )
, (3.13)

with Q(γ) =
√

1− 9γ
2 , are even symmetric homoclinic orbits of (3.9). Furthermore

in Theorem C of [23] it is ensured that the homoclinics persist if λγ = 1 + ε for some
small ε and in [27] to a certain extent the magnitude of ε for γ = 0.15 is investigated.
More concretely the authors of [27] show in Theorem 1.1 the existence of 30 homoclinic
orbits on the line γ = 0.15 in parameter space. We take a similar approach but extend
the considered region in parameter space. Before presenting the result, note that there
is a theoretical constraint in using the parameterization method to compute W s

loc(p)
in parameter space. This constraint comes from the presence of resonances between
the eigenvalues ± L√

γ and ±
√
λL of DΨ(p). A resonance occurs when λγ = n2 or

λγ = (1/n)2 for some n ∈ N. Denote Cn def
= {(λ, γ) : λγ = (n + 1)2} for n ≥ 0

and C1/n def
= {(λ, γ) : λγ = (1/n)2} for n ≥ 2. The power series representation of

W s
loc(p) that the parameterization method uses, will fail to converge at resonances.

As a matter of fact our rigorous numerical method combining Chebyshev series and
the parameterization method will necessarily fail at those parameter values located
on Cn (n ≥ 1) and C1/n (n ≥ 2). Let us now formulate a result guaranteeing the
existence of 2159 homoclinics for γ ∈ {0.10, . . . , 0.20}, and for several different values
of λ.

Theorem 3.2. Define

Λ±I,∆λ
(γ) =

{
(γ, λ) : λ =

1± k∆λ

γ
, k ∈ I

}
,

over an index set I. Let ∆λ = 0.03 and γi = 0.10 + (i − 1)0.01 for i = 1, . . . , 11.
Set I+(γi) = {1, . . . ,K+(γi)} and I−(γi) = {1, . . . ,K−(γi)} for i = 1, . . . , 11, where
K±(γi) is specified in Table 3.4. If

(λ, γ) ∈
11⋃
i=1

Λ+
I+(γi),∆λ

(γi) ∪ Λ−I−(γi),∆λ
(γi),
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there exists a ball Bx̄(rγ,λ) ⊂ Xs (with fγ,λ(x̄) ≈ 0) containing a unique solution

x̃ = (θ̃, ã) of fγ,λ(x) = 0 corresponding to an even homoclinic solution of (3.8).
For a geometric representation of the result of Theorem 3.2, we refer to Figure 3.3

and Figure 3.4.
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Fig. 3.3: Thirty-nine homoclinics from Theorem 3.2, where (λ, γ) ∈ Λ+
{1,...,30},0.03(0.15) on

the left and (λ, γ) ∈ Λ−{1,...,9},0.03(0.15) on the right. The red solution corresponds to the

exact homoclinic given by (3.13). Each couple (v1, v2) is the center of a ball in function
space in which an exact solution is guaranteed to exist. The blue part over [0, 1

2
] corresponds

to the interval [−1, 1] for the operator (3.11), which in turn corresponds to the rescaling of
[0, L±(0.15)]. The green part is added by using the conjugacy relation (see equation (57) in
[27]) fulfilled by the parametrization P of W s

loc(p), where we integrate for 2 time units on
the time scale of (3.11) and then rescale [−1, 3] to the interval [0,1]. The part over [−1, 0] is
obtained using the symmetry.

γ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
L+(γ) 0.45 0.50 0.55 0.60 0.60 0.60 0.65 0.70 0.75 0.75 0.75
L−(γ) 0.50 0.55 0.55 0.55 0.60 0.70 0.65 0.65 0.70 0.70 0.7
K+(γ) 114 128 143 158 172 187 202 217 231 246 261
K−(γ) 18 16 15 12 11 9 7 6 3 2 1

Table 3.4: Depending on the value of γ the rescaling factor L and the number of steps K±

we take in the λ-directions is shown.

