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Some background

p prime number.
K/Q finite extension.

Ok = ring of integers of K = integral closure of Z in K.

Hilbert class tower of K:

K=KeCKiC...CK,C...

where K11 = maximal unramified abelian extension of K,
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One way in which towers first arose was in connection with the following:

Embedding Problem
Does there always exist a finite extension L/K such that O, is a UFD? J

It can be shown that:

JL/K finite with O a UFD < Hilbert class tower of K is finite.
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One way in which towers first arose was in connection with the following:

Embedding Problem
Does there always exist a finite extension L/K such that O, is a UFD? J

It can be shown that:

JL/K finite with O a UFD < Hilbert class tower of K is finite.

Golod-Shafarevich (1964) — Answered NO to embedding problem by giving
examples of K with infinite p-class towers.
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Key ideas

Consider K“"P = U,>0K, and G = Gk p = Gal (KU"P/K).

G is a pro-p group — compact, totally disconnected topological group
whose finite quotients are p-groups.
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Key ideas

Consider K“"P = U,>0K, and G = Gk p = Gal (KU"P/K).

G is a pro-p group — compact, totally disconnected topological group
whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology

Generator rank: d = dim H'(G,F,)
Relation rank: r = dim H?(G,F,)
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Key ideas

Consider K'"P = Up>0K, and G = Gk p = Gal (K""P/K).

G is a pro-p group — compact, totally disconnected topological group
whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology

Generator rank: d = dim H'(G,F,)
Relation rank: r = dim H?(G,F,)

Theorem (Golod-Shafarevich; refined by Gaschutz-Vinberg)
d2

G finite p-group = r > R
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Galois cohomology:
0<r—d<rnrn+mrn-—->=

where r; = number of real embeddings;
r» = number of conjugate pairs of complex embeddings;
0, if K contains pth root of unity;

1, otherwise.
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Galois cohomology:
0<r—d<n+mn-—-9

where r; = number of real embeddings;
r» = number of conjugate pairs of complex embeddings;
{O, if K contains pth root of unity;

1, otherwise.

p odd prime, K imaginary quadratic (# Q(G) if p = 3):
r1:0, r2:1,5:1.
0<r—d<0+4+1-1=0 thus r=d.

. d?
Gk p finite = d:r>T = d < 4.

Thus d > 4 = Gk infinite.
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p = 2, K imaginary quadratic:
I’1:0, r2:1,5:0.

0<r—d<0+1-0=0 thus r<d-+1.

. d?
Gk 2 finite = d+12r>T =d<2V2+2.

Thus d > 5 = Gk infinite.
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p = 2, K imaginary quadratic:
r1:0, r2:1,5:0.

0<r—d<0+1-0=0 thus r<d-+1.

. d?
Gk 2 finite = d+12r>T =d<2V2+2.

Thus d > 5 = Gk infinite.

Finding K with p-class group of large rank leads to examples with infinite
p-class towers.

Example:
p=2, K=Q(v/—2-3-5-7-11-13) has infinite 2-class tower. J
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What happens when d is smaller than the given bounds?

Two types of result:
(i) Gk p infinite via indirect application of Golod-Shafarevich Theorem.
(ii) Various finiteness results. eg. Ch(K) = G x G2 = Gk finite.

Group theoretic restrictions often play an important role.
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Schur o-groups

If K imaginary quadratic, p odd prime, then G = Gk ,, satisfies:
ed=r.
e G := G/[G, G] is finite abelian.

@ There exists an automorphism ¢ : G — G with 02 = 1 and such that

7: G — G maps x — x71.

Such a group is called a Schur o-group.
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Schur o-groups

If K imaginary quadratic, p odd prime, then G = Gk ,, satisfies:
ed=r.
e G := G/[G, G] is finite abelian.

@ There exists an automorphism ¢ : G — G with 02 = 1 and such that
1

7: G — G maps x — x71.
Such a group is called a Schur o-group.

