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Abstract

In this paper, we introduce a method to prove existence of several rapidly
and slowly oscillating periodic solutions of a delayed van der Pol oscillator. The
proof is a combination of pen and paper analytic estimates, the contraction
mapping theorem and a computer program using interval arithmetic. Using this
approach we extend some existence results obtained by Nussbaum in [Ann. Mat.
Pura Appl., 4 (101), 263–306, 1974].
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1 Introduction

In 1920, to model oscillations of some electric circuits, van der Pol proposed one of
the most influential system of nonlinear differential equations, see [1]. Since then,
variants of the so-called van der Pol oscillator have been proposed as mathematical
models of various real-world processes exhibiting limit cycles when the rate of change
of the state variables depend only on their current states. However, there are many
processes where this relation is also influenced by past values of the system in question.
To model these processes, one may want to consider the use of functional differential
equations, see [2, 3, 4, 5].

In [7], Grafton establishes existence of periodic solutions to

ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ) = 0, ε, τ > 0, (1)

a van der Pol equation with a retarded position variable. His results are based on his
periodicity results developed in [8]. In [9], using slightly different notations, Nussbaum
considers the more general class of equations

ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ)− κy(t) = 0, ε, τ > 0, κ ∈ R, (2)

and establishes the following result.

Theorem 1.1 (Nussbaum, 1974). If κ < 0, −κτ < ε and − 1
2κτ

2 ≤ 1, then
equation (2) has a nonzero periodic solution of period greater than 2τ .
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We refer to (2) as Nussbaum’s equation. The techniques that Nussbaum uses are
sophisticated fixed point arguments, however, as he remarks, he has

to restrict the size of |κ| in order to guarantee that the zeros of y are at
least a distance τ apart, p. 287 of [9].

Moreover, he mentions that numerical simulations suggest the existence of periodic
solutions to (2) for a large range of κ < 0. Thus, it seems natural to try to develop
a computational tool in order to establish existence results for periodic solutions to
(2) for parameter values seemingly inaccessible using Nussbaum’s methods. Before
formulating our results, we need the following definition.

Definition 1.2. Let y(t) be a periodic solution to (2) with the minimal period p.
Assume that 0 = z1 < z2 < . . . < zn = p are such that y(zi) = 0, i = 1, . . . , n, and
that these are the only zeroes of y. If zi+1 − zi > τ for all i = 1, . . . , n − 1 then y
is a slowly oscillating periodic solution. Similarly, y is said to be a rapidly oscillating
periodic solution if zi+1 − zi < τ for all i = 1, . . . , n− 1.

Our aim is to prove the following statements, whose proofs are a combination of pen
and paper analytic estimates and computer programming using interval arithmetic.

Theorem 1.3. Let ε = 0.15 and τ = 2. For 277 distinct values of κ ∈ [−3.8521, 0.1379],
there exists a nontrivial periodic solution of (2). As for the range of periods p of these
solutions we have that p ∈ [3.69, 11.24].

The parameter values of Theorem 1.3 were obtained by performing a numerical
continuation on κ with step size 0.015.

Theorem 1.4. Let ε = 0.25 and τ = 5. For 383 distinct parameter values of κ ∈
[−4.6814,−0.4762], there exists a nontrivial periodic solution of (2). As for the range
of the periods p of these solutions we have that p ∈ [3.15, 5.26].

The parameter values of Theorem 1.4 were also obtained by performing a numerical
continuation on κ with varying step size.

Remark 1.5. The norms of the computed solutions are shown in Figure 1 while
their periods are plotted in Figure 2. Also, some illustrative time profiles can be
seen in Figure 3 and 4; these figures indicate that, indeed, there are both slowly and
rapidly oscillating solutions to (2). Furthermore, our results relax the periodicity
condition in Nussbaum’s theorem. The trade-off here clearly is that our method
applies to a given specific equation. Also, unlike in the case of finite dimensional
dynamical systems, see [6], we do not have tools to address stability properties of
these periodic solutions. Nevertheless, since these periodic solutions are visible via
numerical simulations suggests their stability.

The proofs of Theorem 1.3 and Theorem 1.4 are based on adapting ideas from
[10] and [11] to the context of second order delay equations with cubic nonlinearities.
Moreover, we would like to mention that Nussbaum considers in [9] a large family
of functional differential equations of which (2) is a particular member. Establishing
existence results of periodic solutions to other members of the family of equations
considered in [9] is an ongoing project.
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Figure 1: Left: The norm of the computed 267 solutions of Theorem 1.3 with respect
to the parameter κ for τ = 2 and ε = 0.15. Right: The norm of the computed 383
solutions of Theorem 1.4 with respect to the parameter κ for τ = 5 and ε = 0.25.
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Figure 2: Left: The period of the computed 267 solutions of Theorem 1.3 with respect
to the parameter κ for τ = 2 and ε = 0.15. Right: The period of the computed 383
solutions of Theorem 1.4 with respect to the parameter κ for τ = 5 and ε = 0.25.

2 Setting up a fixed point problem

If y(t) is a periodic solution of (2) with a period p > 0, then

y(t) =

∞∑
k=−∞

cke
ikLt, (3)

where L = 2π
p and the ck are complex numbers satisfying c−k = ck, since y ∈ R.

