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Abstract

We introduce a general computational fixed point method to prove existence
of periodic solutions of differential delay equations with multiple time lags. The
idea of such a method is to compute numerical approximations of periodic so-
lutions using Newton’s method applied on a finite dimensional projection, to
derive a set of analytic estimates to bound the truncation error term and finally
to use this explicit information to verify computationally the hypotheses of the
Banach fixed point theorem in a given Banach space. The yielded fixed point
provide us the wanted periodic solution. We provide two applications. The first
one is a proof of coexistence of three periodic solutions for a given delay equation
with two time lags. The second application provides a rigorous computations of
several nontrivial periodic solutions for a delay equation with three time lags.

1 Introduction

Fixed point theory, the fixed point index and global bifurcation theorems are powerful
tools to study the existence of solutions of infinite dimensional dynamical systems.
To give a few examples in the context of functional differential equations (FDEs), the
ejective fixed point theorem of Browder [1] and the fixed point index can be used to
prove existence of nontrivial periodic solutions [2, 3, 4], and the global bifurcation
theorem of Rabinowitz [5] can be used to prove the existence and characterize the
(non) compactness of global branches of periodic solutions [6, 7]. This heavy ma-
chinery from functional analysis provides powerful existence results about solutions
of FDEs, but its applicability may decrease if one asks more specific questions about
the solutions of a given equation. For example, it appears difficult in general to use
the ejective fixed point theorem to quantify the number of periodic solutions or to use
a global bifurcation theorem to conclude about existence of folds, or more generally,
of secondary bifurcations on global branches of periodic solutions. As a consequence
of such limitations and with the recent availability of powerful computers and so-
phisticated software, numerical simulations quickly became one of the primary tool
used by scientists to conjecture the answer of these explicit questions, which are often
inherent to important questions in biology, physics and chemistry. For instance, in
the context of population dynamics, the occurrence of a fold on a global branch of
solutions may imply coexisting sub–populations.
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A standard approach adopted by mathematicians facing these explicit questions
is to get insight from numerical simulations to formulate new conjectures, and then
attempt to prove the conjectures using pure mathematical techniques only. As one
shall argue, this strong dichotomy need not exist in the context of FDEs, as the
strength of numerical analysis and functional analysis can be combined to answer,
in a rigorous mathematical sense, some of the above mentioned questions regarding
existence of solutions. The goal of this paper is to present such a rigorous numerical
method, that we describe here as computational fixed point theory, to the context
of proving, in a direct computational way, the existence of periodic orbits of delay
differential equations with multiple time lags of the form

y′(t) = F (y(t), y(t− τ1), . . . , y(t− τd)) , (1)

where y : R → R and F : Rd+1 → R is a multivariate polynomial. The idea of
such method is to get numerical data from a computational algorithm (e.g. Newton’s
method) applied to a finite dimensional projection, to derive a set of analytic estimates
to bound the truncation error term and finally to use this explicit information to verify
computationally with interval arithmetic the hypotheses of a fixed point theorem
(e.g. Banach fixed point theorem) in a given Banach space. The most fundamental
ingredient in this process is the development of the analytic estimates, which are
given in terms of regularity conditions on the solutions. As we shall see in Section 2,
it turns out that the estimates for partial differential equations developed in [8, 9, 10]
are perfectly suited for our context of proving existence of periodic solutions of (1).

Being both infinite dimensional dynamical systems, delay differential equations
(DDEs) and partial differential equations (PDEs) share some fundamental common
features. One of these features, which we strongly exploit in this work, is that bounded
solutions often have more regularity than the typical solutions of the corresponding
initial value problems. For instance, R. Nussbaum prove in [11] that periodic solutions
of (1) are analytic by using the fact that they are bounded. This suggests that for
some DDEs and PDEs the strategy of restricting our study to the set of bounded
solutions can be useful, since the regularity of the solutions comes for free. Using
this strategy, we define in Lemma 2.1 a Banach space (Ωs, ‖ · ‖s) of fast decaying
coefficients which contains the Fourier coefficients of any periodic solutions of (1).

Before proceeding further, we hasten to mention that several such computational
fixed point methods have been proposed to prove the existence of solutions of infinite
dimensional dynamical systems (e.g. see [10, 12, 13, 14, 15, 16]). However, to the best
of our knowledge this is the first attempt to integrate these techniques of rigorous
computations in the context of delay equations with multiple time lags. It is also
important to note that our proposed computational method is strongly influenced
by the work of [13]. However, the method introduced there is specific to Wright’s
equation which has only one time lag. We make one more important remark before
presenting explicit applications.

Remark 1.1. The method presented in this paper should in principle be applicable to
the more general class of problems of the form

y(n+1)(t) = F
(
y(t), y(t− τ1), . . . , y(t− τd), . . . , y(n)(t), y(n)(t− τ1), . . . , y(n)(t− τd)

)
where y : R → Rm and each components of F : R(d+1)n × R → Rm is polynomial in
its first (d+ 1)n variables. Indeed, the theory of [11] still guaranties analyticity.
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Let us now introduce two applications of our computational method for DDEs
with multiple delays. The first one, presented in Theorem 1.2, concerns coexistence
of periodic solutions for a delay equation with two time lags and the second one,
presented in Theorem 1.3, concerns existence of periodic solutions for a delay equation
with three delays. The proofs are presented in Section 4.

Theorem 1.2. The delay equations with two time lags

y′(t) = −λ [y(t− τ1) + y(t− τ2)] [1 + y(t)], (2)

with τ1 = 1.65 and τ2 = 0.35 has at least three nontrivial coexisting periodic solutions
at the parameter value λ = 3.4. A geometric interpretation of this result can be found
in Figure 1.
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Figure 1: Coexistence of three periodic solutions for equation (2).

The proof can be found in Section 4.2.1. Concerning the result of Theorem 1.2,
let us remark that in his pioneering work [17], R. Nussbaum proves the existence of
at least two periodic solutions for a class of equations with two delays. However,
the assumption he makes on the magnitude of λ imposes some limitation to the
applicability of his method. We would like to stress that our method provides existence
results without any further assumptions on the value of λ. We now present our second
application.

Theorem 1.3. Consider the differential equations with three time lags

y′(t) = − [λ1y(t− τ1) + λ2y(t− τ2) + λ3y(t− τ3)] [1 + y(t)], (3)

with λ1 = λ2 = 2.425, τ1 = 1.65, τ2 = 0.35 and τ3 = 1. Then, for each λ3 ∈ { k
100 | k =

0, . . . , 25}, there exists a set Bλ3
containing a unique nontrivial periodic solution of

(3). A geometric interpretation of this result can be found in Figure 2 and the center
of the last set B1/4 can be found in Figure 5.

The proof is presented in Section 4.2.2. Let us briefly mention about the impor-
tance of Theorem 1.3 by saying that the available information about the dynamics of
equations of type (1) is very limited (e.g. see [18]). One of the most recent advance-
ment on this field is given in [19] where the author exploited the particular properties
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Figure 2: Proof of existence of several periodic solutions for equation (3).

of the nonlinearity to prove the existence of periodic solutions. Furthermore, many
techniques available for studying the dynamics of DDEs with one delay were reviewed
in [18], where it was mentioned that “it seems that the [surveyed] techniques do not
work for equations with more delays or distributed delays”. Hence, it seems reasonable
to say that the study of the class of equations with many delays requires developing
new techniques. We believe that already Theorem 1.2 and Theorem 1.3 give useful
insight into the dynamics of this class of equations, and that our new proposed com-
putational fixed point method can play a role in widening the knowledge about the
dynamics of these equations.

