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Modular polynomials

Let j : H → C be the complex analytic function with Fourier expan-
sion j(z) = 1/q + 744 + 196884q + . . . in q = exp(2πiz).

Definition. For m > 1, the modular polynomial Φm is the minimal

polynomial of j(mz) over C(j).

Properties.

• Φm(X) ∈ Z[X, j];

• Φm(X, j) = Φm(j,X);

• m prime =⇒ degX(Φm) = m + 1.



An example

Φ5 =X6 − X5Y 5 + 3720X5Y 4 − 4550940X5Y 3 + 2028551200X5Y 2

−246683410950X5Y + 1963211489280X5 + 3720X4Y 5

+1665999364600X4Y 4 + 107878928185336800X4Y 3

+383083609779811215375X4Y 2 + 1285179890682881638400X4Y
+1284733132841424456253440X4 − 4550940X3Y 5

+107878928185336800X3Y 4 − 441206965512914835246100X3Y 3

+26898488858380731577417728000X3Y 2

−192457934618928299655108231168000X3Y
+280244777828439527804321565297868800X3

...
+53274330803424425450420160273356509151232000X + Y 6

+1963211489280Y 5 + 1284733132841424456253440Y 4

+280244777828439527804321565297868800Y 3

+6692500042627997708487149415015068467200Y 2

+53274330803424425450420160273356509151232000Y
+141359947154721358697753474691071362751004672000



Why compute it?

The modular polynomial Φm is a model for the modular curve Y0(m)
parametrizing elliptic curves that are m-isogenous.

In particular: E1, E2 are m-isogenous ⇐⇒ Φm(j(E1), j(E2)) = 0.

This moduli interpretation is valid over all fields of characteristic
coprime to m. (The curve Y0(m) has good reduction modulo p ∤ m.)

Over Fp, the polynomials Φm are used for point counting , endomor-

phism ring computations, cryptography , etc., etc.

In various algorithms, computing this ‘building block’ Φm for mod-
erately large m is actually a bottleneck .



Size of Φm

The polynomial Φm is big : it has size Õ(m3).

No useful lower bound is known, and m3+ε appears to be the ‘true
size’.

m coefficients largest average total

127 8258 7.5kb 5.3kb 5.5MB
251 31880 16kb 12kb 48MB
503 127262 36kb 27kb 431MB
1009 510557 78kb 60kb 3.9GB
2003 2009012 166kb 132kb 33GB
3001 4507505 259kb 208kb 117GB
4001 8010005 356kb 287kb 287GB
5003 12522512 454kb 369kb 577GB
10007 50085038 968kb 774kb 4.8TB



Previous algorithms to compute Φl

• linear algebra on the q-expansions of j(z) and j(lz).
⋄ Atkin was the first (≤ 1992), after him many people.
⋄ run time: O(l4(log l)3+ε)

• use Vélu’s formulas to write down isogenies
⋄ Charles, Lauter (2005)
⋄ run time: O(l5+ε)

• evaluation-interpolation of complex functions
⋄ Enge (2009)
⋄ run time: O(l3(log l)4+ε)
⋄ almost optimal run time! This algorithm broke all world

records a year ago.



New result

We compute Φl modulo carefully selected primes p and combine the
results using the Chinese remainder theorem.

Computing Φl mod p takes time O(l2(log p)3+ε).

If GRH holds true, we can find enough small primes p. We compute
Φl ∈ Z[X,Y ] in time

O(l3(log l)3+ε).

Performance highlights.

• l = 251: 40 seconds (old record: 688 seconds)
• l = 1009: 3822 seconds (old record: 107200 seconds)

Our algorithm computes Φl at ‘a rate of 1 MB/s’.



Computing Φl mod p

Given a prime l > 2, fix an imaginary quadratic order O satisfying

• O is maximal at l;

• h(O) ≥ l + 2.

Example: for l > 3 take an order of large enough 3-power index in
Q(

√
−7).

We will compute Φl mod p for primes p that

• split completely in the ray class field of conductor l for O;

• do not split complely in the ring class field for Z + l2O.

If GRH holds true, there are many primes p of size log p = O(log l)
satisfying these conditions.



Elliptic curves over Fp

By construction, all elliptic curves with endomorphism ring O are
defined over Fp and their l-torsion points live over Fp.

All elliptic curves with endomorphism ring Z + lO also live over Fp,
but none of their non-trivial l-torsion subgroups are defined over Fp.

Strategy.

• Find the black point j(E) by computing a root of HO mod p.

• Find its l + 1 neighbors.

• Compute Φl(j(E),X) =
∏

neighbors E
′ofE

(X − j(E′)) ∈ Fp[X].



Finding the neighbors in case l splits

The 2 neighbors ‘at the surface’ are j(E/E[l1]) and j(E/E[l2]) with
(l) = l1l2 ⊂ O.

Observation: if [l1] = [I] ∈ Pic(O), then j(E/E[l1]) = j(E/E[I]).
Since we pick O ourselves, I can be chosen to be very smooth.

For instance, for the order O of index 3n in Q(
√
−7) we get

Pic(O) = Z/(4 × 3n−1Z) = 〈p2〉

and we only have to compute a series of 2-isogenies.



Finding the neighbors in case l splits

To find the other l − 1 neighbors, we could use Vélu’s formulas.
However: this turns out to be too slow.

Instead: use Vélu once to find one neighbor j(E1) and use the fol-
lowing.

Lemma. Write R = Z + lO. The kernel of Pic(R)
ϕ−→ Pic(O) is

generated by an invertible R-ideal J of norm l2.

Proof. Look at the l+1 index l subrings of O. We find the O-ideals
of norm l, the ring R, and the others are fractional invertible R-ideals
Ji of norm l2. Now observe ϕ(Ji) = lO. �



Finding the neighbors in case l splits

We have Ker(ϕ) = 〈[J ]〉 ⊆ Pic(R).

Simplest case: Pic(R) is cyclic. Again, we may assume that it is
generated by an ideal of small norm.

Write [J ] = [qn]. Compute the action of q, q2, q3, . . . , qh(R) on the
black point j(E1) at the ‘floor’.

The points j(E1/E1[q
n]), j(E1/E1[q

2n]), . . . are the neighbors we are
looking for.



Repeating this procedure

Once we have computed

Φl(j(E),X) =
∏

neighbors E
′ofE

(X − j(E′)) ∈ Fp[X],

we need to pick another point on ‘the surface’ and repeat everything.

However: this will require much less work.

Reason. All its neighbors on the floor have already been computed!
This is crucial to proving the run time and the practical performance.



Interpolating

We need to compute Φl(j(E),X) ∈ Fp[X] for l + 2 different values
j(E) that are ‘on the surface’.

Next step is to interpolate Φl(X,Y ) ∈ (Fp[X])(Y ).

We repeat this for many primes p until we can compute Φl(X,Y ) ∈
Z[X,Y ].

Remark. We can compute Φl(X,Y ) mod s without first computing
it over Z. This saves space!



Remarks about the proof of the run time

We need an explicit height bound on Φl to know ‘when to stop’.

Paula Cohen (1984): h(Φl) = 6l log l + O(l).
Bröker, Sutherland (2009): h(Φl) = 6l log l + 17l.

Our ‘example order’ O can be used throughout the proof.

The proof needs GRH to ensure that the required ‘small’ splitting
primes p exist. To bound their sizes, use effective Chebotarev, Hasse’s
Führerdiskriminantenproduktformel , etc.

To bound the time for the interpolation, use results from computer
science.

We have computed Φl for all primes l ≤ 3607.