Denoting the real and the imaginary part of ck respectively by ak and bk, one gets
that ak = a−k and bk = −b−k. As a result, b0 = Im(c0) = 0 and so it is not a
variable. An equivalent expansion for (3) is given by

y(t) = a0 + 2

∞∑
k=1

[ak cos kLt− bk sin kLt] . (4)

As the frequency L of (3) is not known a-priori, it is left as a variable. Since periodic
solutions of analytic delay differential equations are analytic (e.g. see [12]), their
Fourier coefficients decay faster then any algebraic decay. This will motivate the
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Figure 3: Some of the computed 267 solutions with τ = 2 and ε = 0.15. On panel
(a), (b), (c) and (d), κ = −3.8521, −2.5171, −1.1821 and 0.1379, respectively.
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Figure 4: Some of the computed 383 solutions with τ = 5 and ε = 0.25. On panel
(a), (b), (c) and (d), κ = −4.8232, −1.6214, −0.4861 and −0.4761, respectively.

choice of Banach space in which we will embed the Fourier coefficients. Let

xk
def
=

{
(L, a0), k = 0

(ak, bk), k > 0
(5)

and x
def
= (x0, x1, . . . , xk, . . .), and denote the first and the second component of xk by

xk,1 and xk,2, respectively. Given a growth rate s > 0, consider the weight functions

ωsk =

{
1, k = 0

|k|s, k 6= 0
(6)
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which are used to define the norm

‖x‖s
def
= sup

k≥0
|xk|∞ωsk, (7)

where |xk|∞ = max{|xk,1|, |xk,2|}.

Lemma 2.1. For a given s > 1, consider the space of sequences with algebraically
decaying tails

Ωs
def
= {x = (x0, x1, x2. . . .) : ‖x‖s <∞}

is a Banach space. Moreover, assume that y(t) given by (4) is a periodic solution of
Nussbaum equation (2) and consider the associated x given by (5). Then for any fixed
s > 1, the space Ωs contains x.

Proof. The fact that Ωs is a Banach space is standard and the proof is omitted. Let
y(t) given by (4) a periodic solution of (2) and let x the associated vector given
component-wise by (5). Since y(t) is a periodic solution of the analytic delay dif-
ferential equation (2), it follows from [12] that it is analytic. Therefore the Fourier
coefficients of y(t) decay exponentially fast to zero. Hence, the sequences {ak}k≥0

and {bk}k≥0 converge to zero faster than any algebraic decay. This implies that for
any s > 1, x ∈ Ωs.

Formally, using (3), we get

ẏ(t) =

∞∑
k=−∞

ckikLe
ikLt,

ÿ(t) =

∞∑
k=−∞

−ckk2L2eikLt

and

y(t− τ) =

∞∑
k=−∞

cke
−ikLτeikLt.

Thus (2) becomes

∞∑
k=−∞

[
−k2L2 − εikL− κ+ e−ikLτ

]
cke

ikLt

+ ε

∞∑
k1=−∞

ck1
eik1Lt

∞∑
k2=−∞

ck2
eik2Lt

∞∑
k3=−∞

ck3
ik3Le

ik3Lt = 0.

(8)

To obtain the Fourier coefficients in (3), one takes the inner product on both sides
of (8) with eikLt, k ∈ Z, yielding

gk
def
=
[
−k2L2 − εikL− κ+ e−ikLτ

]
ck + iεL

∑
k1+k2+k3=k

ck1
ck2
ck3
k3 = 0.
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Observing that

Sk
def
=

∑
k1+k2+k3=k

kj∈Z

ck1
ck2
ck3
k3

=
∑

k1+k2+k3=k
kj∈Z

ck1ck2ck3(k − k1 − k2)

= k
∑

k1+k2+k3=k
kj∈Z

ck1ck2ck3 − 2Sk,

we get that

gk =
[
−k2L2 − εikL− κ+ e−ikLτ

]
ck +

iεkL

3

∑
k1+k2+k3=k

kj∈Z

ck1
ck2
ck3

= 0,

which is a countable system of nonlinear complex-valued equations. Using (5), one
gets that

Re(gk)(x) =(−k2L2 − κ+ cos kLτ)ak + (εkL+ sin kLτ)bk

+
εkL

3

∑
k1+k2+k3=k

kj∈Z

−ak1
ak2

bk3
− 2ak1

bk2
ak3

+ bk1
bk2
bk3

Im(gk)(x) =(−k2L2 − κ+ cos kLτ)bk − (εkL+ sin kLτ)ak

+
εkL

3

∑
k1+k2+k3=k

kj∈Z

ak1
ak2

ak3
− 2ak1

bk2
bk3
− bk1

bk2
ak3

.

For a periodic function y(t) with expansion (3), let us define the map

h(x) = y(0) = a0 +

∞∑
k=1

ak.

Hence, the map f whose zeros correspond to periodic solutions (oscillating around 0)
of (2) is given component-wise by

fk(x)
def
=


(

h(x)
Re(g0)(x)

)
, k = 0;(

Re(gk)(x)
Im(gk)(x)

)
, k > 0.

(9)

As in the case of x, denote the first and the second component of fk by fk,1 and
fk,2, respectively. For the sake of simplicity of the presentation, let us introduce

Rk(L)
def
=

(
−k2L2 − κ+ cos kLτ εkL+ sin kLτ
−(εkL+ sin kLτ) −k2L2 − κ+ cos kLτ

)
. (10)

Also, for given three bi-infinite vectors a = (ak)k∈Z, b = (bk)k∈Z and c = (ck)k∈Z, we
define the discrete cubic convolution term component-wise by

(a ∗ b ∗ c)k
def
=

∑
k1+k2+k3=k

kj∈Z

ak1
bk2
ck3
, k ∈ Z (11)
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to write

fk(x) = Rk(L)

(
ak
bk

)
+
εkL

3

(
−(a ∗ a ∗ b)k − 2(a ∗ b ∗ a)k + (b ∗ b ∗ b)k
(a ∗ a ∗ a)k − 2(a ∗ b ∗ b)k − (b ∗ b ∗ a)k

)
(12)

for k ≥ 1. In setting up our fixed point problem, the following is crucial.