The paper is organized as follows. In Section 2, we introduce an operator f whose
zeros corresponds to the periodic solutions of (1). In Section 3, we transform first
the problem f(x) = 0 into an equivalent fixed point equation T (x) = x. We then
derive a set of sufficient computable conditions in the form of polynomial inequalities
called the radii polynomials, whose successful verification leads to an application of the
Banach fixed point theorem on T . The obtained fixed points lead to the constructive
proof of existence of periodic solutions of the delay differential equation with multiple
delays given by (1). In Section 4, we present applications of our method to the class
of problem

y′(t) = −

 d∑
j=1

λjy(t− τj)

 [1 + y(t)], (λ1, . . . , λd ∈ R),

where we construct explicitly the radii polynomials. We prove Theorem 1.2 and
Theorem 1.3. We end the paper in Section 5 with some future projects.

2 Preliminaries

As mentioned in Section 1, the first step in the development of our computational
method is to recast the problem of looking for periodic solutions of the differential
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equations (1) as a problem of looking for zeros of a nonlinear operator in a given
Banach space (Ωs, ‖ · ‖s) of decaying coefficients. Let us first define the Banach space.

2.1 The Banach space Ωs

Let τ0
def
= 0 and yj(t)

def
= y(t − τj) for j = 0, . . . , d. Then, using the notation

y
def
= (y0, y1, . . . , yd), one can rewrite the original delay equation (1) as

y′ = F(y) =

N∑
|α|=1

γαyα, (4)

where F : Rd+1 → R is a multivariate polynomial of degree N , α = (α0, α1, . . . , αd) ∈
Nd+1, |α| = α0 + α1 + · · · + αd and yα = yα0

0 yα1
1 . . . yαdd . Periodic solutions y of (1)

such that y(t+ 2π
L ) = y(t) for all t ∈ R can be expanded using the Fourier expansion

y(t) =
∑
k∈Z

cke
ikLt, (5)

where the ck are complex numbers satisfying c−k = ck, since y ∈ R. Denoting the
real and the imaginary part of ck respectively by ak and bk, one gets that ak = a−k
and bk = −b−k. As a result, Im(c0) = b0 = 0, which means that it can be neglected.
An equivalent expansion for (5) is given by

y(t) = a0 + 2

∞∑
k=1

[ak cos kLt− bk sin kLt] . (6)

Note that one does not a priori know the frequency L of (5), meaning that we leave
it as a variable. Let

xk
def
=

{
(L, a0), k = 0
(ak, bk), k > 0

(7)

and x
def
= (x0, x1, · · · , xk, · · · )T . Denote by xk,1 and xk,2 the first and the second

component of xk, respectively.
As mentioned earlier, a result of Nussbaum implies the analyticity of the periodic

solutions of (1) (see Corollary 2 in [11]). As a consequence, the Fourier coefficients of
the expansion (5), or equivalently of (6), decay faster than any algebraic decay. This
important point motivates the definition of the space (Ωs, ‖ · ‖s). Given a growth rate
s > 0, consider the weight functions

ωsk =

{
1, k = 0;
ks, k ≥ 1,

(8)

which are used to define the norm

‖x‖s = sup
k=0,1,...

|xk|∞ωsk, (9)

where |xk|∞ = max{|xk,1|, |xk,2|}. The proof of the following is omitted.

Lemma 2.1. The space of sequences with algebraically decaying tails

Ωs
def
= {x = (x0, x1, x2, . . . ) , ‖x‖s <∞} (10)

is a Banach space. Moreover, assume that y given by (6) satisfies (1) and consider
its associated x given by (7). Then for any fixed s ≥ 2, the space Ωs contains x.

We are now ready to introduce the operator f whose zeros in Ωs correspond to
periodic solutions of (1).
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2.2 The operator equation f(x) = 0

Using the Fourier expansion (5), one substitutes

y′(t) =
∑
k∈Z

ckikLe
ikLt and yj = y(t− τj) =

∑
k∈Z

cke
−ikLτjeikLt, (j = 0, . . . , d)

in (4), and splitting the linear part from the nonlinear part, one gets

y′ −F(y) =

y′ − ∑
|α|=1

γαyα

− N∑
|α|=2

γαyα

=
∑
k∈Z

ikL− d∑
j=0

γeje
−ikLτj

 cke
ikLt

−
N∑
|α|=2

γα

d∏
j=0

∑
kj∈Z

ckje
−ikjLτjeikjLt

αj

=
∑
k∈Z

ikL− d∑
j=0

γeje
−ikLτj

 cke
ikLt (11)

−
N∑
|α|=2

γα

d∏
j=0

αj∏
l=1

 ∑
k

(l)
j ∈Z

c
k

(l)
j
e−ik

(l)
j Lτjeik

(l)
j Lt

 = 0,

where
γe0 = γ(1,0,...,0), γe1 = γ(0,1,0,...,0), . . . , γed = γ(0,...,0,1).

Note that for a smooth function y satisfying the property that y(t + 2π
L ) = y(t)

for all t ∈ R, one has that the same property holds for y′ − F(y), meaning that we
can consider the Fourier expansion

y′(t)−F(y) =
∑
k∈Z

gke
ikLt.

The coefficients gk can be computed by taking the inner product with eikLt (k ∈ Z)
on each side of (11). This calculation leads to

gk =

ikL− d∑
j=0

γeje
−ikLτj

 ck −
N∑
|α|=2

γα
∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

d∏
j=0

αj∏
l=1

e−ik
(l)
j Lτjc

k
(l)
j
. (12)

Hence, if y is a solution of (4) such that y(t+ 2π
L ) = y(t) for all t, then gk = 0 for

all k ∈ Z. It is not hard to realize that since c−k = ck, then one has that g−k = gk.
As a consequence, one needs only to consider the cases k ≥ 0 when solving for gk = 0.
As in the case of c0, one also gets that Im(g0) = 0. In order to eliminate arbitrary
shifts, we impose a normalizing condition y(0) = ψ0 ∈ R. The value of ψ0 is chosen
depending on the problem. For instance, if we a priori know that we are looking for
periodic solutions oscillating around zero, one can let ψ0 = 0. Hence, we are looking
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for x ∈ Ωs such that the following holds

h(x)
def
= y(0)− ψ0 = a0 + 2

∞∑
k=1

ak − ψ0 = 0, (13)

and such that Re(gk)(x) = 0 and Im(gk)(x) = 0. The next step is to compute the
real and the imaginary parts of gk. Given α = (α0, α1, . . . , αd) ∈ Nd+1, consider the

