The distribution of some arithmetic sequences in arithmetic progressions to large moduli

Daniel Fiorilli

School of Mathematics
Institute for Advanced Study
September 21st, 2011

Primes

To count primes, we usually define

$$
\pi(x):=\#\{p \leq x\} .
$$

For technical reasons, we add the weight $\log p$ at each prime p.

Definition

What is the relation between $\psi(x)$ and $\psi(x ; q, a)$?

Primes

To count primes, we usually define

$$
\pi(x):=\#\{p \leq x\} .
$$

For technical reasons, we add the weight $\log p$ at each prime p.
Definition

What is the relation between $\psi(x)$ and $\psi(x ; q, a)$?

Primes

To count primes, we usually define

$$
\pi(x):=\#\{p \leq x\} .
$$

For technical reasons, we add the weight $\log p$ at each prime p.
Definition

$$
\psi(x):=\sum_{p^{k} \leq x} \log p,
$$

What is the relation between $\psi(x)$ and $\psi(x ; q, a)$?

Primes

To count primes, we usually define

$$
\pi(x):=\#\{p \leq x\} .
$$

For technical reasons, we add the weight $\log p$ at each prime p.
Definition

$$
\begin{aligned}
\psi(x) & :=\sum_{p^{k} \leq x} \log p, \\
\psi(x ; q, a) & :=\sum_{\substack{p^{k} \leq x \\
p^{k} \equiv a \bmod q}} \log p .
\end{aligned}
$$

What is the relation between $\psi(x)$ and $\psi(x ; q, a)$?

Primes

To count primes, we usually define

$$
\pi(x):=\#\{p \leq x\} .
$$

For technical reasons, we add the weight $\log p$ at each prime p.
Definition

$$
\begin{aligned}
\psi(x) & :=\sum_{p^{k} \leq x} \log p, \\
\psi(x ; q, a) & :=\sum_{\substack{p^{k} \leq x \\
p^{k} \equiv a \bmod q}} \log p .
\end{aligned}
$$

What is the relation between $\psi(x)$ and $\psi(x ; q, a)$?

The prime number theorem in arithmetic progressions

Theorem (Hadamard, de la Vallée-Poussin)
If $(a, q)=1$,

$$
\psi(x ; q, a) \sim \frac{\psi(x)}{\phi(q)} .
$$

This is for fixed values of a and q.
What if we want to look at higher moduli ?

The prime number theorem in arithmetic progressions

Theorem (Hadamard, de la Vallée-Poussin)
If $(a, q)=1$,

$$
\psi(x ; q, a) \sim \frac{\psi(x)}{\phi(q)} .
$$

This is for fixed values of a and q.
What if we want to look at higher moduli?

The prime number theorem in arithmetic progressions

Theorem (Hadamard, de la Vallée-Poussin)
If $(a, q)=1$,

$$
\psi(x ; q, a) \sim \frac{\psi(x)}{\phi(q)} .
$$

This is for fixed values of a and q.
What if we want to look at higher moduli ?

Higher moduli

Theorem (Siegel, Walfisz)

If $(a, q)=1$, then for $q \leq(\log x)^{B}$,

$$
\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \frac{x}{(\log x)^{A}} .
$$

Theorem
Assume GRH. If $(a, q)=1$, then

Under GRH, we have the asymptotic for $q \leq x^{\frac{1}{2}} /(\log x)^{2}$.

Higher moduli

Theorem (Siegel, Walfisz)

If $(a, q)=1$, then for $q \leq(\log x)^{B}$,

$$
\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \frac{x}{(\log x)^{A}} .
$$

Theorem

Assume GRH. If $(a, q)=1$, then

$$
\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \sqrt{x}(\log x)^{2} .
$$

Under GRH, we have the asymptotic for $q \leq x^{\frac{1}{2}} /(\log x)^{2}$.

Higher moduli

Theorem (Siegel, Walfisz)

If $(a, q)=1$, then for $q \leq(\log x)^{B}$,

$$
\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \frac{x}{(\log x)^{A}} .
$$

Theorem

Assume GRH. If $(a, q)=1$, then

$$
\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \sqrt{x}(\log x)^{2} .
$$

Under GRH, we have the asymptotic for $q \leq x^{\frac{1}{2}} /(\log x)^{2}$.