Lemma 2.2. The operator f = {fk}k≥0, defined component-wise in (9), has the
property that f : Ωs → Ωs−2.

Proof. It is not difficult to see that

sup
k≥0

∣∣(−k2L2 − κ+ cos kLτ
)
ak + (εkL+ sin kLτ) bk

∣∣ωs−2
k <∞

and
sup
k≥0

∣∣(−εkL− sin kLτ) ak +
(
−k2L2 − κ+ cos kLτ

)
bk
∣∣ωs−2

k <∞

for x ∈ Ωs.
To proceed, for vectors u, v ∈ Rm×n, we introduce u � v to denote the fact that

ui,j ≤ vi,j , i = 1, . . . ,m, j = 1, . . . , n. Since x ∈ Ωs, by definition,

|ak| ≤
‖x‖s
ωsk

and |bk| ≤
‖x‖s
ωsk

, k ∈ Z.

Now, from Lemma 2.1 in [13], there are Ck,1 and Ck,2 positive constants uniformly
bounded so that∣∣∣∣( −(a ∗ a ∗ b)k − 2(a ∗ b ∗ a)k + (b ∗ b ∗ b)k

(a ∗ a ∗ a)k − 2(a ∗ b ∗ b)k − (b ∗ b ∗ a)k

)∣∣∣∣� 1

ωsk

(
Ck,1
Ck,2

)
, k ≥ 0.

This implies that
‖f(x)‖s−2 = sup

k≥0
|fk|∞ωs−2

k <∞,

that is, f(x) ∈ Ωs−2.

Remark 2.3. We want to emphasize that the idea of deriving a set of analytic esti-
mates to bound the truncation error term are originally used in [13, 15, 16] to develop
constructive proofs of existence of equilibria to partial differential equations. However,
in the present paper, we decided to write and prove all estimates explicitly to keep this
work self-contained.

The following result establishes the correspondence between the periodic solutions
of (2) and the zeros of f . Its proof is omitted and a similar statement with a proof
can be found for example in [10].

Lemma 2.4. For a sequence x = (x0, x1, x2, . . .) ∈ Ωs given in (5), f(x) = 0 if and
only if y(t) in (4) is a solution to (2) such that y(0) = a0 + 2

∑∞
k=1 ak = 0.

Now, we rewrite f(x) = 0 as a fixed-point equation T (x) = x in Ωs where T is a
Newton-like operator. In order to define T , first consider f (m) : R2m → R2m, a finite
dimensional projection f , whose k-th component is given by

f
(m)
k (x0, . . . , xm−1)

def
= fk(x0, . . . , xm−1, 0∞), k = 0, . . . ,m− 1,

7



where 0∞ = (0)j≥0. Hereafter, we identify x̄ = (L̄, ā0, ā1, b̄1, . . . , ām−1, b̄m−1) with
(x̄, 0∞) if x̄ ∈ R2m such that f (m)(x̄) ≈ 0. Now we define the finite part of T using
numerics while its tail will be defined analytically. To define the finite part, consider
the later described computational parameter M = 3m − 2 (e.g. see Lemma 3.1),
and let AM ∈ R2M×2M be a numerical approximation of the inverse of Dxf

(M)(x̄).
Assume that

‖IM −AMDxf
(M)(x̄)‖∞ < 1, (13)

which implies that AM is an invertible matrix.
Furthermore, let

Λk
def
=

∂fk
∂xk

(x̄) =

(
%k δk
−δk %k

)
,

where
%k

def
= −k2L̄2 − κ+ cos kL̄τ

and

δk
def
= εkL̄+ sin kL̄τ − 2εkL̄

(
ā2

0

2
+

m−1∑
k1=1

(
ā2
k1

+ b̄2k1

))
.

Since κ < 1, a sufficient condition for the invertibility of Λk for all k > M is

m >
1

3

(√
1− κ
L̄

+ 2

)
. (14)

Indeed, (14) and k ≥M imply %k < 0 and thus %2
k + δ2

k > 0 for all k ≥M . Define the
linear operator A : Ωs → Ωs+2 by

Ax
def
=

{
(AMxF )k, k = 0, . . . ,M − 1

Λ−1
k xk, k ≥M.

(15)

In this definition,

Λ−1
k =

1

%2
k + δ2

k

(
%k −δk
δk %k

)
,

and
xF = (x0, x1, . . . , xM−1) ∈ R2M

is the finite dimensional projection of x ∈ Ωs. The conditions (13) and (14) imply the
invertibility of the operator A defined in (15).

Notice that m in (14) is an explicit lower bound on the dimension of the finite
dimensional projection for A to be an invertible linear operator. Now, we complete
the verification of the definition of A, that is, we show that A : Ωs → Ωs+2. Given
a matrix M denote by |M | the matrix whose components are the component-wise
absolute values of M .

Lemma 2.5. Let L̄ > 0 and ā0 ∈ R, and define

ρ
def
=

M2

M2L̄2 − (1− κ)
> 0

and

Ξ
def
=

 ρ ρ2
(
εL̄|1−2S|

M + 1
M2

)
ρ2
(
εL̄|1−2S|

M + 1
M2

)
ρ

 ,
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where

S
def
=

ā2
0

2
+

m−1∑
k1=1

(
ā2
k1

+ b̄2k1

)
.

Then for all k ≥M ,

|Λ−1
k | ≤cw

1

k2
Ξ.

Thus A : Ωs → Ωs+2.