coefficients σ
(r)
µ,ν , σ

(i)
µ,ν ∈ {−1, 0, 1} indexed over µ, ν ∈ {0, 1}|α| with |µ| + |ν| = |α|

such that the following expansion holds

d∏
j=0

αj∏
l=1

e−ik
(l)
j Lτjc

k
(l)
j

= e−iξL
d∏
j=0

αj∏
l=1

c
k

(l)
j

= e−iξL

 ∑
|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(r)
µ,νa

µbν + i
∑

|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(i)
µ,νa

µbν


where

a =
(
a
k

(1)
0
, . . . , a

k
(α0)
0

, . . . , a
k

(1)
d

, . . . , a
k

(αd)

d

)
∈ R|α|

b =
(
b
k

(1)
0
, . . . , b

k
(α0)
0

, . . . , b
k

(1)
d

, . . . , b
k

(αd)

d

)
∈ R|α|

µ =
(
µ
k

(1)
0
, . . . , µ

k
(α0)
0

, . . . , µ
k

(1)
d

, . . . , µ
k

(αd)

d

)
∈ {0, 1}|α|

ν =
(
ν
k

(1)
0
, . . . , ν

k
(α0)
0

, . . . , ν
k

(1)
d

, . . . , ν
k

(αd)

d

)
∈ {0, 1}|α|

ξ =

d∑
j=0

(k
(1)
j + · · ·+ k

(αj)
j )τj .

Using the above expansion, one has that

Re(gk)(x) =

− d∑
j=0

γej cos kLτj

 ak +

−kL− d∑
j=0

γej sin kLτj

 bk (14)

−
N∑
|α|=2

γα
∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

cos ξL
∑

|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(r)
µ,νa

µbν + sin ξL
∑

|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(i)
µ,νa

µbν


Im(gk)(x) =

kL+

d∑
j=0

γej sin kLτj

 ak +

− d∑
j=0

γej cos kLτj

 bk (15)

−
N∑
|α|=2

γα
∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

− sin ξL
∑

|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(i)
µ,νa

µbν + cos ξL
∑

|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(r)
µ,νa

µbν

 .

As mentioned in Section 1, the most fundamental ingredient in developing our
computational fixed point method is to derive a set of analytic estimates to bound
the truncation error terms. The following estimates are given in terms of regularity
conditions on the solutions and they were originally developed to prove constructively
existence of equilibria of PDEs (see [8, 9, 10]).
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Lemma 2.2 (Analytic Estimates). Fix a decay rate s ≥ 2 and assume that there exist
asymptotic constants As and Bs such that the following regularity conditions hold

|ak| ≤
As
ωsk

and |bk| ≤
Bs
ωsk
, for all k ∈ Z.

Consider k ≥ 0, α = (α0, α1, . . . , αd) ∈ Nd+1 and µ, ν ∈ {0, 1}|α| with |µ|+ |ν| = |α|.
Then there exists an explicit and constant C = C(As, Bs) <∞ which is independent
of k, such that ∣∣∣∣∣∣∣

∑
∑d
j=0

∑αj
l=1 k

(l)
j =k

aµbν

∣∣∣∣∣∣∣ ≤
C

ωsk
. (16)

Proof. See Lemma 2.1 in [8].

Lemma 2.3 (Definition of f). The operator f = {fk}k≥0 whose kth component
fk ∈ R2 is given by

fk(x)
def
=


(

h(x)
Re(g0)(x)

)
, k = 0(

Re(gk)(x)
Im(gk)(x)

)
, k > 0

(17)

is such that f : Ωs → Ωs−1.

Proof. Consider x ∈ Ωs. Then using the definition of Ωs in (10), one can easily verify
that

sup
k≥0

∣∣∣∣∣∣
− d∑

j=0

γej cos kLτj

 ak +

−kL− d∑
j=0

γej sin kLτj

 bk

∣∣∣∣∣∣ωs−1
k <∞

sup
k≥0

∣∣∣∣∣∣
kL+

d∑
j=0

γej sin kLτj

 ak +

− d∑
j=0

γej cos kLτj

 bk

∣∣∣∣∣∣ωs−1
k <∞.

Now, since x ∈ Ωs, then ‖x‖s <∞, and since xk,1 = ak, xk,2 = bk, one has that

|ak| ≤
‖x‖s
ωsk

and |bk| ≤
‖x‖s
ωsk

, for all k ∈ Z.

Consider now α = (α0, α1, . . . , αd) ∈ Nd+1 and µ, ν ∈ {0, 1}|α| with |µ| + |ν| = |α|.
Then, by Lemma 2.2, one can conclude about the existence of C = C(‖x‖s) < ∞
such that

sup
k≥0

∣∣∣∣∣∣∣
∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

aµbν

∣∣∣∣∣∣∣ωsk ≤ C <∞.

Finally, using the above inequalities, one obtains

‖f(x)‖s−1 = sup
k≥0
|fk|∞ωs−1

k <∞,

and this shows that f(x) ∈ Ωs−1.
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As in the case of x, denote by fk,1 and fk,2 the first and the second component of
fk respectively. For the sake of simplicity of the presentation, let us introduce a more
compact representation of the operator f : Ωs → Ωs−1. Defining

Rk(L)
def
=


−

d∑
j=0

γej cos kLτj −

kL+

d∑
j=0

γej sin kLτj


kL+

d∑
j=0

γej sin kLτj −
d∑
j=0

γej cos kLτj

 (18)

Θ(L)
def
=

(
cos ξL sin ξL
− sin ξL cos ξL

)
, (19)

one obtains that for k ≥ 1

fk(x) = Rk(L)

(
ak
bk

)
−

N∑
|α|=2

γα
∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

Θ(L)



∑
|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(r)
µ,νa

µbν

∑
|µ|+|ν|=|α|
µ,ν∈{0,1}|α|

σ(i)
µ,νa

µbν

 . (20)

The following results provides an equivalence between the solutions y(t) of (1)
satisfying y(t) = y(t + 2π

L ) and the solutions x ∈ Ωs of f = 0, where f is given
componenet-wise by (17).

Lemma 2.4. A sequence x = (x0, x1, x2, . . . ) ∈ Ωs given by (7) is such that f(x) = 0
if and only if y(t) given by (6) solves the equation (1) such that y(0) = ψ0.

Proof. Using the analytic estimates of Lemma 2.2, the proof is similar to the proof of
Lemma 3.2(b) in [13].

3 Computational fixed point method

The first part of this section is to transform the problem f(x) = 0 into an equivalent
fixed point equation T (x) = x. The second part is to derive a set of sufficient com-
putable conditions called the radii polynomials, whose successful verification leads to
an application of the Banach fixed point theorem on T . The obtained fixed points
lead to the constructive proof of existence of periodic solutions of the delay differential
equation with multiple delays given by (1). Note that the name computational fixed
point theory comes from the fact that the verification of the hypotheses of the Banach
fixed point theorem in Lemma 3.2 is done computationally via the radii polynomials
of Definition 3.3.

