New methods for constructing normal numbers

Jean-Marie De Koninck and Imre Kátai

Given an integer $q \geq 2$, a q-normal number is an irrational number whose q-ary expansion is such that any preassigned sequence, of length $k \geq 1$, of base q digits from this expansion, occurs at the expected frequency, namely $1 / q^{k}$.

Equivalently, given a positive irrational number $\eta<1$ whose expansion is

$$
\eta=0 . a_{1} a_{2} a_{3} \cdots=\sum_{j=1}^{\infty} \frac{a_{j}}{q^{j}}, \text { where each } a_{i} \in\{0,1, \ldots, q-1\}
$$

we say that η is a normal number if the sequence $\left\{q^{m} \eta\right\}, m=1,2, \ldots$ (here $\{y\}$ stands for the fractional part of y), is uniformly distributed in the interval $[0,1[$.

Both definitions are equivalent, because the sequence $\left\{q^{m} \eta\right\}, m=1,2, \ldots$, is uniformly distributed in $\left[0,1\left[\right.\right.$ if and only if for every integer $k \geq 1$ and $b_{1} \ldots b_{k} \in$ $\{0,1, \ldots, q-1\}^{k}$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{j<N: a_{j+1} \ldots a_{j+k}=b_{1} \ldots b_{k}\right\}=\frac{1}{q^{k}}
$$

Interestingly:

- $\pi, e, \sqrt{2}, \log 2$ and $\zeta(3)$ have not yet been proven to be normal numbers.
- In fact, no algebraic irrational number has yet been proved to be normal.
- Émile Borel (1909) showed that almost all numbers are normal (with respect to the Lebesgue measure).

The story line:

- 1909: Borel introduces the concept of a normal number.
- 1917: Sierpinski provides an example of a normal number.
- 1933: Champernowne proves that the number

$$
0.123456789101112131415161718192021 \ldots,
$$

is normal in base 10 .

- 1946: Copeland and Erdős prove that the number

$$
0.23571113171923293137 \ldots
$$

is normal in base 10 .
In the same paper, they conjecture that if $f(x)$ is any non constant polynomial whose values at $x=1,2,3, \ldots$ are positive integers, then $0 . f(1) f(2) f(3) \ldots$ is a normal number in base 10 .

- 1952: Davenport and Erdős prove this conjecture.
- 1997: Nakai and Shiokawa prove the following: Let $f(x)$ be any nonconstant polynomial taking only positive integral values for positive integral arguments, then the number 0.f(2)f(3)f(5)f(7) $\ldots f(p) \ldots$ is normal.
- 2003: Crandall and Bailey prove that, if $b>1$ and $c>1$ are co-prime integers, then

$$
\sum_{k=1}^{\infty} \frac{1}{b^{c^{k}} c^{k}} \quad \text { is } b \text {-normal. }
$$

- 2010: Igor Shparlinski asks if the number

$$
0 . P(2) P(3) P(4) P(5) P(6) \ldots
$$

is normal. Here $P(n)$ stands for the largest prime factor of n.

Here, we use the complexity of the multiplicative structure of integers to construct large families of normal numbers.

Let $q \geq 2$ be a fixed integer.
$\wp=$ the set of all primes.
Let $\wp_{0}, \wp_{1}, \ldots, \wp_{q-1}$ be disjoint sets of primes such that

$$
\begin{equation*}
\wp=\mathcal{R} \cup \wp_{0} \cup \wp_{1} \cup \cdots \cup \wp_{q-1}, \tag{1}
\end{equation*}
$$

where \mathcal{R} is a given finite (perhaps empty) set of primes.
We call $\mathcal{R}, \wp_{0}, \wp_{1}, \ldots, \wp_{q-1}$ a disjoint classification of primes.
Example of a disjoint classification of primes:

$$
\mathcal{R}=\{2\}, \quad \wp_{0}=\{p: p \equiv 1 \quad(\bmod 4)\}, \quad \wp_{1}=\{p: p \equiv 3 \quad(\bmod 4)\}
$$

The general idea:

$$
n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}} \mapsto \ell_{1} \ldots \ell_{r},
$$

where each ℓ_{j} is such that $p_{j} \in \wp \ell_{j}$

For each integer $q \geq 2$, let $A_{q}:=\{0,1, \ldots, q-1\}$.
Given an integer $t \geq 1$, an expression of the form

$$
i_{1} i_{2} \ldots i_{t}, \quad \text { where each } i_{j} \in A_{q}
$$

is called a word of length t.
The symbol Λ will denote the empty word.
Now, given a disjoint classification of primes $\mathcal{R}, \wp_{0}, \wp_{1}, \ldots, \wp_{q-1}$, let the function $H: \wp \rightarrow A_{q}$ be defined by

$$
H(p)= \begin{cases}j & \text { if } p \in \wp_{j} \text { for some } j \in A_{q} \\ \Lambda & \text { if } p \in \mathcal{R}\end{cases}
$$

Let A_{q}^{*} be the set of finite words over A_{q}.
Consider the function $T: \mathbb{N} \rightarrow A_{q}^{*}$ defined by

$$
T(n)=T\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=H\left(p_{1}\right) \ldots H\left(p_{r}\right)
$$

where we omit $H\left(p_{i}\right)=\Lambda$ if $p_{i} \in \mathcal{R}$.
For convenience, we set $T(1)=\Lambda$.

