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Binary Theta Series and
CM Modular Forms

1. Introduction

Let rn(q) = {(x, y) ∈ Z2 : q(x, y) = n} denote the number
of representations of n ∈ Z by the positive definite binary
quadratic form

q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z, a > 0.

Fermat, Euler, Lagrange, Gauss: When is rn(q) > 0?

Dirichlet(1839), Weber(1882): If gcd(a, b, c) = 1, i.e. if q is
primitive, then ∃∞ primes p : rp(q) > 0. — Study:

Zq(s) =
∑
n≥1

rn(q)n
−s.

Following Jacobi, Hermite, Kronecker, Weber, consider the
closely related binary theta series

ϑq(z) =
∑
x,y∈Z

e2πiq(x,y)z =
∑
n≥0

rn(q)e
2πinz.

Theorem 0 (a) Weber(1893): Let D = ∆(q) = b2 − 4ac
denote the discriminant of q and ψD =

(
D
·
)
. Then

ϑq

(
az + b

cz + d

)
= ψD(d)(cz + d)ϑq(z),∀

(
a b

c d

)
∈ Γ0(|D|).

(b) Hecke(1926), Schoeneberg(1939): ϑq is holomor-
phic at the cusps, so ϑq ∈M1(|D|, ψD).
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Fix: a discriminant D < 0. Thus:

D = f 2
DdK, where K = Q(

√
D), dK = disc(K), and fD ≥ 1

is some integer. Let

ΘD := 〈ϑq : q ∈ QD〉C and Θ(D) := 〈ϑq : q ∈ Q(D)〉C
be the C-subspaces generated by the theta-series, where

Q(D) = {q = (a, b, c) ∈ Z2 : a > 0,∆(q) = D/t2},
QD = {q = (a, b, c) ∈ Q(D) : gcd(a, b, c) = 1,∆(q) = D}.

Thus
ΘD ⊂ Θ(D) ⊂M1(|D|, ψD).

Questions: 1) How large are the spaces ΘD and Θ(D)?
What is the dimension of the subspaces of cusp forms, i.e. of

ΘS
D = ΘD ∩ S1(|D|, ψD) and Θ(D)S = Θ(D) ∩ S1(|D|, ψD)?

Hecke (1926): Θ(D) 6= M1(|D|, ψD), for many D’s.

2) How can a binary theta series ϑq be expressed in terms of
the (extended) Atkin-Lehner basis of M1(|D|, ψD)?

3) Is there an intrinsic characterization of these spaces?
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2. Some Observations

1) The group GL2(Z) acts on the sets QD and Q(D), and

ϑq′ = ϑq, for all q′ ∈ qGL2(Z).

By using the Dirichlet/Weber result, one can show that the set
{ϑq : q ∈ QD/GL2(Z)} is a basis of ΘD. In particular,

dim ΘD = hD := |QD/GL2(D)|

2) By Gauss’s theory of composition of forms, the set

Cl(D) = QD/ SL2(Z)

has the structure of an abelian group. If hD := |Cl(D)|, then

hD =
1

2
(gD + hD), where gD = [Cl(D) : Cl(D)2]

denotes the number of genera of forms of discriminant D.

3) For a character χ ∈ Cl(D)∗ on Cl(D), put

ϑχ(z) :=
1

wD

∑
q∈Cl(D)

χ(q)ϑq(z) =
∑
n≥0

an(χ)e2πinz ∈ ΘD,

where wD = 2 for D < −4 and w−3 = 6,m−4 = 4.

It is immediate that {ϑχ}χ∈Cl(D)∗ generates ΘD and hence by
1) forms a basis of ΘD (subject to the identification ϑχ = ϑχ).

Note: It turns out (cf. Theorem 1) that the coefficients an(χ) are
multiplicative in n, and that hence ϑχ is a Hecke eigenfunc-
tion w.r.t. to the Hecke algebra T(D) generated by the Hecke
operators Tp with (p,D) = 1.
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4) The L-function associated to the form ϑχ is

L(s, χ) = L(s, ϑχ) =
∑
n≥1

an(χ)n−s.

This function is frequently found in the literature (e.g., in Lang,
Elliptic Functions, 1st ed.), and was recently studied in detail
by Z.-H. Sun and K. S. Williams (2006).

