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Primes

To count primes, we usually define

π(x) := #{p ≤ x}.

For technical reasons, we add the weight log p at each prime p.

Definition

ψ(x) :=
∑
pk≤x

log p,

ψ(x ; q,a) :=
∑
pk≤x

pk≡a mod q

log p.

What is the relation between ψ(x) and ψ(x ; q,a)?
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The prime number theorem in arithmetic progressions

Theorem (Hadamard, de la Vallée-Poussin)

If (a,q) = 1,

ψ(x ; q,a) ∼
ψ(x)

φ(q)
.

This is for fixed values of a and q.
What if we want to look at higher moduli ?
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Higher moduli

Theorem (Siegel, Walfisz)

If (a,q) = 1, then for q ≤ (log x)B,∣∣∣∣∣∣ψ(x ; q,a) −
ψ(x)

φ(q)

∣∣∣∣∣∣ ≤ C
x

(log x)A
.

Theorem
Assume GRH. If (a,q) = 1, then∣∣∣∣∣∣ψ(x ; q,a) −

ψ(x)

φ(q)

∣∣∣∣∣∣ ≤ C
√

x(log x)2.

Under GRH, we have the asymptotic for q ≤ x
1
2 /(log x)2.
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The Riemann hypothesis is true on average

On average, we know much more.

Theorem (Bombieri, Vinogradov)

For Q ≤ x
1
2−ε ,∑
q≤Q

max
a:(a,q)=1

∣∣∣∣∣∣ψ(x ; q,a) −
ψ(x)

φ(q)

∣∣∣∣∣∣ ≤ C
x

(log x)A
.

It is one of the most important theorems of modern number
theory.
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An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let a , 0, and M = M(x) ≤ (log x)B. We have that

1
x
M
φ(a)

a

∑
q≤ x

M
(q,a)=1

(
ψ(x ; q,a) − Λ(a) −

ψ(x)

φ(q)

)
= µ(a,M)+O

(
1

M
205
538−ε

)

where

µ(a,M) :=


−1

2 log M − C5 if a = ±1,
−1

2 log p if a = ±pe,

0 if a has ≥ 2 distinct prime factors.

(The O-constant depends on a, ε and B.)

D. Fiorilli Arithmetic sequences in arithmetic progressions



An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let a , 0, and M = M(x) ≤ (log x)B. We have that

1
x
M
φ(a)

a

∑
q≤ x

M
(q,a)=1

(
ψ(x ; q,a) − Λ(a) −

ψ(x)

φ(q)

)
= µ(a,M)+O

(
1

M
205
538−ε

)

where

µ(a,M) :=


−1

2 log M − C5 if a = ±1,
−1

2 log p if a = ±pe,

0 if a has ≥ 2 distinct prime factors.

(The O-constant depends on a, ε and B.)

D. Fiorilli Arithmetic sequences in arithmetic progressions



An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let a , 0, and M = M(x) ≤ (log x)B. We have that

1
x
M
φ(a)

a

∑
q≤ x

M
(q,a)=1

(
ψ(x ; q,a) − Λ(a) −

ψ(x)

φ(q)

)
= µ(a,M)+O

(
1

M
205
538−ε

)

where

µ(a,M) :=


−1

2 log M − C5 if a = ±1,
−1

2 log p if a = ±pe,

0 if a has ≥ 2 distinct prime factors.

(The O-constant depends on a, ε and B.)

D. Fiorilli Arithmetic sequences in arithmetic progressions



An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let a , 0, and M = M(x) ≤ (log x)B. We have that

1
x
M
φ(a)

a

∑
q≤ x

M
(q,a)=1

(
ψ(x ; q,a) − Λ(a) −

ψ(x)

φ(q)

)
= µ(a,M)+O

(
1

M
205
538−ε

)

where

µ(a,M) :=


−1

2 log M − C5 if a = ±1,
−1

2 log p if a = ±pe,

0 if a has ≥ 2 distinct prime factors.

(The O-constant depends on a, ε and B.)

D. Fiorilli Arithmetic sequences in arithmetic progressions



Notation

Fix a sequence A = {a(n)}n≥1 a sequence of non-negative real
numbers.

Definition

A(x) :=
∑

1≤n≤x

a(n), A(x ; q,a) :=
∑

1≤n≤x
n≡a mod q

a(n).

In each of the sequences we will consider, there exists ga(q)
such that

A(x ; q,a) ∼ ga(q)A(x).
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Values of a positive definite binary quadratic form, with
multiplicity.

For α, β, γ ∈ Z coprime, let

Q(x , y) := αx2 + βxy + γy2

be a positive definite binary quadratic form.
The discriminant: d := β2 − 4αγ.

a(n) := #{(x , y) ∈ Z2
≥0 : Q(x , y) = n}.

rd (n) := # distinct representations of n by all non-equivalent
forms of discriminant d (up to automorphism).

ρa(q) :=
1
q
·#{1 ≤ x , y ≤ q : Q(x , y) ≡ a mod q}.
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Values of a positive definite binary quadratic form, with
multiplicity.

What happens in arithmetic progressions ?

A(x ; q,a) ∼
ρa(q)

q
A(x). (1)

This asymptotic actually holds in great uniformity.

Theorem (Plaksyn)

The asymptotic (1) holds (with a good error term) for q ≤ x2/3.
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Values of a positive definite binary quadratic form, with
multiplicity.