The rigorous verification of Theorem 3.2 can be found in the MATLAB programs
proofLambdaplusγ.m and proofLambdaminusγ.m with γ = 010, . . . , 020 and relies on
Theorem 2.3. All codes can be downloaded from [17]. The programs make use of the
package Intlab [18] for the interval computations and of the package Chebfun [19].
Chebfun is used to compute the Chebyshev coefficients of the exact solutions (3.13)
from which a continuation is performed. The main prerequisite for applying Theorem
2.3 is the construction of the radii polynomials (2.9) and (2.10). We now give some
details on their derivation.

3.2.1. Bounds required to construct the radii polynomials. We are in the
case k0 = −1, p = 2 and n = 4. Consider a dimension m for the Galerkin projection
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Fig. 3.4: (Left) Components v1 (black) and v2 (blue) of the homoclinic solution

of Theorem 3.2 corresponding to the parameter value (γ, λ) = (0.15, 1+89(0.03)
0.15

) ∈
Λ+
I+(0.15),0.03

(0.15). The interval [0, 1] corresponds to the rescaled interval [−1, 1] of (3.11),

corresponding itself in turn to a rescaling of [0, 0.6]. The interval [−1, 0] is added by symme-
try. (Right) The Chebyshev coefficients of v1 (black) and v2 (blue). Notice the fast decay
of the coefficients to zero.
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Fig. 3.5: The green points indicate the region in parameter space at which the rigorous proof
of existence of symmetric homoclinics was obtained by computing the radii polynomials with
interval arithmetic. The red points indicate the region investigated in [27]. Based on the
discussion about resonances, we portrait the curve C1 and C 1

2
at which our rigorous method

will necessarily fail. Note that C0 is the curve on which the exact homoclinics (3.13) exist.

(2.2) and an approximation x̄ = (θ̄, ā) = (θ̄, āF , 0∞) such that f (m)(θ̄, āF ) ≈ 0,
where f is the BVP-operator (1.13), ck is given in (3.10) and the boundary conditions
η : Xs → Rp is given by (3.12). For instance if (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose m = 37
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and set L = 0.6. For (γ, λ) ∈ Λ−I−(0.15),∆λ
we choose m = 47 and let L = 0.7. Note

that if we set M = 3m−2 assumption A1 is satisfied and Y1, . . . , YM can be computed
by (2.6). The strategy to construct the bounds Z1(r), . . . , ZM−1(r) and Z̄M (r) defined
in (2.7) and (2.8) is analogue to the Lorenz example. Note that ξ1, ξ2 in (2.12) are now
given by ξ1 = r(θ, w) and ξ2 = r(φ, v) with (θ, w), (φ, v) ∈ B(1) ⊂ Xs. In addition we
assume that we have a bound Λ ∈ R4

+ such that for every θ, φ corresponding to ξ1,2

|DP (θ̄ + rθ)φ| � Λ

for all r with 0 < r < r∗, where r∗ is an apriori bound on r that we set to r∗ = 0.004.
The explicit construction of Λ in the context of the Gray-Scott equations is presented
in Section 5 in [27]. In particular, at (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose N = 13 as the

order of the polynomial approximation PN and at (γ, λ) ∈ Λ−I−(0.15),∆λ
, we choose

N = 15. For more details on the choice of m and N at γ = 0.14, 0.16 we refer to the

code at [17]. A central step is to compute the polynomials Z̃k(r) =
∑3
l=1 Z̃

(l)
k rl ∈ R4

and Z̃M (r) =
∑3
l=1 Z̃

(l)
M rl ∈ R4 fulfilling the analogue of (3.3) and (3.4). We only

present Z̃
(l)
k and Z̃

(l)
M for k = 0, . . . ,M−1 and l = 1, 2, 3 in Table A.1 in the Appendix.

Our main technical tool to compute these bounds is given by the following Lemma
which is a simplified combination of Lemmas A.3 and A.4 in [4]. In order to explain
its usefulness in our context, we recall that given three sequences a, b, c ∈ Ωs, the
cubic convolution sums (abc)k can be split as

(abc)k = (abc)Mk +
∑

k1+k2+k3=k

max{|k1|,|k2|,|k3|}≥M
ki∈Z

a|k1|b|k2|c|k3|,

where

(abc)Mk
def
=

∑
k1+k2+k3=k

|ki|≤M,i=1,2,3

ki∈Z

a|k1|b|k2|c|k3|.