The Riemann hypothesis is true on average

On average, we know much more.
Theorem (Bombieri, Vinogradov)

It is one of the most important theorems of modern number theory.

The Riemann hypothesis is true on average

On average, we know much more.
Theorem (Bombieri, Vinogradov)
For $Q \leq x^{\frac{1}{2}-\epsilon}$,

$$
\sum_{q \leq Q} \max _{a:(a, q)=1}\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \frac{x}{(\log x)^{A}} .
$$

It is one of the most important theorems of modern number theory.

The Riemann hypothesis is true on average

On average, we know much more.
Theorem (Bombieri, Vinogradov)
For $Q \leq x^{\frac{1}{2}-\epsilon}$,

$$
\sum_{q \leq Q} \max _{a:(a, q)=1}\left|\psi(x ; q, a)-\frac{\psi(x)}{\phi(q)}\right| \leq C \frac{x}{(\log x)^{A}} .
$$

It is one of the most important theorems of modern number theory.

An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.
Theorem (F.)
Let $a \neq 0$, and $M=M(x) \leq(\log x)^{B}$. We have that

where

(The O-constant depends on a, ϵ and B.)

An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let $a \neq 0$, and $M=M(x) \leq(\log x)^{B}$. We have that

$$
\frac{1}{\frac{x}{M} \frac{\phi(a)}{a}} \sum_{\substack{q \leq \frac{x}{j} \\(q, a)=1}}\left(\psi(x ; q, a)-\Lambda(a)-\frac{\psi(x)}{\phi(q)}\right)=\mu(a, M)+O\left(\frac{1}{M^{2055}-\epsilon}\right)
$$

where

(The O-constant depends on a, ϵ and B.)

An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let $a \neq 0$, and $M=M(x) \leq(\log x)^{B}$. We have that

$$
\frac{1}{\frac{x}{M} \frac{\phi(a)}{a}} \sum_{\substack{q \leq x \\(q, a)=1}}\left(\psi(x ; q, a)-\Lambda(a)-\frac{\psi(x)}{\phi(q)}\right)=\mu(a, M)+O\left(\frac{1}{M_{535}^{205}-\epsilon}\right)
$$

where

$$
\mu(a, M):= \begin{cases}-\frac{1}{2} \log M-C_{5} & \text { if } a= \pm 1, \\ -\frac{1}{2} \log p & \text { if } a= \pm p^{e}, \\ 0 & \text { if } a \text { has } \geq 2 \text { distinct prime factors. }\end{cases}
$$

(The O-constant depends on a, ϵ and B.)

An asymptotic for the mean

Instead of looking at the mean deviation, look at the mean itself.

Theorem (F.)

Let $a \neq 0$, and $M=M(x) \leq(\log x)^{B}$. We have that

$$
\frac{1}{\frac{x}{M} \frac{\phi(a)}{a}} \sum_{\substack{q \leq x \\(q, a)=1}}\left(\psi(x ; q, a)-\Lambda(a)-\frac{\psi(x)}{\phi(q)}\right)=\mu(a, M)+O\left(\frac{1}{M_{535}^{205}-\epsilon}\right)
$$

where
$\mu(a, M):= \begin{cases}-\frac{1}{2} \log M-C_{5} & \text { if } a= \pm 1, \\ -\frac{1}{2} \log p & \text { if } a= \pm p^{e}, \\ 0 & \text { if } a \text { has } \geq 2 \text { distinct prime factors. }\end{cases}$
(The O-constant depends on a, ϵ and B.)

Notation

Fix a sequence $\mathcal{A}=\{\mathbf{a}(n)\}_{n \geq 1}$ a sequence of non-negative real numbers.

Definition

In each of the sequences we will consider, there exists $g_{a}(q)$ such that

$$
\boldsymbol{H}(x ; q ; a) \sim g_{a}(q) \mathcal{H}(x) .
$$

Notation

Fix a sequence $\mathcal{A}=\{\mathbf{a}(n)\}_{n \geq 1}$ a sequence of non-negative real numbers.