Given a set of integers S, we let

$$
\pi(S)=\#\{p \in \wp \cap S\}
$$

Theorem 1. Let $q \geq 2$ be an integer and let $\wp=\mathcal{R} \cup \wp_{0} \cup \ldots \cup \wp_{q-1}$ be a disjoint classification of primes. Assume that, for a certain constant $c \geq 5$,

$$
\pi\left([u, u+v] \cap \wp_{j}\right)=\frac{1}{q} \pi([u, u+v])+O\left(\frac{u}{\log ^{c} u}\right)
$$

uniformly for $2 \leq v \leq u, j=0,1, \ldots, q-1$, as $u \rightarrow \infty$. Further, let T be defined on \mathbb{N} by

$$
T(n)=T\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=H\left(p_{1}\right) \ldots H\left(p_{r}\right)
$$

where

$$
H(p)= \begin{cases}j & \text { if } p \in \wp_{j} \quad \text { for some } j \in A_{q} \\ \Lambda & \text { if } p \in \mathcal{R}\end{cases}
$$

Then,

$$
\xi=0 . T(1) T(2) T(3) T(4) \ldots
$$

is a q-normal number.

Example: Let

$$
\wp_{0}=\{p: p \equiv 1 \quad(\bmod 4)\}, \quad \wp_{1}=\{p: p \equiv 3 \quad(\bmod 4)\}, \quad \mathcal{R}=\{2\} .
$$

Then,

$$
\{T(1), T(2), \ldots, T(15)\}=\{\Lambda, \Lambda, 1, \Lambda, 0,1,1, \Lambda, 1,0,1,1,0,1,10\}
$$

and

$$
\xi=0 . T(1) T(2) T(3) T(4) \ldots=0.101110110110 \ldots \quad \text { is a normal number }
$$

Theorem 2. Given two co-prime positive integers a and D, let $\wp_{h}:=\{p: p \equiv h$ $(\bmod D)\}$ for $\operatorname{gcd}(h, D)=1$. Let $h_{0}, h_{1}, \ldots, h_{\varphi(D)-1}$ be those positive integers $<D$ which are relatively prime with D. Further let $\mathcal{R}=\{p: p \mid D\}$ and set

$$
T\left(p^{a}\right)=T(p)= \begin{cases}j & \text { if } p \equiv h_{j} \quad(\bmod D) \\ \Lambda & \text { if } p \mid D\end{cases}
$$

Let ξ be the real number whose $\varphi(D)$-ary expansion is given by

$$
\xi=0 . T(2+a) T(3+a) T(5+a) \ldots T(p+a) \ldots,
$$

where $p+a$ is the sequence of shifted primes. Then ξ is a $\varphi(D)$-normal number.

Theorem 3. Let $k \geq 2$ be a fixed integer and set $E(n):=n(n+1) \cdots(n+k-1)$. Moreover, for each positive integer n, define

$$
e(n)=\prod_{\substack{q^{\beta} \| E(n) \\ q \leq k-1}} q^{\beta} .
$$

We shall now define the sequence ρ_{n} on the prime powers q^{a} of $E(n)$ as follows:

$$
\rho_{n}\left(q^{a}\right)=\rho_{n}(q)= \begin{cases}\Lambda & \text { if } q \mid e(n), \\ \ell & \text { if } q \mid n+\ell, \operatorname{gcd}(q, e(n))=1,0 \leq \ell \leq k-1 .\end{cases}
$$

If $E(n)=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{r}^{a_{r}}$ where $q_{1}<q_{2}<\cdots<q_{r}$ are primes an each $a_{i} \in \mathbb{N}$, then we set

$$
S(E(n))=\rho_{n}\left(q_{1}\right) \rho_{n}\left(q_{2}\right) \ldots \rho_{n}\left(q_{r}\right)
$$

Let ξ be the real number whose k-ary expansion is given by

$$
\begin{equation*}
\xi=0 . S(E(1)) S(E(2)) \ldots S(E(n)) \ldots \tag{2}
\end{equation*}
$$

Then, ξ is a k-normal number.

Theorem 4. Let $p_{1}<p_{2}<\cdots$ be the sequence of all primes, and let k, E and S be as above. Let ξ be the real number whose k-ary expansion is given by

$$
\xi=0 . S\left(E\left(p_{1}+1\right)\right) S\left(E\left(p_{2}+1\right)\right) \ldots
$$

Then ξ is a k-normal number.