Proof. From (14),

|%k| = − cos kL̄τ + k2L̄2 + κ ≥ −1 + k2L̄2 + κ ≥ k2

(
L̄2 − 1− κ

M2

)
=
k2

ρ
.

Thus
1

|%k|
≤ ρ 1

k2
,

and then ∣∣∣∣ %k
%2
k + δ2

k

∣∣∣∣ ≤ |%k|%2
k

=
1

|%k|
≤ ρ 1

k2
.

Finally, since ε > 0, |δk| ≤ εkL̄|1− 2S|+ 1, we get that∣∣∣∣ δk
%2
k + δ2

k

∣∣∣∣ ≤ εkL̄|1− 2S|+ 1

%2
k + δ2

k

≤ εkL̄|1− 2S|+ 1

%2
k

≤ ρ2(εkL̄|1− 2S|+ 1)

k4

≤ 1

k2
ρ2

(
εL̄|1− 2S|

M
+

1

M2

)
.

That is, for k ≥M ,

∣∣Λ−1
k

∣∣� 1

k2

 ρ ρ2
(
εL̄|1−2S|

M + 1
M2

)
ρ2
(
εL̄|1−2S|

M + 1
M2

)
ρ

 .

Thus, for an x ∈ Ωs,

‖Ax‖s+2 = max

{
max

k=0,...,M−1

{
|(AMxF )k|∞ωs+2

k

}
, sup
k≥M

{
|Λ−1
k xk|∞ωs+2

k

}}
≤ max

{
max

k=0,...,M−1

{
|(AMxF )k|∞ωs+2

k

}
, ‖Ξ‖∞ sup

k≥M
{|xk|∞ωsk}

}
.

The conclusion of Lemma 2.5 allows us to define the Newton-like operator T :
Ωs → Ωs by

T (x) = x−Af(x). (16)

By injectivity of the operator A, the fixed points of T are in one-to-one correspon-
dence with the zeros of f . Therefore, we now focus on the computation of the fixed
points of T . To achieve this new task, we use the radii polynomial approach.
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3 The radii polynomial approach

Let

B(r)
def
=

∞∏
k=0

[
− r

ωsk
,
r

ωsk

]2

(17)

be the ball of radius r > 0 in Ωs centered at the origin, and

Bx̄(r)
def
= x̄+B(r) (18)

be the ball centered at x̄. In order to show that T is a contraction, we derive

component-wise bounds Yk =

(
Yk,1
Yk,2

)
, Zk =

(
Zk,1
Zk,2

)
∈ R2 for k ≥ 0 such that

|[T (x̄)− x̄]k| = |[−Af(x̄)]k| � Yk (19)

and
sup

b,c∈B(r)

|[DT (x̄+ b)c]k| = sup
u,v∈B(1)

|[DT (x̄+ ru)rv]k| � Zk(r). (20)

Lemma 3.1. For all k ≥M = 3m− 2, [Af(x̄)]k = (0, 0)T .

Proof. If k1, k2, k3 ∈ Z satisfy k1 + k2 + k3 = k ≥ M = 3m − 2, then there exists
j ∈ {1, 2, 3} such that kj ≥ m. Since, ā` = b̄` = 0 for all ` ≥ m, then

fk,1(x̄) =(−k2L̄2 − κ+ cos kL̄τ)āk + (εkL̄+ sin kL̄τ)b̄k

+
εkL̄

3

∑
k1+k2+k3=k

kj∈Z

−āk1 āk2 b̄k3 − 2āk1 b̄k2 āk3 + b̄k1
b̄k2
b̄k3

= 0, ∀ k ≥M.

A similar argument shows that fk,2(x̄) = 0. This implies that fk(x̄) = (0, 0)T , for all
k ≥M . Finally, recalling (15), we get that

[Af(x̄)]k = Λ−1
k fk(x̄) = (0, 0)T , ∀ k ≥M.

A consequence of the previous result is that for k ≥ M , we let Yk = (0, 0)T .
Moreover, for k ≥M , assume that one may choose

Zk(r) = ẐM (r)

(
Ms

ωsk

)
,

where ẐM (r) ∈ R2 is independent of k. We justify this assumption in Section 3.2.

Definition 3.2. The 2M radii polynomials {p0, p1, . . . , pM} are defined by

pk(r)
def
=


Yk + Zk(r)− r

ωsk

(
1

1

)
, k = 0, . . . ,M − 1

ẐM (r)− r
ωsM

(
1

1

)
, k = M.

Once these polynomials are constructed, the existence of periodic solutions to (2)
can be established by using the following result, whose proof can be found in [10].
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Lemma 3.3. If there exists r > 0 such that pk(r) < 0 for k = 0, . . . ,M , then there
exists a unique x̃ ∈ Bx̄(r) such that T (x̃) = x̃, or, equivalently, such that f(x̃) = 0.

Therefore, the proofs of Theorem 1.3 and Theorem 1.4 are obtained by construct-
ing the radii polynomials of Definition 3.2, by verifying the hypotheses of Lemma 3.3
and finally by applying Lemma 2.4. The task is now to construct the radii polynomials
associated to (2).