3.1 The fixed point operator equation T (x) = x

Since we want to develop this idea in a computational setting, consider a finite di-
mensional projection f (m) : R2m × R→ R2m of f , defined component-wise by

f
(m)
k (x0, . . . , xm−1)

def
= fk (x0, . . . , xm−1, 0∞) , k = 0, . . . ,m− 1, (21)

where 0∞ = (0)j≥0. Suppose that using a Newton-like iterative scheme, we computed
numerically x̄ ∈ R2m such that f (m)(x̄) ≈ 0. To simplify the presentation, we identify
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x̄ = (L̄, ā0, ā1, b̄1, . . . , ām−1, b̄m−1)T with (x̄, 0∞). The philosophy behind the con-
struction of the fixed point equation T (x) = x is to define its finite part in Ωs with
the use of numerics and to define its tail in Ωs analytically. Consider a computational
parameter M ≥ m which we describe in details in Section 3.2. In order to define the
finite part of T consider a 2M by 2M matrix AM which is a numerical approximation
of the inverse of Df (M)(x̄). In order to define the tail part ot T , one defines

Λk
def
=

∂fk
∂xk

(x̄) =

(
∂fk,1
∂xk,1

(x̄)
∂fk,1
∂xk,2

(x̄)
∂fk,2
∂xk,1

(x̄)
∂fk,2
∂xk,2

(x̄)

)
. (22)

Note that since the matrices given by (18) and (19) are skew-symmetric, it follows
from (20) that, for k ≥ 1, the matrix Λk is also skew-symmetric. More explicitly,
using the definition of Rk(L) defined in (18), one gets that

Λk =

(
τk δk
−δk τk

)
,

where τk, δk ∈ R and
δk = −kL+ ζk, (23)

with ζk ∈ R. The idea behind the definition of the fixed point equation T (x) = x is
that it is a Newton-like operator on the function space Ωs of the form T (x) = x −
Af(x), where A is an approximation for Df(x̄). The following result defines explicitly
the linear operator A. For a given x ∈ Ωs, denote by xF the finite dimensional
projection xF = (x0, x1, . . . , xM−1) ∈ R2M .

Lemma 3.1. Consider x̄ = (L̄, ā0, ā1, b̄1, . . . , ām−1, b̄m−1) a numerical approximation
of the Galerkin approximation (21). Assume that

‖AMDxf
(M)(x̄)− IM‖∞ < 1, (24)

where IM is the 2M × 2M identity matrix. Suppose the existence of two constants
ζ∗, τ∗ ≥ 0 such that

|ζk| ≤ ζ∗ < ML̄ and |τk| ≤ τ∗ for all k ≥M, (25)

and assume that
δk < 0, for all k ≥M. (26)

Then, the matrix Λk given by (22) is invertible for all k ≥M and the linear operator
A : Ωs → Ωs+1 defined by

Ax
def
=

{
(AMxF )k, k = 0, . . . ,M − 1,

Λ−1
k xk, k ≥M (27)

is invertible.

Proof. First of all, using condition (26), one has that for k ≥M , det(Λk) = τ2
k+δ2

k > 0
and therefore Λk is invertible for any k ≥M . By (24), one gets that the matrix AM is
invertible, which then implies that A is invertible. It remains to show that A maps Ωs

into Ωs+1. For this, one needs to describe the asymptotic behavior of {Λ−1
k xk}k≥M .

Let us define the number

ρ
def
=

M

ML̄− ζ∗ > 0 (28)
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which is positive by condition (25), and the matrix

Ξ
def
=

(
ρ2τ∗

M ρ

ρ ρ2τ∗

M

)
. (29)

Combining (23), (25) and (26), one has that for k ≥M , |δk| = kL̄− ζk ≥ kL̄− ζ∗ =

k
(
L̄− ζ∗

k

)
≥ k

(
L̄− ζ∗

M

)
= k

ρ > 0. Therefore, one gets that
∣∣∣ δk
τ2
k+δ2

k

∣∣∣ ≤ |δk|δ2
k

= 1
|δk| ≤

1
kρ. Also, since |τk| ≤ τ∗, one gets that

∣∣∣ τk
τ2
k+δ2

k

∣∣∣ ≤ τ∗

δ2
k
≤ ρ2τ∗

k2 ≤ 1
k

(
ρ2τ∗

M

)
. As a result,

one conclude that component-wise,∣∣Λk−1
∣∣ =

1

τ2
k + δ2

k

(
|τk| |δk|
|δk| |τk|

)
≤cw

1

k
Ξ.

Let us now consider x ∈ Ωs. Then, recalling (9) and (27), one has that

‖Ax‖s+1 = max

{
max

k=0,...,M−1
{|(AMxF )k|∞ωs+1

k } , sup
k≥M
{|Λ−1

k xk|∞ωs+1
k }

}
≤ max

{
max

k=0,...,M−1
{|(AMxF )k|∞ωs+1

k } , ‖Ξ‖∞ sup
k≥M
{|xk|∞ωsk}

}
<∞.

We are now ready to define the fixed point equation. Combining the results
of Lemma 2.3 and Lemma 3.1, one can define the nonlinear Newton-like operator
T : Ωs → Ωs by

T (x)
def
= x−A · f(x) (30)

It is important to remark that even if we construct the finite part of the operator T
in a computer-assisted fashion, we still think of if as an abstract object. The finite
part is stored on a computer, and the tail part, consisting of the sequence of matrices
{Λ−1

k }k≥M , is defined abstractly. Also, it is important to remark that the invertibility
of the operator A implies that the fixed points of T given by (30) are in bijection with
the zeros of f given by (17). Let us now introduce the notion of radii polynomials in
order to verify in a computationally efficient way the hypotheses of the Banach fixed
point theorem applied to the map T .

3.2 The radii polynomials

We have shown in Lemma 2.4 that the problem of finding solutions y of (1) such
that y(t) = y(t + 2π

L ) and y(0) = ψ0 is the same than studying the zeros of f , or
equivalently the fixed points of T . We now turn to the problem of deriving a set of
computable conditions called the radii polynomials, whose successful verification leads
to an application of a contraction mapping argument. The idea of such an approach
is to consider balls of the form Bx̄(r) ∈ Ωs centered at the numerical solution x̄ of
unknown radii r, and to solve for the radius r for which T : Bx̄(r) → Bx̄(r) is a
contraction mapping. It is important to note that the idea of the radii polynomials is
not new and was first introduced in the context of proving existence of equilibria of
one dimensional PDEs [10, 20]. This concept was then adapted to prove existence of
periodic solutions of ordinary differential equations (ODEs) [9], of periodic solutions
of DDEs with one time lag [13], of equilibria of higher dimensional PDEs [8, 21] and
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of connecting orbits of ODEs [22]. We now introduce them in the context of DDEs
with multiple time lags.