Using this additional structure one can refine Golod-Shafarevich's bound.

Theorem (Koch-Venkov,1975)
K imaginary quadratic, p odd prime.

d >3 = Ggp infinite.
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Finite Schur o-groups

d = 1, cyclic group;

Gk , finite =
K.p {d —2.

Finite nonabelian Schur o-groups must satisfy d = 2. What sort of groups
can arise?
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Finite Schur o-groups

d = 1, cyclic group;

Gk , finite =
K.p {d —2.

Finite nonabelian Schur o-groups must satisfy d = 2. What sort of groups
can arise?

One approach to finding such groups is to try “random” presentations:
G = (x,y | wi,wy).
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Finite Schur o-groups

d = 1, cyclic group;
G p finite = yelic grotip

d=2.
Finite nonabelian Schur o-groups must satisfy d = 2. What sort of groups
can arise?

One approach to finding such groups is to try “random’” presentations:
G = (x,y | wi,wy).

Relations wy and w;, can be selected so that the map o : F — F (where F
free on {x, y}) defined

X X
yry?
induces a g-automorphism on G.

1

For example, take w; = w™ o (w) or wo(w) for some w € F.
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For each group G we check whether it is finite (as a pro-p group) — Take
abstract f.p. group and compute p-quotients. Stabilization implies
finiteness.
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For each group G we check whether it is finite (as a pro-p group) — Take
abstract f.p. group and compute p-quotients. Stabilization implies
finiteness.

Such experimentation lead to the following family of pro-3 groups:

G = (x,y | ryta(m), t 1o (t))

where

t = yyxly
m o= x3y~ ¥ forn>1.
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Theorem (Bartholdi-B.)

Forn>1,
o G, is a finite 3-group of order 3372,
@ G, is nilpotent of class 2n + 1.
@ G, has derived length |log,(3n + 3)].

If these groups could be realized as Galois groups G it would imply the
existence of arbitrarily large finite p-class towers (open problem).
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Sketch of proof:

Let H, = (x,y | x3,y¥, t71a(t)).

Can show:
1-C—G,—H,—1

with C central, cyclic of order 3.

The groups H, form an inverse system.

limH, = H= (x,y | X3, t71o(t))

«—
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Key Lemma
Let o € Z3 satisfy a® = —2. The map p: H — P C SLy(Z3), given by

(0 -1 a0 12
1 -1) Y 1 —-1)°

is an isomorphism between H and a pro-3 Sylow subgroup P of SLy(Z3).

With this explicit realization of H it is now possible to compute properties
of the groups H, and then for G,.
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A different approach to finding examples

Rather than picking random presentations, one could try to search
systematically through finite p-groups with d = 2 generators. (This sort of
approach first used by Boston and Leedham-Green in 2002.)
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A different approach to finding examples

Rather than picking random presentations, one could try to search
systematically through finite p-groups with d = 2 generators. (This sort of
approach first used by Boston and Leedham-Green in 2002.)

This can be done using the p-group generation algorithm (E. O'Brien,
1990). Groups with fixed generator rank d are arranged in a tree structure.
The algorithm takes a group and computes the (finite) list of descendants.

Starting from the root szl Cp one can (in theory) compute the tree
down to any level. Every d-generated group occurs somewhere in this tree.
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Tree structure for d-generated p-groups
Lower p-central series:
G =Py(G) > Pi(G) > P(G) > ...

where Pn(G) = P,_1(G)P[G, Pr—1(G)] for each n > 1.
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Tree structure for d-generated p-groups
Lower p-central series:

G = Py(G) > Pi(G) > P(G) > ...
where Pn(G) = P,_1(G)P[G, Pr—1(G)] for each n > 1.

If Pp—1(G) # 1 and P,(G) =1 then we say G has p-class n.
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Tree structure for d-generated p-groups
Lower p-central series:

G = Py(G) > Pi(G) > P(G) > ...
where Pn(G) = P,_1(G)P[G, Pr—1(G)] for each n > 1.