Theorem (F.)
Assume that d ≡ 1,5,9,12,13 mod 16. Fix a such that
(a,2d) = 1. We have for M = M(x) ≤ xλ, where λ < 1

12 that

1
x/M

∑
q≤ x

M

(
A(x ; q,a) − a(a) −

ρa(q)

q
A(x)

)

= −CQρa(4d)rd (|a|) + O
(

1

M
1
3−ε

)
,

where CQ :=
AQ

2L(1, χd )

=
wd

√
|d |

4πhd
AQ

 ,
AQ = area of {(x , y) ∈ R2

≥0 : Q(x , y) ≤ 1}, χd :=
(

4d
·

)
, wd is the

number of units of Q(
√

d) and hd is its class number.
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Twin primes

a(n) := Λ(n)Λ(n + 2).

Conjecture (Hardy-Littlewood)

A(x) ∼ 2C2x ,

where C2 :=
∏
p,2

(
1 −

1
(p − 1)2

)
.

D. Fiorilli Arithmetic sequences in arithmetic progressions



Twin primes

a(n) := Λ(n)Λ(n + 2).

Conjecture (Hardy-Littlewood)

A(x) ∼ 2C2x ,

where C2 :=
∏
p,2

(
1 −

1
(p − 1)2

)
.

D. Fiorilli Arithmetic sequences in arithmetic progressions



Twin primes

The (general) Hardy-Littlewood actually tells something about
arithmetic progressions.
For (a,q) = 1, look at

B(x) :=
∑
n≤x

Λ(qn + a)Λ(qn + a + 2).

The Hardy-Littlewood prediction is that

B(x) ∼
A(x)

γ(q)
,

where

γ(q) :=
∏
p|q

(
1 −

ν(p)

p

)
, where ν(p) :=

2 if p , 2
1 if p = 2.
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Twin primes

Theorem (F.)
Under a uniform version of Hardy-Littlewood, the average of
A(x ; q,a) − a(a) −

A(x)
qγ(q)

for x
2M < q ≤ x

M is

∼ −
(log M)2

4 if a = −1
∼ −

log 3
4 log M if a = 1,−3

∼ −
log 2

2 log M if a = 2,−4
∼ −

log p log q
2

p−ν(p)
p−1

q−ν(q)
q−1 if a(a + 2) = ±peqf

o(1) if ω(a(a + 2)) ≥ 3.

Of course one can do this with any admissible k -tuple of linear
forms in the primes.

D. Fiorilli Arithmetic sequences in arithmetic progressions



Twin primes

Theorem (F.)
Under a uniform version of Hardy-Littlewood, the average of
A(x ; q,a) − a(a) −

A(x)
qγ(q)

for x
2M < q ≤ x

M is

∼ −
(log M)2

4 if a = −1
∼ −

log 3
4 log M if a = 1,−3

∼ −
log 2

2 log M if a = 2,−4
∼ −

log p log q
2

p−ν(p)
p−1

q−ν(q)
q−1 if a(a + 2) = ±peqf

o(1) if ω(a(a + 2)) ≥ 3.

Of course one can do this with any admissible k -tuple of linear
forms in the primes.

D. Fiorilli Arithmetic sequences in arithmetic progressions



Sums of two squares, without multiplicity

Define

a(n) :=

1 if n = �+ �,

0 else.

In this case,
A(x ; q,a) ∼ ga(q)A(x),

where, for p , 2 with pf ‖ a,

ga(pe) :=
1
pe ×



1 if p ≡ 1 mod 4
1 if p ≡ 3 mod 4,e ≤ f ,2 | e
1
p if p ≡ 3 mod 4,e ≤ f ,2 - e
1 + 1

p if p ≡ 3 mod 4,e > f ,2 | f
0 if p ≡ 3 mod 4,e > f ,2 - f .

(2)

Moreover, ga(2) := 1
2 and for e ≥ 2, ga(2e) :=

1+(−1)
a−1

2

2e+2 .
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1+(−1)
a−1

2

2e+2 .
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Sums of two squares, without multiplicity

Theorem (F.))

Fix an integer a ≡ 1 mod 4. We have for 1 ≤ M(x) ≤ (log x)λ,
where λ < 1/5 is a fixed real number, that

1
x/2M

∑
x

2M <q≤ x
M

(A(x ; q,a) − a(a) − ga(q)A(x))

∼ −

(
log M
log x

) 1
2 (−4)−la−1(2la + 2)!

(4l2a − 1)(la + 1)!π

∏
pf ‖a:

p≡3 mod 4,
fodd

log(p
f+1

2 )

log M
, (3)

where la := #{pf ‖ a : p ≡ 3 mod 4,2 - f } is the number primes
dividing a to an odd power which are congruent to 3 modulo 4.

D. Fiorilli Arithmetic sequences in arithmetic progressions



Integers free of small prime factors

For y = y(x) a function of x , define

ay (n) :=

1 if p | n ⇒ p ≥ y
0 else,

A(x , y) :=
∑
n≤x

ay (n),

γy (q) :=
∏
p|q
p<y

(
1 −

1
p

)
,

A(x , y ; q,a) :=
∑
n≤x

n≡a mod q

ay (n).
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Integers free of small prime factors

Theorem (F.)

Let M ≤ (log x)1−δ. The average of A(x , y ; q,a) − ay (a) −
A(x ,y)
qγy (q)

for x/2M < q ≤ x/M is, for y ≤ e(log M)
1
2 −δ with y → ∞,

=

−1
2 + o(1) if a = ±1

o(1) otherwise,

and for (log x)log log log x ≤ y ≤
√

x , it is

=
A(x , y)

x
×


(−1

2 + o(1)) log M if a = ±1
−1

2 log p + o(1) if a = ±pk

o(1) otherwise.

(We have no result in the intermediate range.)
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