Definition

$$
\mathcal{A}(x):=\sum_{1 \leq n \leq x} \mathbf{a}(n), \quad \mathcal{A}(x ; q, a):=\sum_{\substack{1 \leq n \leq x \\ n=\bmod q}} \mathbf{a}(n) .
$$

In each of the sequences we will consider, there exists $g_{a}(q)$ such that

$$
\mathcal{A}(x ; q, a) \sim g_{a}(q) \mathcal{A}(x) .
$$

Notation

Fix a sequence $\mathcal{A}=\{\mathbf{a}(n)\}_{n \geq 1}$ a sequence of non-negative real numbers.

Definition

$$
\mathcal{A}(x):=\sum_{1 \leq n \leq x} \mathbf{a}(n), \quad \mathcal{A}(x ; q, a):=\sum_{\substack{1 \leq n \leq x \\ n=\bmod q}} \mathbf{a}(n) .
$$

In each of the sequences we will consider, there exists $g_{a}(q)$ such that

$$
\mathcal{A}(x ; q, a) \sim g_{a}(q) \mathcal{A}(x) .
$$

Values of a positive definite binary quadratic form, with multiplicity.

For $\alpha, \beta, \gamma \in \mathbb{Z}$ coprime, let

$$
Q(x, y):=\alpha x^{2}+\beta x y+\gamma y^{2}
$$

be a positive definite binary quadratic form.
The discriminant: $d:=\beta^{2}-4 \alpha \gamma$.
$\mathbf{a}(n):=\#\left\{(x, y) \in \mathbb{Z}_{\geq 0}^{2}: Q(x, y)=n\right\}$.
$r_{d}(n):=$ \# distinct representations of n by all non-equivalent forms of discriminant d (up to automorphism).

Values of a positive definite binary quadratic form, with multiplicity.

For $\alpha, \beta, \gamma \in \mathbb{Z}$ coprime, let

$$
Q(x, y):=\alpha x^{2}+\beta x y+\gamma y^{2}
$$

be a positive definite binary quadratic form.
The discriminant: $d:=\beta^{2}-4 \alpha \gamma$.

$r_{d}(n):=$ \# distinct representations of n by all non-equivalent forms of discriminant d (up to automorphism).

Values of a positive definite binary quadratic form, with multiplicity.

For $\alpha, \beta, \gamma \in \mathbb{Z}$ coprime, let

$$
Q(x, y):=\alpha x^{2}+\beta x y+\gamma y^{2}
$$

be a positive definite binary quadratic form.
The discriminant: $d:=\beta^{2}-4 \alpha \gamma$.

$$
\mathbf{a}(n):=\#\left\{(x, y) \in \mathbb{Z}_{\geq 0}^{2}: Q(x, y)=n\right\}
$$

$r_{d}(n):=$ \# distinct representations of n by all non-equivalent forms of discriminant d (up to automorphism).

Values of a positive definite binary quadratic form, with multiplicity.

For $\alpha, \beta, \gamma \in \mathbb{Z}$ coprime, let

$$
Q(x, y):=\alpha x^{2}+\beta x y+\gamma y^{2}
$$

be a positive definite binary quadratic form.
The discriminant: $d:=\beta^{2}-4 \alpha \gamma$.

$$
\mathbf{a}(n):=\#\left\{(x, y) \in \mathbb{Z}_{\geq 0}^{2}: Q(x, y)=n\right\}
$$

$r_{d}(n):=$ \# distinct representations of n by all non-equivalent forms of discriminant d (up to automorphism).

Values of a positive definite binary quadratic form, with multiplicity.

For $\alpha, \beta, \gamma \in \mathbb{Z}$ coprime, let

$$
Q(x, y):=\alpha x^{2}+\beta x y+\gamma y^{2}
$$

be a positive definite binary quadratic form.
The discriminant: $d:=\beta^{2}-4 \alpha \gamma$.

$$
\mathbf{a}(n):=\#\left\{(x, y) \in \mathbb{Z}_{\geq 0}^{2}: Q(x, y)=n\right\}
$$

$r_{d}(n):=$ \# distinct representations of n by all non-equivalent forms of discriminant d (up to automorphism).

$$
\rho_{a}(q):=\frac{1}{q} \cdot \#\{1 \leq x, y \leq q: Q(x, y) \equiv a \bmod q\}
$$

Values of a positive definite binary quadratic form, with multiplicity.