If Pp—1(G) # 1 and P,(G) =1 then we say G has p-class n.

Vertices at level n:

d-generated p-groups of p-class n.

Edges between vertices at level n and n — 1:

If G has p-class n and H has p-class n — 1 then we have an edge

GoH & G/Ppyi(G)=H.
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We are interested in Schur o-groups.

Possession of a o-automorphism is an inherited property. While generating
the tree, whenever we encounter a group without a g-automorphism we
can ignore it and its descendants (we “prune the tree”).
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We are interested in Schur o-groups.

Possession of a o-automorphism is an inherited property. While generating
the tree, whenever we encounter a group without a g-automorphism we
can ignore it and its descendants (we “prune the tree”).

For those groups that remain we compute cohomology to determine when
the condition d = r is satisfied.
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Current status of computation: p =3, d =2

Have computed the top levels of the tree when p = 3 and d = 2 using
Magma.
Currently there are 1429 vertices. They split into three types:

@ 797 Dead vertices - groups that do not have a g-automorphism.

@ 219 Internal vertices - groups that have a g-automorphism and whose
descendants have been computed.

@ 413 Leaves - groups where only partial information is available.
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Current status of computation: p =3, d =2

Have computed the top levels of the tree when p = 3 and d = 2 using
Magma.
Currently there are 1429 vertices. They split into three types:

@ 797 Dead vertices - groups that do not have a g-automorphism.

@ 219 Internal vertices - groups that have a g-automorphism and whose
descendants have been computed.

@ 413 Leaves - groups where only partial information is available.
Of the 413 leaves, 323 possess a o-automorphism but descendants have

not been computed. For the remaining 90, finding a -automorphism has
not been attempted (size issues).
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Current status of computation: p =3, d =2

Have computed the top levels of the tree when p = 3 and d = 2 using
Magma.

Currently there are 1429 vertices. They split into three types:
@ 797 Dead vertices - groups that do not have a g-automorphism.

@ 219 Internal vertices - groups that have a g-automorphism and whose
descendants have been computed.

@ 413 Leaves - groups where only partial information is available.

Of the 413 leaves, 323 possess a o-automorphism but descendants have
not been computed. For the remaining 90, finding a -automorphism has
not been attempted (size issues).

Of the 219 + 323 = 542 groups that possess a o-automorphism, only 31
satisfy the additional constraint d = r.
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Figure: The 219 Internal Vertices.

N
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Figure: Subtree generated by the 31 Schur o-groups.
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Some new families

The following presentations appear to describe two new families:

where

for n > 1.
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Gin = {(x,y | ryyo(rn) t o(t))

Gon = (X, | 13,,0(r2,n), t 0 (2))

t o= yxyxy
_ 2.5 .37
. = Yyxyxyx
_ 3"-2
R = YXyxyx
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From their positions in the tree one would expect both G, and Gy, to be
descendants of quotients of the same pro-3 group.

This group would appear to be
H=(xy|rglo(r), t la(t))

where t is as before, and

7

feo = yx2yx5yx_ or yxyxyx_z.
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From their positions in the tree one would expect both G, and Gy, to be
descendants of quotients of the same pro-3 group.

This group would appear to be
H=(xy | rlo(ro), t71a(t))
where t is as before, and
feo = yx2yx5yx_7 or yxyxyx_z.
Although similar these two families are less interesting than the previous

example in one respect. Their derived lengths appear constant (= 2) in
each case.
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Things to do:

o Find other families (especially with increasing derived length).
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Things to do:

o Find other families (especially with increasing derived length).

@ Replace computational conjectures with proofs.
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Things to do:

o Find other families (especially with increasing derived length).
@ Replace computational conjectures with proofs.

e p>37?
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Things to do:

o Find other families (especially with increasing derived length).
@ Replace computational conjectures with proofs.
e p>37?

@ Realization of abstract groups as Galois groups Gk p.
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