5) If D is a fundamental discriminant, i.e. if D = dK, then it is
well-known that each ϑχ is a primitive form (newform) and
hence in this case the ϑχ’s are part of the canonical Atkin-
Lehner basis of M1(|D|, ψD).

However, in the general case this is no longer true for every
χ ∈ Cl(D)∗ because some of the characters χ ∈ Cl(D)∗ are
not primitive, i.e. they are lifts

χ = χ′ ◦ π of characters χ′ ∈ Cl(D′)∗

of some “lower level” D′|D (where D
D′ = t2 > 1) via the canon-

ical map
π = πD,D′ : Cl(D) → Cl(D′).
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3. Main Results

Theorem 1: The space ΘD is a T(D)-submodule ofM1(|D|, ψD)
of multiplicity one, and has a canonical basis {ϑχ} consisting of
normalized T(D)-eigenforms. Furthermore, ϑχ is a cusp form
if and only if χ is not a quadratic character.

Theorem 2: We have ΘD = ΘE
D ⊕ ΘS

D, where

ΘE
D = ΘD∩E1(|D|, ψD) denotes the Eisenstein space part and

ΘS
D = ΘD∩S1(|D|, ψ) denotes the cusp space part of ΘD, and

(1) dim ΘE
D = gD and dim ΘS

D = 1
2(hD − gD).

Remark: Thus ΘS
D = 0 ⇔ hD = gD

def⇔ D is an idoneal discrim-
inant. (This implies a result of Kitaoka (1971).)

Theorem 3: Let χ ∈ Cl(D)∗, where D = f 2
DdK.

(a) ∃! divisor fχ|fD and a unique primitive character χpr ∈
Cl(Dχ), where Dχ = f 2

χdK, such that χ = χpr ◦ π̄D,Dχ.
(b) The form ϑχpr ∈ ΘDχ is a primitive form (newform) of level
|Dχ|. Moreover, there exist constants cn(χ) ∈ R such that

(2) ϑχ(z) =
∑
n|f̄2

χ

cn(χ)ϑχpr(nz),

where f̄χ = fD/fχ. Furthermore, the function n 7→ cn(χ) is
multiplicative and has generating function

(3) C(s, χ) :=
∑
n|f̄2

χ

cn(χ)n−s = L(s, ϑχ)/L(s, ϑχpr).
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Remark: While L(s, ϑχpr) is a classical Hecke L-function asso-
ciated to a Hecke character and hence is well-understood, the
L-function L(s, ϑχ) is more complicated and is, in fact, un-
known in general.

Thus, (3) does not help in determining the constants cn(χ).
However, C(s, χ) can be computed directly by using facts
about ideals in quadratic orders.

As a consequence, we thus obtain an explicit expression for the
L-function L(s, χ) = L(s, ϑχ) :

Corollary: If χ ∈ Cl(D)∗, then L(s, χ) has the Euler product

(4) L(s, χ) =
∏
p

Lp(s, χ)

where for p - f̄χ the p-Euler factor Lp(s, χ) is given by

Lp(s, χ) =
(
1− ap(χ)p−s + ψD(p)p−2s

)−1

=
(
1− ap(χpr)p

−s + ψDχ(p)p
−2s

)−1
,

whereas for p | f̄χ (and pēp||f̄χ), it is given by

Lp(s, χ) =
1− p(1−2s)ēp

1− p1−2s
+

(
1− 1

pψDχ(p)
)
p(1−2s)ēp

1− ap(χpr)p−s + ψDχ(p)p
−2s

.

Remark: This generalizes the work of Sun and Williams (2006)
(for D < 0), who obtained a formula for the p-Euler factors of
L(s, χ) in the case that the class group Cl(D) is cyclic.
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Definition: Let f ∈ Mk(N,ψ) be a T(N)-eigenfunction with
eigencharacter λf : T(D) → C. We say that f has CM (com-
plex multiplication) by a Dirichlet character θ if

λf(Tp)θ(p) = λf(Tp), for all p - Ncond(θ),

or, equivalently, if

λf(Tp) = 0 for all p - Ncond(θ) with θ(p) 6= 1.