What happens in arithmetic progressions ?

This asymptotic actually holds in great uniformity.
Theorem (Dlakeyn)
The asymptotic (1) holds (with a good error term) for $q \leq x^{2 / 3}$.

Values of a positive definite binary quadratic form, with multiplicity.

What happens in arithmetic progressions ?

$$
\begin{equation*}
\mathcal{A}(x ; q, a) \sim \frac{\rho_{a}(q)}{q} \mathcal{A}(x) . \tag{1}
\end{equation*}
$$

This asymptotic actually holds in great uniformity.
Theorem (Plaksyn)
The asymntotic (1) holds (with a good error term) for $q \leq x^{2 / 3}$

Values of a positive definite binary quadratic form, with multiplicity.

What happens in arithmetic progressions ?

$$
\begin{equation*}
\mathcal{A}(x ; q, a) \sim \frac{\rho_{a}(q)}{q} \mathcal{A}(x) . \tag{1}
\end{equation*}
$$

This asymptotic actually holds in great uniformity.
Theorem (Plaksyn)
The asymptotic (1) holds (with a good error term) for $q \leq x^{2 / 3}$.

Values of a positive definite binary quadratic form, with multiplicity.

What happens in arithmetic progressions ?

$$
\begin{equation*}
\mathcal{A}(x ; q, a) \sim \frac{\rho_{a}(q)}{q} \mathcal{A}(x) . \tag{1}
\end{equation*}
$$

This asymptotic actually holds in great uniformity.

Theorem (Plaksyn)

The asymptotic (1) holds (with a good error term) for $q \leq x^{2 / 3}$.

Values of a positive definite binary quadratic form, with multiplicity.

Theorem (F.)

Assume that $d \equiv 1,5,9,12,13 \bmod 16$. Fix a such that $(a, 2 d)=1$. We have for $M=M(x) \leq x^{\lambda}$, where $\lambda<\frac{1}{12}$ that

$$
\begin{aligned}
\frac{1}{x / M} \sum_{q \leq \frac{x}{M}}(\mathcal{A}(x ; q, a)-\mathbf{a}(a) & \left.-\frac{\rho_{a}(q)}{q} \mathcal{A}(x)\right) \\
& =-C_{Q} \rho_{a}(4 d) r_{d}(|a|)+O\left(\frac{1}{M^{\frac{1}{3}-\epsilon}}\right)
\end{aligned}
$$

$A_{Q}=$ area of $\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: Q(x, y) \leq 1\right\}, \chi_{d}:=\left(\frac{4 d}{4}\right), w_{d}$ is the number of units of $\mathbb{Q}(\sqrt{d})$ and h_{d} is its class number.

Values of a positive definite binary quadratic form, with multiplicity.

Theorem (F.)

Assume that $d \equiv 1,5,9,12,13 \bmod 16$. Fix a such that $(a, 2 d)=1$. We have for $M=M(x) \leq x^{\lambda}$, where $\lambda<\frac{1}{12}$ that

$$
\begin{aligned}
\frac{1}{x / M} \sum_{q \leq \frac{x}{M}}(\mathcal{A}(x ; q, a)-\mathbf{a}(a) & \left.-\frac{\rho_{a}(q)}{q} \mathcal{A}(x)\right) \\
& =-C_{Q} \rho_{a}(4 d) r_{d}(|a|)+O\left(\frac{1}{M^{\frac{1}{3}-\epsilon}}\right)
\end{aligned}
$$

$$
\text { where } C_{Q}:=\frac{A_{Q}}{2 L\left(1, \chi_{d}\right)} \quad\left(=\frac{w_{d} \sqrt{|d|}}{4 \pi h_{d}} A_{Q}\right)
$$

$A_{Q}=$ area of $\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}\right.$

Values of a positive definite binary quadratic form, with multiplicity.