We use the components of

YF
def
= |AMfF (x̄)| (21)

to compute Yk for k = 0, . . . ,M−1. To derive the bound Z, for b, c ∈ B(r), let b = ur
and c = vr where u, v ∈ B(1), and consider A† : Ωs+2 → Ωs defined by

A†x
def
=

{
(Df (M)xF )k, k = 0, . . .M − 1

Λkxk, k ≥M,
(22)

an almost inverse of the operator A. Now, we have

DT (x̄+ ru)rv = [I −AA†]rv −A[Df(x̄+ ru)−A†]rv. (23)

Since the first term is very small, for k ≥ 0 and i ∈ {1, 2}, to derive the bound Z, we
consider the expansion

[Df(x̄+ ru)−A†]rv =

4∑
l1=1

c
(l1)
k,i r

l1 . (24)

3.1 The bounds Zk(r), k ∈ {0, . . . ,M − 1}

For k ∈ {0, . . . ,M − 1}, we generated coefficients c
(l1)
k,i using Maple. Bounds C

(l1)
k ≥ 0

such that
∣∣∣c(l1)
k,i

∣∣∣ ≤ C
(l1)
k can be found in Table 1. Before going any further, we make

some comments on these bounds. First of all, since c
(1)
0,2 = 0, we can define

C
(l1)
F =


(
C

(1)
0,1

0

)
(
C

(l1)
k

C
(l1)
k

)
k=1,...,M−1

 .

Thus we get that

|[DT (x̄+ ru)rv]|F � |[IM −AMDf (M)(x̄)]vF |r +

4∑
l1=1

|AM | · C(l1)
F rl1

Also, notice that except the infinite sum
∑
k1+k2+k3=k

1
ωsk1

ωsk2
ωsk3

, all other convo-

lutions involve the finite vector x̄ and thus are finite sums. These finite discrete
convolutions are computed by using discrete fast Fourier transformation, for details
on this see [14]. Finally, to bound the infinite discrete convolution in Table 1, one can
use the following result.
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Lemma 3.4 (Quadratic estimates). For 1 ≤ µ ≤M − 1 and ν ∈ Z, let

φ(µ,ν) =

µ+ν−1∑
k1=1

1

ks1(µ+ ν − k1)s

and

α(µ,ν) = φ(µ,ν) + 2

(
M∑
k1=1

1

ωsk1
ωsµ+ν+k1

+
1

ωsM+1+µ+ν

1

M (s−1)(s− 1)
+

1

ωsµ+ν

)
.

Then ∑
k1+k2=µ+ν

1

ωsk1
ωsk2

≤ α(µ,ν). (25)

Proof.

∑
k1+k2=µ+ν

1

ωsk1
ωsk2

= 2

∞∑
k1=1

1

ωsk1
ωsµ+ν+k1

+
2

ωsµ+ν

+

µ+ν−1∑
k1=1

1

ωsk1
ωsµ+ν−k1

= 2

(
M∑
k1=1

1

ωsk1
ωsµ+ν+k1

+

∞∑
k1=M+1

1

ωsk1
ωsµ+ν+k1

+
1

ωsµ+ν

)
+ φ(µ,ν)

≤ 2

(
M∑
k1=1

1

ωsk1
ωsµ+ν+k1

+
1

ωsM+1+µ+ν

∞∑
k1=M+1

1

ωsk1

+
1

ωsµ+ν

)
+ φ(µ,ν)

≤ 2

(
M∑
k1=1

1

ωsk1
ωsµ+ν+k1

+
1

ωsM+1+µ+ν

∫ ∞
M

x−sdx+
1

ωsµ+ν

)
+ φ(µ,ν)

= 2

(
M∑
k1=1

1

ωsk1
ωsµ+ν+k1

+
1

ωsM+1+µ+ν

1

M (s−1)(s− 1)
+

1

ωsµ+ν

)
+ φ(µ,ν).

Remark 3.5. To simplify our notations, whenever one of the indices is zero in a
two-index notation, for instance in the case of φ(k,0), we simply write φk.

Before using (25) to formulate an explicit bound of the infinite convolution, we
note that generic estimates are developed in [13] to bound higher order convolutions.
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Lemma 3.6 (Cubic estimates). For 0 ≤ k ≤M − 1,

∑
k1+k2+k3=k

1

ωsk1
ωsk2

ωsk3

≤
M−k−1∑
k1=1

1

ωsk1

α(k1,k)

+ αM

(
1

(M − k)s
+

1

(M − k)s−1(s− 1)

)
+ φk + 2

(
M∑
k2=1

1

ωsk2
ωsk+k2

+
1

(M + 1 + k)sMs−1(s− 1)
+

1

ωsk

)
+

k−1∑
k1=1

1

ωsk1

[
φ(k,−k1) + 2

(
M∑
k2=1

1

ωsk2
ωsk−k1+k2

+
1

ωsM+1+k−k1

1

M (s−1)(s− 1)
+

1

ωsk−k1

)]

+ 1 +

M∑
k2=1

1

ω2s
k2

+
1

M2s−1(2s− 1)

+

M−1∑
k1=1

1

ωsk+k1

αk1

+ αM

(
1

(M + k)s
+

1

(M + k)(s−1)(s− 1)

)
.

(26)

Proof.

∑
k1+k2+k3=k

1

ωsk1
ωsk2

ωsk3

=

∞∑
k1=1

1

ωsk1

∑
k2+k3=k+k1

1

ωsk2
ωsk3

+
∑

k2+k3=k

1

ωsk2
ωsk3

+

k−1∑
k1=1

1

ωsk1

∑
k2+k3=k−k1

1

ωsk2
ωsk3

+

+
1

ωsk

∑
k2+k3=0

1

ωsk2
ωsk3

+

∞∑
k1=1

1

ωsk+k1

∑
k2+k3=k1

1

ωsk2
ωsk3

(27)

Now we bound each addend in (27).
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First,

∞∑
k1=1

1

ωsk1

∑
k2+k3=k+k1

1

ωsk2
ωsk3

≤
M−k∑
k1=1

1

ωsk1

∑
k2+k3=k+k1

1

ωsk2
ωsk3

+

∞∑
k1=M−k+1

1

ωsk1

∑
k2+k3=k+k1

1

ωsk2
ωsk3

≤
M−k∑
k1=1

1

ωsk1

α(k1,k) + αM

∞∑
k1=M−k+1

1

ωsk1

≤
M−k∑
k1=1

1

ωsk1

α(k1,k) +
αM

(M − k)s−1(s− 1)

≤
M−k−1∑
k1=1

1

ωsk1

α(k1,k)

+
αM

(M − k)s
+

αM
(M − k)s−1(s− 1)

≤
M−k−1∑
k1=1

1

ωsk1

α(k1,k)

+ αM

(
1

(M − k)s
+

1

(M − k)s−1(s− 1)

)
.