Consider the ball of radius r in Ωs (with norm ‖ · ‖s), centered at the origin,

B(r)
def
=

∞∏
k=0

[
− r

ωsk
,
r

ωsk

]2

(31)

and the balls centered at x̄
Bx̄(r) = x̄+B(r). (32)

Let us introduce the notation of component-wise inequality by ≤cw, which means
that for u, v ∈ Rm×n one has that u ≤cw v if ui,j ≤ vi,j , for all i = 1, . . . ,m and
j = 1, . . . , n. To show that T is a contraction mapping, we need component-wise

positive bounds Yk =
(
Yk,1
Yk,2

)
, Zk =

(
Zk,1
Zk,2

)
∈ R2 for each k ≥ 0, such that∣∣∣[T (x̄)− x̄]k

∣∣∣ =
∣∣∣[−A · f(x̄)]k

∣∣∣ ≤cw Yk, (33)

and
sup

b,c∈B(r)

∣∣∣[DT (x̄+ b)c]k

∣∣∣ ≤cw Zk(r). (34)

Lemma 3.2. Fix s ≥ 2 and consider the bounds Y = (Y0, Y1, . . . ) and Z = (Z0, Z1, . . . )
satisfying (33) and (34). If there exists an r > 0 such that ‖Y + Z‖s < r, then the
operator T given by (30) maps the ball Bx̄(r) into itself and T : Bx̄(r) → Bx̄(r) is a
contraction. By the Banach Fixed Point Theorem, there is a unique x̃ ∈ Bx̄(r) such
that T (x̃) = x̃, or equivalently such that f(x̃) = 0. Moreover, a rigorous upper bound
for the `2–error between the numerical approximation x̄ and the solution x̃ is given by

‖x̃− x̄‖`2 ≤ r
√

4 +
2

2s− 1
. (35)

Proof. For the existence of the x̃ ∈ Bx̄(r) such that f(x̃) = 0, we refer to [13]. For
the remaining part of the proof, it is sufficient to observe that x̃− x̄ ∈ B(r) and that

‖x̃− x̄‖`2 =

√√√√ ∞∑
k=0

(
(ãk − āk)2 + (b̃k − b̄k)2

)
≤

√√√√ ∞∑
k=0

(
r

ωsk

)2

+

(
r

ωsk

)2

≤ r

√√√√ ∞∑
k=0

2

ω2s
k

≤ r
√

4 +

∫ ∞
1

2

x2s
ds = r

√
4 +

2

2s− 1
.

Before introducing the notion of the radii polynomials, let us be more explicit
about the computational parameter M used to define the linear operator A given
by (27). This parameter is chosen so that one may chose Yk =

(
0
0

)
for all k ≥ M .

Recalling the order N of the multivariate polynomial F given by (4), let us define

M
def
= N(m− 1) + 1. (36)
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Hence, for any α = (α0, α1, . . . , αd) ∈ Nd+1 such that |α| ≤ N and µ, ν ∈ {0, 1}|α|
such that |µ| + |ν| = |α|, one can use the fact that āk = b̄k = 0 for all k ≥ m to
conclude that ∑

∑d
j=0

∑αj
l=1 k

(l)
j =k

āµb̄ν = 0, for all k ≥M.

Therefore, for k ≥M , one can see from (20) that fk(x̄) = (0, 0)T and by definition of
A for k ≥ M given in (27), one gets that [−A · f(x̄)]k = Λ−1

k fk(x̄) = (0, 0)T . Hence,
by the choice of M given by (36), we can define Yk =

(
0
0

)
, for k ≥ M . Note that

corresponding to the entries i ∈ {1, 2} and k ∈ {0, . . . ,M − 1} of Y one defines

YF
def
= |AM · fF (x̄)| . (37)

The above discussion clarifies the choice of the computational parameter M and
the computation of the bound Y given by (33). The computation of the bound Z
given by (34) is more involved and rather than computing it in the general context,
we refer to Section 4.1.1 and Section 4.1.2 where it is constructed explicitly in the
context of a given class of problems. At the moment, it is sufficient to understand
that each Zk(r) can be computed as a polynomial in the a priori unknown radius r.
As we see in Section 4.1, the idea is to factor the points b, c ∈ B(r) as b = ur and
c = vr with u, v ∈ B(1), to expand in the unknown variable radius r, and finally to
use the fact that u, v ∈ B(1) to compute uniform bounds in u, v. We are ready to
define the radii polynomials.

Definition 3.3. For k ≥ M , let Yk =
(

0
0

)
and assume that one may chose Zk(r) =

ẐM (r)
(
Ms

ωsk

)
, where ẐM (r) >cw

(
0
0

)
is independent of k. We define the 2M + 2 radii

polynomials {p0, . . . , pM−1, pM} by

pk(r)
def
=

{
Yk + Zk(r)− r

ωsk

(
1
1

)
, k = 0, . . . ,M − 1;

ẐM (r)− r
ωsM

(
1
1

)
k = M.

We refer to Lemma 4.4 for an explicit example of how to derive the bounds Zk(r) =

ẐM (r)
(
Ms

ωsk

)
for k ≥M .

Lemma 3.4. If there exists an r > 0 such that pk(r) < 0 for all k = 0, . . . ,M , then
there exist a unique x̃ ∈ Bx̄(r) such that T (x̃) = x̃, or equivalently such that f(x̃) = 0.

Proof. See [13].

Our computational fixed point method then consist of constructing the radii poly-
nomials, verify (if possible) the hypotheses of Lemma 3.4 and finally apply Lemma 2.4
to conclude about the constructive proof of existence of periodic solutions of (1). We
are now ready for some applications.

4 Applications

In this section, we focus our study on the class of equations of the form

y′(t) = −

 d∑
j=1

λjy(t− τj)

 [1 + y(t)], (λ1, . . . , λd ∈ R), (38)
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which falls in the category of (1). The essential step in obtaining constructive proofs of
existence of nontrivial periodic solutions for (38) is to construct the radii polynomials
of Definition 3.3 and then to apply Lemma 3.4. In Section 4.1, we provide an explicit
construction of the radii polynomials in the context of (38) and in Section 4.2, we
provide the proofs of Theorem 1.2 and of Theorem 1.3.

4.1 Radii polynomials for the class of equations (38)

First of all, let us observe that in the context of problem (38), the expansions (14)
and (15) are given respectively by

Re(gk)(x) =

 d∑
j=1

λj cos kLτj

 ak +

−kL+

d∑
j=1

λj sin kLτj

 bk

+
∑

k1+k2=k

 d∑
j=1

λj cos kLτj

 (ak1ak2 − bk1bk2) +

 d∑
j=1

λj sin kLτj

 (ak1bk2 + bk1ak2)

Im(gk)(x) = −

−kL+

d∑
j=1

λj sin kLτj

 ak +

 d∑
j=1

λj cos kLτj

 bk

+
∑

k1+k2=k

−

 d∑
j=1

λj sin kLτj

 (ak1ak2 − bk1bk2) +

 d∑
j=1

λj cos kLτj

 (ak1bk2 + bk1ak2).

Let us restrict our study of (38) to nontrivial periodic solutions oscillating around
the trivial solution y = 0. Hence, the scalar quantity ψ0 used to eliminate arbitrary
time shift in equation (13) is set to be ψ0 = 0. In the context of (38), the degree of the
multivariate polynomial (4) is N = 2, which means that the computational parameter
M given by (36) is set to be M = 2m − 1. Also, the matrix Λk (k ≥ M) given by
(22) used to define the tail of the operator A in (27) is given by

Λk =

(
τk δk
−δk τk

)
, (39)

where τk
def
=
(∑d

j=1 λj

)
ā0 + (1 + ā0)

(∑d
j=1 λj cos kLτj

)
and δk

def
= −kL̄ + (1 +

ā0)
(∑d

j=1 λj sin kLτj

)
. One can verify that ζ∗, τ∗ ≥ 0 satisfying (25) can be chosen

to be

ζ∗
def
= |1 + ā0|

d∑
j=1

|λj | and τ∗
def
= (|1 + ā0|+ |ā0|)

d∑
j=1

|λj |. (40)

The following result provides an explicit lower bound on the projection dimension
m so that the matrices given by (22) are invertible for all k ≥M = 2m− 1.