Theorem (F.)

Assume that $d \equiv 1,5,9,12,13 \bmod 16$. Fix a such that $(a, 2 d)=1$. We have for $M=M(x) \leq x^{\lambda}$, where $\lambda<\frac{1}{12}$ that

$$
\begin{gathered}
\frac{1}{x / M} \sum_{q \leq \frac{x}{M}}\left(\mathcal{A}(x ; q, a)-\mathbf{a}(a)-\frac{\rho_{a}(q)}{q} \mathcal{A}(x)\right) \\
=-C_{Q} \rho_{a}(4 d) r_{d}(|a|)+O\left(\frac{1}{M^{\frac{1}{3}-\epsilon}}\right), \\
\text { where } C_{Q}:=\frac{A_{Q}}{2 L\left(1, \chi_{d}\right)} \quad\left(=\frac{w_{d} \sqrt{|d|}}{4 \pi h_{d}} A_{Q}\right),
\end{gathered}
$$

$A_{Q}=$ area of $\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: Q(x, y) \leq 1\right\}$,

Values of a positive definite binary quadratic form, with multiplicity.

Theorem (F.)

Assume that $d \equiv 1,5,9,12,13 \bmod 16$. Fix a such that $(a, 2 d)=1$. We have for $M=M(x) \leq x^{\lambda}$, where $\lambda<\frac{1}{12}$ that

$$
\begin{aligned}
\frac{1}{x / M} \sum_{q \leq \frac{x}{M}}(\mathcal{A}(x ; q, a)-\mathbf{a}(a) & \left.-\frac{\rho_{a}(q)}{q} \mathcal{A}(x)\right) \\
& =-C_{Q} \rho_{a}(4 d) r_{d}(|a|)+O\left(\frac{1}{M^{\frac{1}{3}-\epsilon}}\right)
\end{aligned}
$$

$$
\text { where } C_{Q}:=\frac{A_{Q}}{2 L\left(1, \chi_{d}\right)} \quad\left(=\frac{w_{d} \sqrt{|d|}}{4 \pi h_{d}} A_{Q}\right)
$$

$A_{Q}=$ area of $\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: Q(x, y) \leq 1\right\}, \chi_{d}:=\left(\frac{4 d}{\cdot}\right)$,

Values of a positive definite binary quadratic form, with multiplicity.

Theorem (F.)

Assume that $d \equiv 1,5,9,12,13 \bmod 16$. Fix a such that $(a, 2 d)=1$. We have for $M=M(x) \leq x^{\lambda}$, where $\lambda<\frac{1}{12}$ that

$$
\begin{gathered}
\frac{1}{x / M} \sum_{q \leq \frac{x}{M}}\left(\mathcal{A}(x ; q, a)-\mathbf{a}(a)-\frac{\rho_{a}(q)}{q} \mathcal{A}(x)\right) \\
=-C_{Q} \rho_{a}(4 d) r_{d}(|a|)+O\left(\frac{1}{M^{\frac{1}{3}-\epsilon}}\right), \\
\text { where } C_{Q}:=\frac{A_{Q}}{2 L\left(1, \chi_{d}\right)} \quad\left(=\frac{w_{d} \sqrt{|d|}}{4 \pi h_{d}} A_{Q}\right)
\end{gathered}
$$

$A_{Q}=$ area of $\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: Q(x, y) \leq 1\right\}, \chi_{d}:=\left(\frac{4 d}{.}\right), w_{d}$ is the number of units of $\mathbb{Q}(\sqrt{d})$ and h_{d} is its class number.