(28)

Using Lemma 3.4, we get that∑
k2+k3=k

1

ωsk2
ωsk3

≤ φk

+ 2

(
M∑
k2=1

1

ωsk2
ωsk+k2

+
1

(M + 1 + k)sMs−1(s− 1)
+

1

ωsk

)
.

(29)

Now taking µ = k and ν = −k1 in Lemma 3.4, we get that

k−1∑
k1=1

1

ωk1

∑
k2+k3=k−k1

1

ωk2ωk3

≤
k−1∑
k1=1

1

ωk1

[
φ(k,−k1) + 2

(
M∑
k2=1

1

ωk2ωk−k1+k2

+
1

ωM+1+k−k1

1

M (s−1)(s− 1)
+

1

ωk−k1

)]
.

(30)
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Also, ∑
k2+k3=0

1

ωsk2
ωsk3

= 1 + 2

∞∑
k2=1

1

ω2s
k2

= 1 +

M∑
k2=1

1

ω2s
k2

+

∞∑
k2=M+1

1

ω2s
k2

≤ 1 +

M∑
k2=1

1

ω2s
k2

+

∫ ∞
M

x−2sdx

= 1 +

M∑
k2=1

1

ω2s
k2

+
1

M2s−1(2s− 1)
.

(31)

Finally, with µ = k1 and ν = 0 in Lemma 3.4, we get that

∞∑
k1=1

1

ωsk+k1

∑
k2+k3=k1

1

ωsk2
ωsk3

≤
M∑
k1=1

1

ωsk+k1

∑
k2+k3=k1

1

ωsk2
ωsk3

+

∞∑
k1=M+1

1

ωsk+k1

∑
k2+k3=k1

1

ωsk2
ωsk3

≤
M∑
k1=1

1

ωsk+k1

αk1, + αM

∞∑
k1=M+1

1

(k + k1)s

≤
M∑
k1=1

1

ωsk+k1

αk1
+

αM
(M + k)(s−1)(s− 1)

≤
M−1∑
k1=1

1

ωsk+k1

αk1

+
αM

(M + k)s
+

αM
(M + k)(s−1)(s− 1)

≤
M−1∑
k1=1

1

ωsk+k1

αk1

+ αM

(
1

(M + k)s
+

1

(M + k)(s−1)(s− 1)

)
.

(32)

Clearly, (28)-(32) validate the statement.

Thus we can replace the infinite sums in Table 1 by (26). Also, the first infinite
sum in Table 1 can be estimated by

∞∑
k=3m−2

1

ωsk
≤ 1

(s− 1)(3m− 3)(s−1)
.

With these substitutions, we get new upper bounds C
(l1)
F . Now, for k = 0, . . . ,M −1,

the kth-component of Zk(r) ∈ R2 can be defined as

ZF (r)
def
= |[IF −AMDf (M)(x̄)]vF |r +

4∑
l1=1

|AM | ·C(l1)
F rl1 . (33)
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3.2 The analytic bound ẐM(r)

In this section, assuming k ≥M = 3m− 2, we develop bounds Ĉ(li), li ∈ {1, 2, 3, 4},
i = 1, 2 satisfying ∣∣∣c(l1)

k,i

∣∣∣ ≤ 1

ks−2
Ĉ(l1).

Notice that these bounds depend neither on k nor i. To find these bounds, one can
use

Lemma 3.7. Let ν ∈ Z with k + ν ≥M, and s ≥ 2, and define

γ(k,ν)
def
= 2

(
k + ν

k + ν − 1

)s
+

[
4 ln(k + ν − 2)

k + ν
+
π2 − 6

3

] [
2

k + ν
+

1

2

]s−2

and

α(M,ν)
def
=

[
1

M2

{
γ(M,ν) + 2

(
M∑
k1=1

1

ωsk1

+
1

Ms−1(s− 1)
+ 1

)}]
.

Then ∑
k1+k2=k+ν

1

ωsk1
ωsk2

≤ 1

k(s−2)
α(M,ν).

Proof. Using Lemma A.2 from [15], we get

φ(k,ν) =

k+ν−1∑
k1=1

1

ks1(k + ν − k1)s

≤ 1

ωsk

(
2

(
k + ν

k + ν − 1

)s
+

[
4 ln(k + ν − 2)

k + ν
+
π2 − 6

3

] [
2

k + ν
+

1

2

]s−2
)

=
1

ωsk
γ(k,ν) ≤

1

ωsk
γ(M,ν)

Now, since k + ν ≥M , we get that

∑
k1+k2=k+ν

1

ωsk1
ωsk2

≤ 1

ks
γ(k,ν) + 2

(
M∑
k1=1

1

ωsk1
ωsk+k1+ν

+
1

(M + 1 + k + ν)sMs−1(s− 1)
+

1

(k + ν)s

)
≤ 1

ks
γ(M,ν) +

2

ks

(
M∑
k1=1

1

ωsk1

+
1

Ms−1(s− 1)
+ 1

)

≤ 1

k(s−2)

[
1

M2

{
γ(M,ν) + 2

(
M∑
k1=1

1

ωsk1

+
1

Ms−1(s− 1)
+ 1

)}]
.