Lemma 4.1. Let m be the dimension of the finite dimensional reduction (21) and let
M = 2m− 1. If

m >
1

2

 |1 + ā0|
L̄

 d∑
j=1

|λj |

+ 1

 . (41)

then δk < 0 for all k ≥ M = 2m − 1 and ζ∗ < ML̄. Hence, the matrix Λk given in
(22) is invertible for all k ≥M .
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Proof. For k ≥M , (1 + ā0)
(∑d

j=1 λj sin kLτj

)
≤ ζ∗ = |1 + ā0|

(∑d
j=1 |λj |

)
< ML̄ ≤

kL̄, which follows from condition (41). Hence, we get that δk < 0 for all k ≥ M and
we can conclude that det(Λk) = τ2

k + δ2
k > 0, for all k ≥M .

In order to apply Lemma 3.4, one needs to construct the radii polynomials given
by Definition 3.3. Their construction requires the computation of the bounds Y and
Z given respectively by (33) and (34). The nontrivial Y0, . . . , YM−1 can be computed
using (37). Therefore, the remaining ingredients to finalize the construction of the
polynomials in the context of (38) is the bound Z satisfying

sup
b,c∈B(r)

∣∣∣[DT (x̄+ b)c]k

∣∣∣ = sup
u,v∈B(1)

∣∣∣[DT (x̄+ ru)rv]k

∣∣∣ ≤cw Zk(r),

where as mentioned earlier, the idea is to factor the points b, c ∈ B(r) as b = ur and
c = vr with u, v ∈ B(1), to expand in the unknown variable radius r, and finally
to use the fact that u, v ∈ B(1) to compute uniform bounds in u, v. Introducing an
almost inverse A† : Ωs+1 → Ωs of the operator A defined in (27)

A†x
def
=

{
(Df (M)xF )k, k = 0, . . . ,M − 1,

Λkxk, k ≥M

we can split Df(x̄+ ru)rv = A†rv +
[
Df(x̄+ ru)rv −A†rv

]
. Hence, we get

DT (x̄+ ru)rv = [I −AA†]rv −A [Df(x̄+ ru)−A†
]
rv, (42)

where the first term will be very small. For k ≥ 0 and i ∈ {1, 2}, consider the
expansion (

[Df(x̄+ ru)−A†
]
rv
)
k.i

=

3∑
l1=1

c
(l1)
k,i r

l1 . (43)

4.1.1 The bounds Zk(r), k ∈ {0, . . . ,M − 1}

For k ∈ {0, . . . ,M−1}, we generated the coefficients c
(l1)
k,i using Maple. Upper bounds

C
(l1)
k ≥ 0 such that

∣∣∣c(l1)
k,i

∣∣∣ ≤ C
(l1)
k , for i = 1, 2 and k ≥ 1 are presented in Table 1.

Note that the cases c
(1)
0,1 and c

(1)
0,2 are treated differently. Indeed, the upper bound

|c(1)
0,1| ≤ C

(1)
0,1 is given in the first line of Table 1 and c

(1)
0,2 = 0. Hence, defining

C
(l1)
F =


(
C

(1)
0,1
0

)
(
C

(l1)
k

C
(l1)
k

)
k=1,...,M−1

 ,

we get that |[DT (x̄+ ru)rv]F | ≤cw
∣∣[IF −AM ·Df (M)(x̄)

]
vF
∣∣ r+

3∑
l1=1

|AM | ·C(l1)
F rl1 .

The infinite discrete convolution sums in Table 1 can be estimated using the fol-
lowing result.

Lemma 4.2. Let k ∈ {0, . . . ,M − 1}, recall the definition of the weights ωsk in (8)
and define

φk =

k−1∑
k1=1

1

ks1(k − k1)s
. (44)
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C
(1)
0,1 2

∞∑
k=2m−1

1

ωs
k

k ∈ {0, . . . , 2m − 2}.

C
(1)
k

4

 d∑
j=1

λj

 k+m−1∑
k1=2m−1

∣∣∣āk−k1

∣∣∣ + ∣∣∣b̄k−k1

∣∣∣
ωs
k1

C
(2)
k

 d∑
j=1

λjτj

 4k

ωs
k

+

 d∑
j=1

λjτ
2
j

 (∣∣āk∣∣ + ∣∣b̄k∣∣) k2
+

2k

ωs
k

+ 8

 d∑
j=1

λj

 ∑
k1+k2=k

1

ωs
k1
ωs
k2

+ 2

 d∑
j=1

λjτj

 m−1∑
k1=−m+1

(|k1| + |k − k1|)
(∣∣∣āk1

∣∣∣ + ∣∣∣b̄k1

∣∣∣)
ωs
k−k1

+2

 d∑
j=1

λjτj

 m−1∑
k1=−m+1+k

(|k1| + |k − k1|)
(∣∣∣āk1

∣∣∣ + ∣∣∣b̄k1

∣∣∣)
ωs
k−k1

+

 d∑
j=1

λjτ
2
j

 m−1∑
k1=−m+1+k

(∣∣∣−āk1
āk−k1

+ b̄k1
b̄k−k1

∣∣∣ + ∣∣∣āk1
b̄k−k1

+ b̄k1
āk−k1

∣∣∣) k1
2

C
(3)
k

4

 d∑
j=1

λjτj

 ∑
k1+k2=k

|k1|

ωs
k1
ωs
k2

Table 1: The bounds C
(l1)
k,i , i = 1, 2.

Then ∑
k1+k2=k

1

ωsk1
ωsk2

≤ φk +
1

ωsk

(
4 +

2

s− 1

)
(45)

and∑
k1+k2=k

|k1|
ωsk1

ωsk2

≤ 1

k + 1

(
1 +

1

2s− 3

)
+
k

2
φk +

k

ωsk
+

1

(k + 1)s−1

(
1 +

1

s− 1

)
. (46)

Proof. See [13].

The first infinite sum of Table 1 can be taken care with the following.

∞∑
k=2m−1

1

ωsk
≤ 1

(s− 1)(2m− 2)s−1
(47)

Hence, replacing the infinite sums in Table 1 using the upper bounds (45), (46) and

(47), we get new upper bounds C
(l1)
F . For k ∈ {0, . . . ,M − 1}, we then define the

Zk(r) ∈ R2 as the kth− component of

ZF (r)
def
=
∣∣∣[IF −AM ·Df (M)(x̄)

]
vF

∣∣∣ r +

3∑
l1=1

|AM | ·C(l1)
F rl1 . (48)

4.1.2 The bound ẐM(r)

For k ≥ M , we compute upper bounds Ĉ(l1) > 0 such that for every k ≥ M and
i ∈ {1, 2}, ∣∣∣c(l1)

k,i

∣∣∣ ≤ 1

ks−1
Ĉ(l1) (49)

where Ĉ(l1) is independent of k and i. The derivation of the bounds Ĉ(l1) is a combi-
nation of symbolic computations using Maple and the following result from [13].