We letMCM
k (N,ψ; θ) denote the space generated by all T (N)-

eigenfunctions f ∈Mk(N,ψ) which have CM by θ.

Theorem 4: For every discriminant D < 0 we have that

(5) Θ(D) = MCM
1 (|D|, ψD) := MCM

1 (|D|, ψD;ψD).

Corollary:

(6) dim Θ(D) = dimMCM
1 (|D|, ψD) =

∑
f |fD

2ω(f)hD/f2,

where ω(f ) denotes the number of distinct prime divisors of
f . Moreover, the dimensions of the Eisenstein part and of the
cuspidal part of MCM

1 (|D|, ψD) are given by

dimECM
1 (|D|, ψD) =

∑
f |fD

2ω(f)gD/f2,

dimSCM1 (|D|, ψD) =
∑
f |fD

2ω(f)(fD/f2 − gD/f2).

Remark: There is no (known) formula for dimM1(|D|, ψD).
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4. Ingredients

1) Dedekind’s Isomorphism:

λD : Cl(D)
∼→ Pic(OD),

where OD = Z + ZD+
√
D

2 ⊂ OK is the order of discriminant
D (and/or of conductor fD in K).

2) A classification of the invertible ideals of OD:

⇒ the multiplicativity of an(χ),
the value of cn(χ) for n|D, etc.

3) A study of the conductor of χ ∈ Cl(D)∗ : via the isomorphism

IK(fDOK)/PK,Z(fD)
∼→ Pic(OD),

one can identify each χ ∈ Cl(D)∗ with a Hecke character χ̃
on the group IK(fDOK) of fractional ideals prime to the ideal
fDOK. A key fact is:

χ is primitive on Cl(D) ⇔ χ̃ is primitive mod fDOK.

4) Genus theory (Gauss/Kronecker/Weber): this identifies quadratic
characters χ ∈ Cl(D)∗ with certain Dirichlet characters.

5) Extended Atkin-Lehner theory: this describes:

1) the characters λ ∈ T(N)∗ = Hom(T(N),C) of the Hecke
algebra T(N) ⊂ End(Mk(N,ψ)) in terms of primitive eigen-
functions (newforms);

2) the structure of the T(N)-eigenspace associated to λ:

Mk(N,ψ)[λ] = {f ∈Mk(N,ψ) : f |kTn = λ(Tn)f,∀(n,N) = 1}
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For Theorem 4, we also need:

6) (a) The Deligne/Serre theory of Galois representations

ρf : GQ = Gal(Q/Q) → GL2(C)

attached to T(N)-eigenfunctions f ∈M1(N,ψ).

(b) A characterization of characters of ring class fields via
(strongly) dihedral Galois representations of GQ (= reinter-
pretation of a result of Bruckner (1966)).

(c) A characterization of CM forms via their associated Galois
representations (→ Theorem 5 below).
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5. Galois representations

Deligne/Serre (1974): If f ∈M1(N,ψ) is a normalized T(N)-
eigenfunction, then ∃! Galois representation

ρf : GQ → GL2(C)

such that for all primes p - N

tr(ρf(Frp)) = λf(Tp) = ap(f ),

det(ρf(Frp)) = ψ(p).

Furthermore, ρf is irreducible ⇔ f is a cusp form.

Definition: An Galois representation ρ : GQ → GL2(C) is called
strongly dihedral if Im(ρ) ' Dn is a dihedral group (n ≥ 3).

Moreover, ρ is said to be of dihedral type if Im(ρ)/Z(Im(ρ)) '
Dn is a dihedral group (n ≥ 2).

Theorem 5: Let f ∈ S1(N,ψ) be a newform.

(a) f has CM by some character θ ⇔ ρf is of dihedral type.

(b) f has CM by ψ ⇔ ρf is strongly dihedral.

Theorem 6: Let ρ : G→ GL2(C) be Galois representation.

(a) (Hecke, Weil, Deligne/Serre) If ρ is of dihedral type and is
odd, then ρ = ρf for some f ∈ S1(N,ψ).

(b) (Bruckner, 1966) ρ is strongly dihedral if and only if the
field Fix(Ker(ρ)) is contained in some ring class field.

Remark: Theorems 3, 5, 6 ⇒ Theorem 4.