Theorem 5. Let $q \geq 2$ be a fixed integer. Given a positive integer

$$
n=p_{1}^{e_{1}} \cdots p_{k+1}^{e_{k+1}}
$$

let

$$
c_{j}(n):=\left\lfloor\frac{q \log p_{j}}{\log p_{j+1}}\right\rfloor \in A_{q} \quad(j=1, \ldots, k)
$$

Define the arithmetic function H by

$$
H(n)=H\left(p_{1}^{e_{1}} \cdots p_{k+1}^{e_{k+1}}\right)= \begin{cases}c_{1}(n) \ldots c_{k}(n) & \text { if } \omega(n) \geq 2 \\ \Lambda & \text { if } \omega(n) \leq 1\end{cases}
$$

Then the number

$$
\xi=0 . H(1) H(2) H(3) \ldots
$$

is a q-normal number.

Given a positive integer n, write its q-ary expansion as

$$
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) q+\cdots+\varepsilon_{t}(n) q^{t}
$$

where each $\varepsilon_{i}(n) \in A_{q}$ and $\varepsilon_{t}(n) \neq 0$. Then write

$$
\begin{aligned}
\bar{n} & =\varepsilon_{0}(n) \varepsilon_{1}(n) \ldots \varepsilon_{t}(n) \\
\overline{\bar{n}} & =\varepsilon_{t}(n) \varepsilon_{t-1}(n) \ldots \varepsilon_{0}(n)
\end{aligned}
$$

Theorem 6. Let $F \in \mathbb{Z}[x]$ be a primitive polynomial with positive leading coefficient and of positive degree. Then the numbers

$$
\xi=0 . \overline{F(P(2))} \overline{F(P(3))} \ldots \overline{F(P(p))} \ldots
$$

and

$$
\xi^{*}=0 . \overline{\overline{F(P(2))}} \overline{\overline{F(P(3))}} \ldots \overline{\overline{F(P(p))}} \ldots
$$

are normal.

Theorem 7. Let F be as in Theorem 6. Then the numbers

$$
\eta=0 . \overline{F(P(2+1))} \overline{F(P(3+1))} \ldots \overline{F(P(p+1))} \ldots
$$

and

$$
\widetilde{\eta}=0 . \overline{\overline{F(P(2+1))}} \overline{\overline{F(P(3+1))}} \ldots \overline{\overline{F(P(p+1))}} \ldots
$$

are normal.

One of the key result being used is the following:

Theorem A (JMDK \& IK, Acta Arith., 1995) Let $\mathcal{R}, \wp_{0}, \wp_{1}, \ldots, \wp_{q-1}$ be a disjoint classification of primes such that

$$
\begin{equation*}
\pi\left([u, u+v] \mid \wp_{i}\right)=\delta_{i} \pi([u, u+v])+O\left(\frac{u}{(\log u)^{c_{1}}}\right) \tag{1.1}
\end{equation*}
$$

holds uniformly for $2 \leq v \leq u, i=0,1, \ldots, q-1$, where $c_{1} \geq 5$ is a constant, $\delta_{0}, \delta_{1}, \ldots, \delta_{q-1}$ are positive constants such that $\sum_{i=0}^{q-1} \delta_{i}=1$. Let $\lim _{x \rightarrow \infty} w_{x}=+\infty$, $w_{x}=O\left(x_{3}\right), \sqrt{x} \leq Y \leq x$ and $1 \leq k \leq c_{2} x_{2}$, where c_{2} is an arbitrary constant. Let $A \leq x_{2}$ with $P(A) \leq w_{x}$. Then,

$$
\begin{aligned}
\#\left\{n=A n_{1}\right. & \left.\leq Y: p\left(n_{1}\right)>w_{x}, \omega\left(n_{1}\right)=k, H\left(n_{1}\right)=i_{1} \ldots i_{k}\right\} \\
& =(1+o(1)) \delta_{i_{1}} \cdots \delta_{i_{k}} \frac{Y}{A \log Y} \frac{x_{2}^{k-1}}{(k-1)!} \varphi_{w_{x}}\left(\frac{k-1}{x_{2}}\right) F\left(\frac{k-1}{x_{2}}\right),
\end{aligned}
$$

where

$$
\varphi_{w}(z):=\prod_{p \leq w}\left(1+\frac{z}{p}\right)^{-1} \quad \text { and } \quad F(z):=\frac{1}{\Gamma(z)} \prod_{p}\left(1+\frac{z}{p}\right)\left(1-\frac{1}{p}\right)^{z} .
$$

References:

- J.M. De Koninck and I. Kátai, Construction of normal numbers by classified prime divisors of integers, to appear in Functiones et Approximatio.
- J.M. De Koninck and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bulletin of the Australian Mathematical Society 84 (2011), 337-349.