Lemma 4.3. Let k ≥M = 2m− 1 and define

γ
def
= 2

[
2m− 1

2m− 2

]s
+

[
4 ln(2m− 3)

2m− 1
+
π2 − 6

3

] [
2

2m− 1
+

1

2

]s−2

,
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Ĉ(1,0)

 d∑
j=1

λj

 m−1∑
k1=1

4

2m − 1
(|āk1

| + |b̄k1
|)

1 +
1(

1 − k1
2m−1

)s


Ĉ(2,0)

2 + 2

 d∑
j=1

λjτj

 (1 + |ā0| + |1 + ā0|) +

 d∑
j=1

λj

 8

2m − 1

(
4 +

2

s − 1
+ γ

)
+

 d∑
j=1

λjτj

 m−1∑
k1=1

2k1

2m − 1
(|āk1

| + |b̄k1
|)

1 +
1(

1 − k1
2m−1

)s


+

 d∑
j=1

λjτj

 m−1∑
k1=1

2(|āk1
| + |b̄k1

|)

1 +
1(

1 − k1
2m−1

)s−1


Ĉ(3,0) 4

 d∑
j=1

λjτj

(3 +
2

s − 1
+
γ

2

)

Table 2: The bounds Ĉ(l1).

Then ∑
k1+k2=k

1

ωsk1
ωsk2

≤ 1

ks−1

[
1

2m− 1

(
4 +

2

s− 1
+ γ

)]
(50)

and ∑
k1+k2=k

|k1|
ωsk1

ωsk2

≤ 1

ks−1

(
3 +

2

s− 1
+
γ

2

)
. (51)

The bounds (50) and (51) are used to find the Ĉ(l1) satisfying (49). The bounds
Ĉ(l1) are presented in Table 2.

Lemma 4.4. Recalling the definition of τ∗ in (40) and of ρ given by (28), let

ẐM (r)
def
=

1

Ms

(
ρ2τ∗

M
+ ρ

)[ 3∑
l1=1

Ĉ(l1)rl1

](
1
1

)
. (52)

For k ≥M = 2m− 1,

|[DT (x̄+ ru)rv]k| ≤cw ẐM (r)

(
M

k

)s
.

Proof. Let k ≥ M . Combining equations (42) and (43), the proof of Lemma 3.1 and
the definition of Ξ in (29),

∣∣∣[DT (x̄+ ru)rv]k

∣∣∣ =
∣∣−Λ−1

k

[
Df(x̄+ ru)rv −A†rv

]
k

∣∣ ≤cw 3∑
l1=1

|Λ−1
k | · |c

(l1)
k |rl1

≤cw
3∑

l1=1

1

k
Ξ · 1

ks−1
Ĉ(l1)

(
1
1

)
rl1 = ẐM (r)

(
M

k

)s
.

4.1.3 Definition of the radii polynomials

We have now all the ingredients to define the radii polynomials for the class of problem
(38). Recalling the bound YF given by (37), the bound ZF (r) given by (48) and the
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bound ẐM (r) given by (52), we define the radii polynomials pk ∈ R2 by

pk(r)
def
=



|AMfF (x̄)|k +
∣∣[IF −AM ·Df (M)(x̄)

]
vF
∣∣
k
r

+

3∑
l1=1

(
|AM | ·C(l1)

F

)
k
rl1 − r

ωsk

(
1
1

)
, k = 0, . . . ,M − 1;(

1
Ms

(
ρ2τ∗

M + ρ
) 3∑
l1=1

Ĉ(l1)rl1 − r

ωsM

)(
1
1

)
, k = M.

(53)

4.2 Proofs of Theorem 1.2 and Theorem 1.3

The proofs of Theorem 1.2 and Theorem 1.3 is based on the success of the following
procedure.

Procedure 4.5. To check the hypotheses of Lemma 3.4 in the context of proving the
existence of periodic solutions of (38), we proceed as follows.

1. Fix d time lags τ1, . . . , τd and real numbers λ1, . . . , λd. Fix a decay rate s, a
finite reduction dimension m, M = 2m− 1, and an approximate solution x̂F of
f (m)(·) = 0.

2. With a Newton iteration, find near x̂F an approximate solution x̄F of f (m)(xF ) =
0. Compute exactly the derivative Dxf

(M)(x̄F ) and compute an approximate in-
verse AM of the inverse of Dxf

(M)(x̄F ). Using interval arithmetic, verify that
conditions (24) and (41) are satisfied (this guarantees that the linear operator
A defined in (27) is invertible).

3. Compute, using interval arithmetic, the coefficients of Table 1 and Table 2 to
complete the construction of the radii polynomials pk, k = 0, . . . ,M given by
equation (53).

4. Calculate numerically I = [r−1 , r
+
1 ]

def
=

M⋂
k=0

{r ≥ 0 | pk(r) ≤ 0}.

5. • If I = ∅ then go to Step 7.

• If I 6= ∅ then let r =
r−1 +r+

1

2 . Compute with interval arithmetic pk(r). If
pk(r) < 0 for all k = 0, . . . ,M then go to Step 6; else go to Step 7.

6. The proof has succeeded. By Lemma 3.4, the operator T given by (30) has a
unique fixed point

x̃ =
(
L̃, ã0, ã1, b̃1, ã2, b̃2, ã3, b̃3, . . .

)
∈ Ωs

within the ball Bx̄(r). By the invertibility of the linear operator A given by (27)
and by the equivalence given in Lemma 2.4, one gets the existence of a periodic
solution

ỹ(t) = ã0 + 2

∞∑
k=1

[
ãk cos kL̃t− b̃k sin kL̃t

]
such that ỹ(0) = ψ0 = 0.

7. The proof has failed. Either increase M > 2m− 1 or increase m and return to
Step 2.
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4.2.1 Proof of Theorem 1.2

Fix τ1 = 1.65, τ2 = 0.35 and consider λ as a free parameter in

y′(t) = −λ [y(t− τ1) + y(t− τ2)] [1 + y(t)]. (54)

Hence, the problem f = 0 with f given by (17) can be considered as being a parameter
dependent problem of the form

f(x, λ) = 0. (55)

Let m1 = 60, m2 = 80 and m3 = 78. Using a pseudo arc-length continuation
algorithm (e.g. see [23]) on a finite dimensional Galerkin projection of (55), one

obtained three numerical approximations x̄(i) = x̄
(i)
F ∈ R2mi (i = 1, 2, 3) of f (mi)(·) =

0 at the parameter value λ = 3.4. Consider the decay rates s1 = 3, s2 = 2.5 and
s3 = 2.

For each i = 1, 2, 3, we applied Procedure 4.5 with m = mi, M = 2mi − 1,
s = si to get the existence of ri > 0 such that Bi

def
= Bx̄(i)(ri) contained a unique

zero of (55) at the parameter value λ = 3.4. We showed that the sets B1, B2, B3

were mutually disjoint. Hence, to the three distinct solutions x̃i ∈ Bi (i = 1, 2, 3)
correspond three distinct periodic solutions ỹi(t) of (54) such that ỹi(0) = 0. The
computer program proof gen wright3d.m in [27] using the interval arithmetic package
Intlab (see [24]) developed for the software Matlab performed successfully the above
steps. That completes the proof of Theorem 1.2.