One of the aims of the following result is to bound the infinite tail sum.
Lemma 3.3. Let a, b, c ∈ Ωs and M ≥ 6. Set A = ‖a‖s, B = ‖b‖s and C = ‖c‖s.

Then there exist computable numbers ε
(3)
k = ε

(3)
k (M) for k = 0, . . . ,M such that∑

k1+k2+k3=k

max{|k1|,|k2|,|k3|}|≥M+1

ki∈Z

|a||k1||b||k2||c||k3| ≤ 3(ABC)ε
(3)
k .

In addition there is a computable number α
(3)
M−1 such that for k ≥M − 1

∑
k1+k2+k3=k

ki∈Z

|a||k1||b||k2||c||k3| ≤ (ABC)
α

(3)
M−1

ωsk
.

For a proof and for details on the computation see [4] as well as the code at [17].
Defining A1,3 = ‖ā1,3‖s and for i = 1, 3 and j = 3

ΣM−1
ij =

m−1∑
k1=−m+1

m−1∑
k2=−m+1

(|āi|)|k1|(|āj |)|k2|max

{
Ms

(M − 1− k1 − k2)s
, 1

}
completes the ingredients for Table A.1.
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4. Conclusion. Let us conclude this paper by presenting some potential exten-
sions and improvements of our proposed rigorous computational method to solve IVPs
and BVPs of ODEs.

First, our method could probably be generalized to compute rigorously solutions
of higher-order differential equations without re-writing them as first order vector
fields. For example, we believe that computing solutions of BVPs associated to the
Gray-Scott equations (3.8) could be obtained by integrating twice each equation which
could then be solved rigorously by moving to the space of Chebyshev coefficients. The
improvement would be twofold. First, the linear part of the equations would grow
as O(k2) (as opposed to O(k) in the BVP-operator (1.13)), hence facilitating the
use of a contraction mapping argument based on a Newton-like operator. Second,
the size of the finite dimensional projection would be twice smaller. A downside is
that we would obtain more complicated formulas for the Chebyshev expansions of the
equations resulting from the double integration.

A second extension of the method would be to use a multiple shooting approach
to solve the integral operators over long periods of time. Indeed, the theory of the
Chebyshev series presented in Section 1 suggests that integrating over long periods
of time (e.g. compute solutions with large scaling factor L) has the disadvantage of
bringing the (potentially existing) poles closer to the ρ-ellipse mentioned in Theo-
rem 1.2. This implies that the Chebyshev coefficients of the solutions decay to zero
at a slow rate. Therefore, an advantage of a multiple shooting approach based on in-
tegrating over many short intervals (with corresponding short scaling factor L) would
push away the poles, hence bringing a faster decay rate to the Chebyshev coefficients
of the solutions. We could then potentially take smaller Galerkin projection dimen-
sions to perform our rigorous computations, thanks to the fast decay rates of the
solutions on each sub-intervals. The downside would again be a more complicated
formulation of the operators which would need to take care of solving simultaneously
many parallel problems.

A third extension of the method would be to combine the rigorous pseudo arc
length continuation method of [16, 28] with the methods described in the present work
to compute global smooth branches of solutions of BVPs.

A fourth and slightly more challenging improvement consists of modifying the
proposed approach to vector fields with nonlinearities that are non polynomial. That
would require extending the already existing convolution estimates to the non poly-
nomial case.

A final and most ambitious extension would be to attempt to rigorously compute
solutions of spatially periodic PDEs combining a Chebyshev series expansion in time
and a Fourier series expansion in space.
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Appendix A. Formulas for Z̃k for k = −1, . . . ,M in the Gray-Scott
equations. We give an overview of the bounds Z̃k for k = −1, . . . ,M involved in the
construction of the radii polynomials for the proof of Theorem 3.2.
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k+1 + 2(|ā1||w3||v1|)

M
k+1)

0

L2

γ

[
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k−1 + 2(|ā1||w3||v1|)

M
k−1)

0

L2

γ

[
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Table A.1: Formulas for Z̃
(l)
k , k = 1, . . . ,M and l = 1, 2, 3.


