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Some background

p prime number.

K/Q finite extension.

OK = ring of integers of K = integral closure of Z in K .

Hilbert class tower of K :

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn ⊆ . . .

where Kn+1 = maximal unramified abelian extension of Kn.
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One way in which towers first arose was in connection with the following:

Embedding Problem

Does there always exist a finite extension L/K such that OL is a UFD?

It can be shown that:

∃ L/K finite with OL a UFD ⇔ Hilbert class tower of K is finite.

Golod-Shafarevich (1964) – Answered NO to embedding problem by giving
examples of K with infinite p-class towers.
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Key ideas

Consider Kur ,p = ∪n≥0Kn and G = GK ,p = Gal (Kur ,p/K ).

G is a pro-p group – compact, totally disconnected topological group
whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology

Generator rank: d = dim H1(G ,Fp)
Relation rank: r = dim H2(G ,Fp)

Theorem (Golod-Shafarevich; refined by Gaschutz-Vinberg)

G finite p-group ⇒ r >
d2

4
.

Michael Bush Smith College () Galois groups of unramified 3-extensions of imaginary quadratic fieldsOctober 3, 2009 4 / 22



Key ideas

Consider Kur ,p = ∪n≥0Kn and G = GK ,p = Gal (Kur ,p/K ).

G is a pro-p group – compact, totally disconnected topological group
whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology

Generator rank: d = dim H1(G ,Fp)
Relation rank: r = dim H2(G ,Fp)

Theorem (Golod-Shafarevich; refined by Gaschutz-Vinberg)

G finite p-group ⇒ r >
d2

4
.

Michael Bush Smith College () Galois groups of unramified 3-extensions of imaginary quadratic fieldsOctober 3, 2009 4 / 22



Key ideas

Consider Kur ,p = ∪n≥0Kn and G = GK ,p = Gal (Kur ,p/K ).

G is a pro-p group – compact, totally disconnected topological group
whose finite quotients are p-groups.

Presentations of pro-p groups and cohomology

Generator rank: d = dim H1(G ,Fp)
Relation rank: r = dim H2(G ,Fp)

Theorem (Golod-Shafarevich; refined by Gaschutz-Vinberg)

G finite p-group ⇒ r >
d2

4
.

Michael Bush Smith College () Galois groups of unramified 3-extensions of imaginary quadratic fieldsOctober 3, 2009 4 / 22



Galois cohomology:

0 ≤ r − d ≤ r1 + r2 − δ

where r1 = number of real embeddings;
r2 = number of conjugate pairs of complex embeddings;

δ =

{
0, if K contains pth root of unity;

1, otherwise.

p odd prime, K imaginary quadratic (6= Q(ζ3) if p = 3):

r1 = 0, r2 = 1, δ = 1.

0 ≤ r − d ≤ 0 + 1− 1 = 0 thus r = d .

GK ,p finite ⇒ d = r >
d2

4
⇒ d < 4.

Thus d ≥ 4 ⇒ GK ,p infinite.
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p = 2, K imaginary quadratic:

r1 = 0, r2 = 1, δ = 0.

0 ≤ r − d ≤ 0 + 1− 0 = 0 thus r ≤ d + 1.

GK ,2 finite ⇒ d + 1 ≥ r >
d2

4
⇒ d < 2

√
2 + 2.

Thus d ≥ 5 ⇒ GK ,2 infinite.

Finding K with p-class group of large rank leads to examples with infinite
p-class towers.

Example:

p = 2, K = Q(
√
−2 · 3 · 5 · 7 · 11 · 13) has infinite 2-class tower.
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What happens when d is smaller than the given bounds?

Two types of result:

(i) GK ,p infinite via indirect application of Golod-Shafarevich Theorem.

(ii) Various finiteness results. eg. Cl2(K ) ∼= C2 × C2 ⇒ GK ,2 finite.

Group theoretic restrictions often play an important role.
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Schur σ-groups

If K imaginary quadratic, p odd prime, then G = GK ,p satisfies:

d = r .

G ab := G/[G ,G ] is finite abelian.

There exists an automorphism σ : G → G with σ2 = 1 and such that
σ : G ab → G ab maps x → x−1.

Such a group is called a Schur σ-group.

Using this additional structure one can refine Golod-Shafarevich’s bound.

Theorem (Koch-Venkov,1975)

K imaginary quadratic, p odd prime.

d ≥ 3 ⇒ GK ,p infinite.
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Finite Schur σ-groups

GK ,p finite ⇒

{
d = 1, cyclic group;

d = 2.

Finite nonabelian Schur σ-groups must satisfy d = 2. What sort of groups
can arise?

One approach to finding such groups is to try “random” presentations:
G = 〈x , y | w1,w2〉.

Relations w1 and w2 can be selected so that the map σ : F → F (where F
free on {x , y}) defined

x 7→ x−1

y 7→ y−1

induces a σ-automorphism on G .