4.2.2 Proof of Theorem 1.3

Fix λ1 = λ2 = 2.425, τ1 = 1.65, τ2 = 0.35, τ3 = 1 and consider λ3 as a free parameter
in

y′(t) = − [λ1y(t− τ1) + λ2y(t− τ2) + λ3y(t− τ3)] [1 + y(t)]. (56)

Hence, the problem f = 0 with f given by (17) can be considered as being a parameter
dependent problem of the form

f(x, λ3) = 0. (57)

Let m = 40 and for each k = 0, . . . , 25, let λ
(k)
3

def
= k

100 . Using a continuation
algorithm on a finite dimensional Galerkin projection of (57), one obtained, for each

k = 0, . . . , 25, a numerical approximations x̄(k) = x̄
(k)
F ∈ R2m of f (m)(·, λ(k)

3 ) = 0.

For each k = 0, . . . , 25, we applied Procedure 4.5 with M = 2m−1, x̄F = x̄
(k)
F and

s = 3 to get the existence of rk > 0 such that Bk
def
= Bx̄(k)(rk) contained a unique

zero of (57) at the parameter value λ
(k)
3 . Hence, for each k = 0, . . . 25, one has the

existence of a solution x̃k ∈ Bk which corresponds to a nontrivial periodic solution
ỹk(t) of (56) such that ỹk(0) = 0. Note that the numerical data associated to the
case k = 25 can be found in Figure 5. As for the proof of Theorem 1.2, the computer
program proof gen wright3d.m that can be found in [27] performed successfully the
above steps. That completes the proof of Theorem 1.3.

5 Future Projects

A first future project considers the possibility of extending our new proposed com-
putational method to study the existence of invariant tori in delay equations with
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multiple delays. Let us be more specific about that. We would like to study the effect
of the presence of an instantaneous term in (2) by considering the equation

y′ = −ηy(t)− λ [y(t− τ1) + y(t− τ2)] [1 + y(t)] (58)

where η ∈ R. Notice that the substitution η = 0 recovers (2). Looking for the
boundary of the stability region of the trivial solution x ≡ 0 of (58), one needs to
compute the so–called Hopf–curves, curves in the parameter space.
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Wednesday, November 10, 2010

Figure 3: (a) Hopf curves as boundary of the stability region of the linearization of
(58) where κ = 2λ. The numbers indicate the number of unstable roots in each region.
(b) Solution profile of the solution of equation (58) when η = 0.4 κ = 4.85.

Using the ideas of [25, 26], one can plot these curves and count the number of
the unstable roots corresponding to the trivial solution of (58). In Figure 3(a) we
plot a close up on the parameter space with the Hopf–curves of (58). As one can
observe in Figure 3, equation (58) can undergo a more complicated bifurcation then its
counterpart with one delay. More precisely, one can expect a quasi–periodic solution
as an outcome of a double Hopf bifurcation. As Figure 3(b) suggests, this expectation
is reasonable since irregular oscillations around zero can be observed in the solution
profile. With the aid of a shifted coordinate system we can embed the time series into
the two–dimensional Euclidean space.
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Figure 4: Numerically observed invariant torus. The two–dimensional embedding of
the time series plotted in Figure (3)

20



The plot strengthen our argument about the possibility of the existence of a
quasi–periodic solution for (58) or an invariant torus in the state–space. The idea
of this project would then be to expand the numerically observed invariant torus
using Fourier series and to try to prove its existence using a contraction mapping
argument. This is a possibility which is currently under investigation.

A second future project would be to introduce a different set up for the nonlinear
operator f whose zeros corresponds to periodic solutions of (1). More precisely, in
order to enlarge the class of equations (1) to problems with more general nonlinearities
(i.e. not only polynomial nonlinearities), one would like to represent the periodic
solutions using a different approximation than Fourier series. We believe that splines
(i.e. piecewise polynomials) may be a natural choice for this new approximation.
Ideas similar to the ones introduced in [22] for the study of connecting orbits may be
helpful in this context. This is work in progress.

A last interesting future project would be to extend our computational fixed point
method to other types of functional differential equations, namely neutral equations
and equations of mixed type.
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Appendix: Data for a periodic solution of Theorem 1.3

L̄ 1.769416601644631 ā0 −0.000000000000018
ā1 0.601786339573172 b̄1 0.504704483605188
ā2 0.019808638462510 b̄2 0.551034215919532
ā3 −0.204621598835984 b̄3 0.333257682739841
ā4 −0.197074262548811 b̄4 0.109965255095155
ā5 −0.132090298002992 b̄5 −0.003914262849352
ā6 −0.065741598794274 b̄6 −0.031920282037413
ā7 −0.022758737562314 b̄7 −0.030666374740040
ā8 −0.005809569627743 b̄8 −0.021164734340616
ā9 −0.000062041227429 b̄9 −0.010921573163981
ā10 0.002103033279485 b̄10 −0.005032281663922
ā11 0.001938791853807 b̄11 −0.002333672359275
ā12 0.001181909800654 b̄12 −0.000833836698067
ā13 0.000695681613703 b̄13 −0.000181135543301
ā14 0.000363862567645 b̄14 −0.000013208309489
ā15 0.000159861579587 b̄15 0.000034705938832
ā16 0.000072149838004 b̄16 0.000039242056107
ā17 0.000031374518281 b̄17 0.000024120035334
ā18 0.000011188419668 b̄18 0.000013747409265
ā19 0.000003979829238 b̄19 0.000007576004123
ā20 0.000001236364323 b̄20 0.000003557840018
ā21 0.000000199149924 b̄21 0.000001722109911
ā22 0.000000022651239 b̄22 0.000000832013628
ā23 −0.000000038533044 b̄23 0.000000352794201
ā24 −0.000000056869626 b̄24 0.000000165344387
ā25 −0.000000030780276 b̄25 0.000000078365641
ā26 −0.000000016762204 b̄26 0.000000030763716
ā27 −0.000000010418774 b̄27 0.000000013383477
ā28 −0.000000004908838 b̄28 0.000000006103783
ā29 −0.000000002357079 b̄29 0.000000002309899
ā30 −0.000000001214979 b̄30 0.000000000899929
ā31 −0.000000000564721 b̄31 0.000000000336531
ā32 −0.000000000269476 b̄32 0.000000000117723
ā33 −0.000000000119565 b̄33 0.000000000049303
ā34 −0.000000000052694 b̄34 0.000000000014557
ā35 −0.000000000028687 b̄35 0.000000000005479
ā36 −0.000000000012958 b̄36 0.000000000004276
ā37 −0.000000000005090 b̄37 0.000000000001491
ā38 −0.000000000002523 b̄38 0.000000000000523
ā39 −0.000000000001150 b̄39 0.000000000000399

Figure 5: Coordinates of the center x̄ of the set Bλ3
⊂ Ω3 from Theorem 1.3 at the

last parameter value λ3 = 1
4 . More explicitly Bλ3

= Bx̄(r) = x̄ + B(r), where r =
3.5×10−7 and B(r) is given by (31). Since s = 3, by equation (35) in Lemma 3.2, the
`2–error between x̄ and the unique solution x̃ ∈ Bλ3 satisfies ‖x̃− x̄‖`2 ≤ 7.35× 10−7.
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