Twin primes

$$
\mathbf{a}(n):=\Lambda(n) \wedge(n+2) .
$$

Conjecture (Hardy-Littlewood)

$$
\pi^{\prime}(x) \sim 2 C_{2} x
$$

where C_{2}

Twin primes

$$
\mathbf{a}(n):=\Lambda(n) \wedge(n+2) .
$$

Conjecture (Hardy-Littlewood)

$$
\begin{gathered}
\mathcal{A}(x) \sim 2 C_{2} x, \\
\text { where } C_{2}:=\prod_{p \neq 2}\left(1-\frac{1}{(p-1)^{2}}\right)
\end{gathered}
$$

Twin primes

The (general) Hardy-Littlewood actually tells something about arithmetic progressions.
For $(a, q)=1$, look at

The Hardy-Littlewood prediction is that

where

Twin primes

The (general) Hardy-Littlewood actually tells something about arithmetic progressions.
For $(a, q)=1$, look at

$$
B(x):=\sum_{n \leq x} \Lambda(q n+a) \wedge(q n+a+2) .
$$

The Hardy-Littlewood prediction is that

where

Twin primes

The (general) Hardy-Littlewood actually tells something about arithmetic progressions.
For $(a, q)=1$, look at

$$
B(x):=\sum_{n \leq x} \Lambda(q n+a) \wedge(q n+a+2)
$$

The Hardy-Littlewood prediction is that

$$
B(x) \sim \frac{\mathcal{A}(x)}{\gamma(q)}
$$

where

$$
\gamma(q):=\prod_{p \mid q}\left(1-\frac{v(p)}{p}\right), \quad \text { where } v(p):= \begin{cases}2 & \text { if } p \neq 2 \\ 1 & \text { if } p=2\end{cases}
$$

Twin primes

Theorem (F.)

Under a uniform version of Hardy-Littlewood, the average of $\mathcal{A}(x ; q, a)-\mathbf{a}(a)-\frac{\mathcal{A}(x)}{q_{\gamma}(q)}$ for $\frac{x}{2 M}<q \leq \frac{x}{M}$ is

$$
\begin{cases}\sim-\frac{(\log M)^{2}}{4} & \text { if } a=-1 \\ \sim-\frac{\log 3}{4} \log M & \text { if } a=1,-3 \\ \sim-\frac{\log 2}{2} \log M & \text { if } a=2,-4 \\ \sim-\frac{\log p \log q}{2} \frac{p-v(p)}{p-1} \frac{q-v(q)}{q-1} & \text { if } a(a+2)= \pm p^{e} q^{f} \\ o(1) & \text { if } \omega(a(a+2)) \geq 3 .\end{cases}
$$

Of course one can do this with any admissible k-tuple of linear forms in the primes.

Twin primes

Theorem (F.)

Under a uniform version of Hardy-Littlewood, the average of $\mathcal{A}(x ; q, a)-\mathbf{a}(a)-\frac{\mathcal{A}(x)}{q \gamma(q)}$ for $\frac{x}{2 M}<q \leq \frac{x}{M}$ is

$$
\begin{cases}\sim-\frac{(\log M)^{2}}{4} & \text { if } a=-1 \\ \sim-\frac{\log 3}{4} \log M & \text { if } a=1,-3 \\ \sim-\frac{\log 2}{2} \log M & \text { if } a=2,-4 \\ \sim-\frac{\log p \log q}{2} \frac{p-v(p)}{p-1} \frac{q-v(q)}{q-1} & \text { if } a(a+2)= \pm p^{e} q^{f} \\ o(1) & \text { if } \omega(a(a+2)) \geq 3 .\end{cases}
$$

Of course one can do this with any admissible k-tuple of linear forms in the primes.

Sums of two squares, without multiplicity

Define

$$
\mathbf{a}(n):= \begin{cases}1 & \text { if } n=\square+\square \\ 0 & \text { else }\end{cases}
$$

In this case,

$$
\mathcal{A}(x ; q, a) \sim g_{a}(q) \mathcal{A}(x)
$$

where, for $p \neq 2$ with $p^{f} \| a$,

Moreover, $g_{a}(2):=\frac{1}{2}$ and for $e \geq 2, g_{a}\left(2^{e}\right):=\frac{\left.1+(-1)^{2}\right)^{2}}{2^{e+2}}$.

Sums of two squares, without multiplicity

Define

$$
\mathbf{a}(n):= \begin{cases}1 & \text { if } n=\square+\square \\ 0 & \text { else }\end{cases}
$$

In this case,

$$
\mathcal{A}(x ; q, a) \sim g_{a}(q) \mathcal{A}(x)
$$

where, for $p \neq 2$ with $p^{f} \| a$,

Moreover, $g_{a}(2):=\frac{1}{2}$ and for $e \geq 2, g_{a}\left(2^{e}\right):=\frac{1+(-1)^{2}}{2^{e+2}}$.