Finally, we get the bound ẐM (r).

16



Lemma 3.8. For k ≥M , define

ẐM (r)
def
=

1

Ms

(
ρ+ ρ2

(
εL̄|1− 2S|

M
+

1

M2

)) 4∑
l1=1

c
(l1)
k,i r

l1

(
1
1

)
. (34)

Then

|[DT (x̄+ ru)rv]k| � ẐM (r)

(
M

k

)s
. (35)

Proof. Using Lemma 2.5, we get

|[DT (x̄+ ru)rv]k| =
∣∣−Λ−1

k [Df(x̄+ ru)rv −A†rv]k
∣∣

�
4∑

l1=1

∣∣−Λ−1
k

∣∣ ∣∣∣c(l1)
k,i

∣∣∣ rl1
�

4∑
l1=1

1

k2
Ξ

1

ks−2
rl1Ĉ(l1)

(
1
1

)
rl1

= ẐM (r)

(
M

k

)s
.

Now we are in the position of formulating the radii polynomials for (2). Namely,
using Definition 3.2 and recalling the bounds YF , ZF (r) and ẐM (r) in (21), (33) and
(34), respectively, we define

pk(r)
def
=



|AMfF (x̄)|k + |[IF −AMDf (M)(x̄)]vF |r

+

4∑
l1=1

|AM | ·C(l1)
F rl1 − r

ωsk

(
1

1

)
, k = 0, . . . ,M − 1;(

1

Ms

(
ρ+ ρ2

(
εL̄|1− 2S|

M
+

1

M2

)) 4∑
l1=1

c
(l1)
k,i r

l1 − r

ωsM

)(
1

1

)
, k = M.

4 Proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4, we use the following procedure.

Procedure 4.1. The following steps validates the assumptions of Lemma 3.3.

1. Fix a decay rate s and a reduction dimension m.

2. Find x̄F an approximate solution of f (m)(xF ) = 0. This can be done by applying
a predictor-corrector continuation algorithm based on Newton’s method. (See
Section 4.1 for more details).

3. Compute the jabobian matrix Dxf
(M)(x̄F ). Compute an approximate inverse

AM of Dxf
(M)(x̄F ). This is done by using the command AM = inv(Dxf

(M)(x̄F )
in MATLAB. Typically, ‖I−AMDxf

(M)(x̄F )‖ � 1, and hence AM is an approx-
imate inverse of Dxf

(M)(x̄F ). Check conditions (14) and (13) using interval
arithmetic. This ensure that the linear operator A defined in (15), is invertible.

4. With interval arithmetic, compute the coefficients of Table 1 and 2 to complete
the construction of the radii polynomials p1, . . . , pM given in Definition 3.2.
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5. Calculate numerically I = (r−1 , r
+
1 ) ⊂

M⋂
k=0

{r > 0 | pk(r) < 0}. This step is done

by computing the roots of each quartic polynomial pk(r) using the command
roots in MATLAB. We then obtain an interval Ik ⊂ {r > 0 | pk(r) < 0}.

Finally, we set I def
=

M⋂
k=0

Ik.

6. • If I = ∅ then go to Step 8.

• If I 6= ∅ then let r =
r−1 +r+

1

2 . With interval arithmetic, compute pk(r). If
pk(r) < 0 for all k = 0, . . . , 3m− 2 then go to Step 7; else go to Step 8.

7. The proof succeeds. By Lemma 3.3 T defined in (16) has a unique fixed point

x̃ =
(
L̃, ã0, ã1, b̃1ã2, b̃2, ã3, b̃3, . . .

)
∈ Ωs

within the ball Bx̄(r). Now, the existence of a periodic solution

ỹ(t) = ã0 + 2

∞∑
k=1

[
ãk cos kL̃t− b̃k cos kL̃t

]
to (2) with ỹ(0) = 0 is guaranteed by invertibility of A and by Lemma 2.4.

8. The proof fails. Either increase M > 3m− 2 or increase m and go to Step 2.

4.1 Numerical solutions and proofs of Theorem 1.3 and 1.4

Consider κ as a free parameter. We isolate parameters where the trivial solution of
(2) loses its stability via Hopf bifurcation. This can be done analytically see [17], [18]
and [19] or using numerical tools such as TRACE-DDE, see [20]. Then with those
parameters, we find a numerical approximation of a nearby periodic solution of (2).
This approximation of the periodic solution is an approximate zero of

f(x, κ) = 0, (36)

where f is defined in (9). Using this approximation as an initial point, we run the
pseudo arc-length continuation algorithm of [21] on finite dimensional projection of
(36) to generate other approximation of periodic solutions to (2). We then apply
Procedure 4.1 to each of these numerical approximation of periodic solutions to (2).

To prove Theorem 1.3, we used m = 37 and s = 2.0015. Procedure 4.1 is then
applied to each numerical approximations x̄F to establish the existence of r = r(x̄F ) >
0 such that Bx̄F (r) contains a unique zero of (36). Now, this zero corresponds to a non-
trivial periodic solution ȳ(t) of (2). The steps are carried out in the MATLAB code
Theorem1.m available at [23]. The code uses the interval arithmetic package INTLAB
[22]. A sample approximate solution of Theorem 1.3 can be found in Table 3. The
steps of the proofs are the same for Theorem 1.4, and are carried out in the MATLAB
code Theorem2.m available at [23]. A sample approximate solution of Theorem 1.4
can be found in Table 4.
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5 Future projects

As mentioned earlier, [9] considers a wide range of functional differential equations,
including neutral equations. An ongoing project is to develop rigorous computational
tools to study periodic solutions of equations of this type. Another project considers
equations with non-polynomial nonlinearity (i.e. trigonometric nonlinearities). We are
also working on developing computational techniques for state-dependent equations
of threshold type relevant to modelling the dynamics of infectious diseases.
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7 Appendix

C
(1)
0,1 2

∞∑
k=3m−3

1

ωsk

k ∈ {0, . . . , 3m− 2}.