For example, take wi = w−1σ(w) or wσ(w) for some w ∈ F .
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For each group G we check whether it is finite (as a pro-p group) – Take
abstract f.p. group and compute p-quotients. Stabilization implies
finiteness.

Such experimentation lead to the following family of pro-3 groups:

Gn = 〈x , y | r−1
n σ(rn), t−1σ(t)〉

where

t = yxyx−1y

rn = x3y−3n
for n ≥ 1.
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Theorem (Bartholdi–B.)

For n ≥ 1,

Gn is a finite 3-group of order 33n+2.

Gn is nilpotent of class 2n + 1.

Gn has derived length blog2(3n + 3)c.

If these groups could be realized as Galois groups GK ,p it would imply the
existence of arbitrarily large finite p-class towers (open problem).
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Sketch of proof:

Let Hn = 〈x , y | x3, y3n
, t−1σ(t)〉.

Can show:
1→ C → Gn → Hn → 1

with C central, cyclic of order 3.

The groups Hn form an inverse system.

lim←−Hn = H ∼= 〈x , y | x3, t−1σ(t)〉

Michael Bush Smith College () Galois groups of unramified 3-extensions of imaginary quadratic fieldsOctober 3, 2009 12 / 22



Key Lemma

Let α ∈ Z3 satisfy α2 = −2. The map ρ : H → P ⊆ SL2(Z3), given by

x 7→
(

0 −1
1 −1

)
, y 7→ α

(
0 1/2
1 −1

)
,

is an isomorphism between H and a pro-3 Sylow subgroup P of SL2(Z3).

With this explicit realization of H it is now possible to compute properties
of the groups Hn and then for Gn.
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A different approach to finding examples

Rather than picking random presentations, one could try to search
systematically through finite p-groups with d = 2 generators. (This sort of
approach first used by Boston and Leedham-Green in 2002.)

This can be done using the p-group generation algorithm (E. O‘Brien,
1990). Groups with fixed generator rank d are arranged in a tree structure.
The algorithm takes a group and computes the (finite) list of descendants.

Starting from the root
∏d

k=1 Cp one can (in theory) compute the tree
down to any level. Every d-generated group occurs somewhere in this tree.
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Tree structure for d-generated p-groups

Lower p-central series:

G = P0(G ) ≥ P1(G ) ≥ P2(G ) ≥ . . .

where Pn(G ) = Pn−1(G )p[G ,Pn−1(G )] for each n ≥ 1.

If Pn−1(G ) 6= 1 and Pn(G ) = 1 then we say G has p-class n.

Vertices at level n:

d-generated p-groups of p-class n.

Edges between vertices at level n and n − 1:

If G has p-class n and H has p-class n − 1 then we have an edge

G → H ⇔ G/Pn−1(G ) ∼= H.
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We are interested in Schur σ-groups.

Possession of a σ-automorphism is an inherited property. While generating
the tree, whenever we encounter a group without a σ-automorphism we
can ignore it and its descendants (we “prune the tree”).

For those groups that remain we compute cohomology to determine when
the condition d = r is satisfied.
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Current status of computation: p = 3, d = 2

Have computed the top levels of the tree when p = 3 and d = 2 using
Magma.

Currently there are 1429 vertices. They split into three types:

797 Dead vertices - groups that do not have a σ-automorphism.

219 Internal vertices - groups that have a σ-automorphism and whose
descendants have been computed.

413 Leaves - groups where only partial information is available.

Of the 413 leaves, 323 possess a σ-automorphism but descendants have
not been computed. For the remaining 90, finding a σ-automorphism has
not been attempted (size issues).

Of the 219 + 323 = 542 groups that possess a σ-automorphism, only 31
satisfy the additional constraint d = r .
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Figure: The 219 Internal Vertices.
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Figure: Subtree generated by the 31 Schur σ-groups.
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Some new families

The following presentations appear to describe two new families:

G1,n = 〈x , y | r−1
1,nσ(r1,n), t−1σ(t)〉

G2,n = 〈x , y | r−1
2,nσ(r2,n), t−1σ(t)〉

where

t = yxyx−1y

r1,n = yx2yx5yx3n−7

r2,n = yxyxyx3n−2

for n ≥ 1.
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From their positions in the tree one would expect both G1,n and G2,n to be
descendants of quotients of the same pro-3 group.

This group would appear to be

H = 〈x , y | r−1
∞ σ(r∞), t−1σ(t)〉

where t is as before, and

r∞ = yx2yx5yx−7 or yxyxyx−2.

Although similar these two families are less interesting than the previous
example in one respect. Their derived lengths appear constant (= 2) in
each case.
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Things to do:

Find other families (especially with increasing derived length).

Replace computational conjectures with proofs.

p > 3?

Realization of abstract groups as Galois groups GK ,p.
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