Sums of two squares, without multiplicity

Define

$$
\mathbf{a}(n):= \begin{cases}1 & \text { if } n=\square+\square \\ 0 & \text { else }\end{cases}
$$

In this case,

$$
\mathcal{A}(x ; q, a) \sim g_{a}(q) \mathcal{A}(x)
$$

where, for $p \neq 2$ with $p^{f} \| a$,

$$
g_{a}\left(p^{e}\right):=\frac{1}{p^{e}} \times \begin{cases}1 & \text { if } p \equiv 1 \bmod 4 \tag{2}\\ 1 & \text { if } p \equiv 3 \bmod 4, e \leq f, 2 \mid e \\ \frac{1}{p} & \text { if } p \equiv 3 \bmod 4, e \leq f, 2 \nmid e \\ 1+\frac{1}{p} & \text { if } p \equiv 3 \bmod 4, e>f, 2 \mid f \\ 0 & \text { if } p \equiv 3 \bmod 4, e>f, 2 \nmid f\end{cases}
$$

Moreover, $g_{a}(2):=\frac{1}{2}$ and for $e \geq 2, g_{a}\left(2^{e}\right):=\frac{1+(-1)^{\frac{a-1}{2}}}{2^{e+2}}$.

Sums of two squares, without multiplicity

Theorem (F.))

Fix an integer $a \equiv 1 \bmod 4$. We have for $1 \leq M(x) \leq(\log x)^{\lambda}$, where $\lambda<1 / 5$ is a fixed real number, that

$$
\begin{align*}
& \frac{1}{x / 2 M} \sum_{\frac{x}{2 M}<q \leq \frac{x}{W}}\left(\mathcal{A}(x ; q, a)-\mathbf{a}(a)-g_{a}(q) \mathcal{A}(x)\right) \\
& \sim-\left(\frac{\log M}{\log x}\right)^{\frac{1}{2}} \frac{(-4)^{-l_{a}-1}\left(2 I_{a}+2\right)!}{\left(4 I_{a}^{2}-1\right)\left(I_{a}+1\right)!\pi} \prod_{\substack{p^{\prime} \mid \| a \\
p=3 \text { mod } \\
\text { fodd }}} \frac{\log \left(p^{\frac{f+1}{2}}\right)}{\log M}, \tag{3}
\end{align*}
$$

where $I_{a}:=\#\left\{p^{f} \| a: p \equiv 3 \bmod 4,2 \nmid f\right\}$ is the number primes dividing a to an odd power which are congruent to 3 modulo 4.

Integers free of small prime factors

For $y=y(x)$ a function of x, define

$$
\mathbf{a}_{y}(n):= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \geq y \\ 0 & \text { else }\end{cases}
$$

Integers free of small prime factors

For $y=y(x)$ a function of x, define

$$
\begin{gathered}
\mathbf{a}_{y}(n):= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \geq y \\
0 & \text { else },\end{cases} \\
\mathcal{A}(x, y):=\sum_{n \leq x} \mathbf{a}_{y}(n)
\end{gathered}
$$

Integers free of small prime factors

For $y=y(x)$ a function of x, define

$$
\begin{gathered}
\mathbf{a}_{y}(n):= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \geq y \\
0 & \text { else },\end{cases} \\
\mathcal{A}(x, y):=\sum_{n \leq x} \mathbf{a}_{y}(n), \\
\gamma_{y}(q):=\prod_{\substack{p \mid q \\
p<y}}\left(1-\frac{1}{p}\right), \\
\mathcal{A}(x, y ; q, a):=\sum_{\substack{n \leq x \\
n=a \leq m o d\\
}} a_{y}(n) .
\end{gathered}
$$

Integers free of small prime factors

For $y=y(x)$ a function of x, define

$$
\begin{gathered}
\mathbf{a}_{y}(n):= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \geq y \\
0 & \text { else },\end{cases} \\
\mathcal{A}(x, y):=\sum_{n \leq x} \mathbf{a}_{y}(n), \\
\gamma_{y}(q):=\prod_{\substack{p \mid q \\
p<y}}\left(1-\frac{1}{p}\right), \\
\mathcal{A}(x, y ; q, a):=\sum_{\substack{n \leq x \\
n=a \bmod q}} \mathbf{a}_{y}(n) .
\end{gathered}
$$

Integers free of small prime factors

Theorem (F.)