C
(1)
k

∣∣ε L̄∣∣ k ∑
k1+k2+k3=k

(
2

∣∣āk3 b̄k2

∣∣
ωsk1

+

∣∣b̄k3 b̄k2

∣∣
ωsk1

+
|āk3 āk2 |
ωsk1

)

C
(2)
k

2|ε k|
ωs
k

+ 4|kτ |
ωs
k

+ 2 k2L̄+ k2τ2
(
|āk|+

∣∣b̄k∣∣)
+4

∣∣ε L̄∣∣ k ∑
k1+k2+k3=k

|āk3 |+
∣∣b̄k3

∣∣
ωsk1

ωsk2

+2 |ε| k
∑

k1+k2+k3=k

(
2

∣∣āk3 b̄k2

∣∣
ωsk1

+

∣∣b̄k3 b̄k2

∣∣
ωsk1

+
|āk3 āk2 |
ωsk1

)

C
(3)
k

3k2

ωsk
+ 4 |ε| k

∑
k1+k2+k3=k

|āk3 |+
∣∣b̄k3

∣∣
ωsk1

ωsk2

+4 |ε| kL̄
∑

k1+k2+k3=k

1

ωsk1
ωsk2

ωsk3

C
(4)
k

16 |ε| k
3

∑
k1+k2+k3=k

1

ωsk1
ωsk2

ωsk3

Table 1: The bounds C
(j)
k .
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Ĉ
(1)
k

εL̄

3m − 2


m−1∑
k1=1

m−1∑
k2=1

∣∣∣āk1
b̄k2

∣∣∣
 1(

1 − k1+k2
3m−2

)s +
1(

1 − k2
3m−2

)s +
1(

1 − k1
3m−2

)s + 1


+
(∣∣∣āk1

āk2

∣∣∣ + ∣∣∣b̄k1
b̄k2

∣∣∣)
1 + 1(

1− k1+k2
3m−2

)s


+

m−1∑
k2=k1+1

(∣∣∣āk1
āk2

∣∣∣ + ∣∣∣b̄k1
b̄k2

∣∣∣)
 1(

1 − k2
3m−2

)s +
1(

1 − k1
3m−2

)s


+

k1−1∑
k2=1

(∣∣∣āk1
āk2

∣∣∣ + ∣∣∣b̄k1
b̄k2

∣∣∣)
 1(

1 − k2
3m−2

)s +
1(

1 − k1
3m−2

)s


+
∣∣∣ā0āk1

∣∣∣
1 + 1(

1− k1
3m−2

)s

 +

m−1∑
k3=1

∣∣∣āk3
ā0

∣∣∣
2 +

2(
1 − k3

3m−2

)s



Ĉ
(2)
k

4L̄ +
4|τ|

(3m−2)

+ ε
(3m−2)

2 +

m−1∑
k1=1

m−1∑
k2=1

4
∣∣∣āk1

b̄k2

∣∣∣
 1(

1 − k1+k2
3m−2

)s +
1(

1 − k2
3m−2

)s +
1(

1 − k1
3m−2

)s + 1


+2

(∣∣∣āk1
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 ε

Table 2: The bounds Ĉ
(j)
k .
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L̄ 0.588585318380744 ā0 −0.000000000000000
ā1 −0.380521566138099 b̄1 3.503923479166242
ā3 0.164599872387297 b̄3 0.469271975833406
ā5 0.120614107179449 b̄5 0.126650976002569
ā7 0.066862971952533 b̄7 0.011940400142824
ā9 0.024740402097032 b̄9 −0.010005469307534
ā11 0.006333283564893 b̄11 −0.009564362214062
ā13 −0.000163178672466 b̄13 −0.004751644954214
ā15 −0.001185254556411 b̄15 −0.001658623436357
ā17 −0.000838094624751 b̄17 −0.000288091670132
ā19 −0.000365889550112 b̄19 0.000101927666928
ā21 −0.000107532896479 b̄21 0.000128211215654
ā23 −0.000006043995350 b̄23 0.000072878593114
ā25 0.000015839170424 b̄25 0.000027885631338
ā27 0.000012858268457 b̄27 0.000006134239246
ā29 0.000006187458022 b̄29 −0.000001022010932
ā31 0.000002012065977 b̄31 −0.000001933333716
ā33 0.000000241638643 b̄33 −0.000001223207372
ā35 −0.000000215349058 b̄35 −0.000000524561647

Table 3: Approximate zero x̂F at τ = 2, κ = −0.0695 and ε = 0.15.

L̄ 1.256637061435918 ā0 0
ā1 0.024710480202072 b̄1 −1.000002063790588
ā3 −0.024488551145227 b̄3 −0.003663149316372
ā5 −0.000266911811260 b̄5 0.000987238321501
ā7 0.000044003554335 b̄7 0.000017397754331
ā9 0.000001077740774 b̄9 −0.000002031596847
ā11 −0.000000094942364 b̄11 −0.000000064729206
ā13 −0.000000003804078 b̄13 −0.000000003804078
ā15 −0.000000003804078 b̄15 0.000000000220008

Table 4: Approximate zero x̂F at τ = 5, κ = −0.586912405465308 and ε = 0.25.
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