Let $M \leq(\log x)^{1-\delta}$. The average of $\mathcal{A}(x, y ; q, a)-\mathbf{a}_{y}(a)-\frac{\mathcal{A}(x, y)}{q \gamma_{y}(q)}$ for $x / 2 M<q \leq x / M$ is,

and for $(\log x)^{\log \log \log x} \leq y \leq \sqrt{x}$, it is

(We have no result in the intermediate range.)

Integers free of small prime factors

Theorem (F.)

Let $M \leq(\log x)^{1-\delta}$. The average of $\mathcal{A}(x, y ; q, a)-\mathbf{a}_{y}(a)-\frac{\mathcal{A}(x, y)}{q \gamma_{y}(q)}$ for $x / 2 M<q \leq x / M$ is, for $y \leq e^{(\log M)^{\frac{1}{2}-\delta}}$ with $y \rightarrow \infty$,

and for $(\log x)^{\log \log \log x} \leq y \leq \sqrt{x}$, it is

(We have no result in the intermediate range.)

Integers free of small prime factors

Theorem (F.)

Let $M \leq(\log x)^{1-\delta}$. The average of $\mathcal{A}(x, y ; q, a)-\mathbf{a}_{y}(a)-\frac{\mathcal{A}(x, y)}{q_{y}(q)}$ for $x / 2 M<q \leq x / M$ is, for $y \leq e^{(\log M)^{\frac{1}{2}-\delta}}$ with $y \rightarrow \infty$,

$$
= \begin{cases}-\frac{1}{2}+o(1) & \text { if } a= \pm 1 \\ o(1) & \text { otherwise }\end{cases}
$$

and for $(\log x)^{\log \log \log x} \leq y \leq \sqrt{x}$, it is

(We have no result in the intermediate range.)

Integers free of small prime factors

Theorem (F.)

Let $M \leq(\log x)^{1-\delta}$. The average of $\mathcal{A}(x, y ; q, a)-\mathbf{a}_{y}(a)-\frac{\mathcal{A}(x, y)}{q \gamma_{y}(q)}$ for $x / 2 M<q \leq x / M$ is, for $y \leq e^{(\log M)^{\frac{1}{2}-\delta}}$ with $y \rightarrow \infty$,

$$
= \begin{cases}-\frac{1}{2}+o(1) & \text { if } a= \pm 1 \\ o(1) & \text { otherwise }\end{cases}
$$

and for $(\log x)^{\log \log \log x} \leq y \leq \sqrt{x}$, it is

(We have no result in the intermediate range.)

Integers free of small prime factors

Theorem (F.)

Let $M \leq(\log x)^{1-\delta}$. The average of $\mathcal{A}(x, y ; q, a)-\mathbf{a}_{y}(a)-\frac{\mathcal{A}(x, y)}{q_{\gamma}(q)}$ for $x / 2 M<q \leq x / M$ is, for $y \leq e^{(\log M)^{\frac{1}{2}-\delta}}$ with $y \rightarrow \infty$,

$$
= \begin{cases}-\frac{1}{2}+o(1) & \text { if } a= \pm 1 \\ o(1) & \text { otherwise }\end{cases}
$$

and for $(\log x)^{\log \log \log x} \leq y \leq \sqrt{x}$, it is

$$
=\frac{\mathcal{A}(x, y)}{x} \times \begin{cases}\left(-\frac{1}{2}+o(1)\right) \log M & \text { if } a= \pm 1 \\ -\frac{1}{2} \log p+o(1) & \text { if } a= \pm p^{k} \\ o(1) & \text { otherwise }\end{cases}
$$

(We have no result in the intermediate range.)

