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Given an integer q ≥ 2, a q-normal number is an irrational number whose q-ary
expansion is such that any preassigned sequence, of length k ≥ 1, of base q digits
from this expansion, occurs at the expected frequency, namely 1/qk.

Equivalently, given a positive irrational number η < 1 whose expansion is

η = 0.a1a2a3 · · · =
∞∑
j=1

aj
qj
, where each ai ∈ {0, 1, . . . , q − 1},

we say that η is a normal number if the sequence {qmη}, m = 1, 2, . . . (here {y}
stands for the fractional part of y), is uniformly distributed in the interval [0, 1[.

Both definitions are equivalent, because the sequence {qmη}, m = 1, 2, . . ., is
uniformly distributed in [0, 1[ if and only if for every integer k ≥ 1 and b1 . . . bk ∈
{0, 1, . . . , q − 1}k, we have

lim
N→∞

1

N
#{j < N : aj+1 . . . aj+k = b1 . . . bk} =

1

qk
.

Interestingly:

• π, e,
√

2, log 2 and ζ(3) have not yet been proven to be normal numbers.

• In fact, no algebraic irrational number has yet been proved to be normal.

• Émile Borel (1909) showed that almost all numbers are normal (with respect to
the Lebesgue measure).
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The story line:

• 1909: Borel introduces the concept of a normal number.

• 1917: Sierpinski provides an example of a normal number.

• 1933: Champernowne proves that the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10.

• 1946: Copeland and Erdős prove that the number

0.23571113171923293137 . . .

is normal in base 10.

In the same paper, they conjecture that if f(x) is any non constant polynomial
whose values at x = 1, 2, 3, . . . are positive integers, then 0.f(1)f(2)f(3) . . . is a
normal number in base 10.

• 1952: Davenport and Erdős prove this conjecture.

• 1997: Nakai and Shiokawa prove the following: Let f(x) be any nonconstant
polynomial taking only positive integral values for positive integral arguments,
then the number 0.f(2)f(3)f(5)f(7) . . . f(p) . . . is normal.

• 2003: Crandall and Bailey prove that, if b > 1 and c > 1 are co-prime integers,
then

∞∑
k=1

1

bck ck
is b-normal.

• 2010: Igor Shparlinski asks if the number

0.P (2)P (3)P (4)P (5)P (6) . . .

is normal. Here P (n) stands for the largest prime factor of n.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Here, we use the complexity of the multiplicative structure of integers to construct
large families of normal numbers.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Let q ≥ 2 be a fixed integer.
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℘ = the set of all primes.
Let ℘0, ℘1, . . . , ℘q−1 be disjoint sets of primes such that

(1) ℘ = R∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1,

where R is a given finite (perhaps empty) set of primes.
We call R, ℘0, ℘1, . . . , ℘q−1 a disjoint classification of primes.

Example of a disjoint classification of primes:

R = {2}, ℘0 = {p : p ≡ 1 (mod 4)}, ℘1 = {p : p ≡ 3 (mod 4)}

The general idea:

n = pa1
1 · · · parr 7→ `1 . . . `r,

where each `j is such that pj ∈ ℘`j

For each integer q ≥ 2, let Aq := {0, 1, . . . , q − 1}.
Given an integer t ≥ 1, an expression of the form

i1i2 . . . it, where each ij ∈ Aq

is called a word of length t.
The symbol Λ will denote the empty word.
Now, given a disjoint classification of primes R, ℘0, ℘1, . . . , ℘q−1, let the function

H : ℘→ Aq be defined by

H(p) =

{
j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R

Let A∗q be the set of finite words over Aq.
Consider the function T : N→ A∗q defined by

T (n) = T (pa1
1 · · · parr ) = H(p1) . . . H(pr),

where we omit H(pi) = Λ if pi ∈ R.
For convenience, we set T (1) = Λ.

Given a set of integers S, we let

π(S) = #{p ∈ ℘ ∩ S}.
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Theorem 1. Let q ≥ 2 be an integer and let ℘ = R ∪ ℘0 ∪ . . . ∪ ℘q−1 be a disjoint
classification of primes. Assume that, for a certain constant c ≥ 5,

π([u, u+ v] ∩ ℘j) =
1

q
π([u, u+ v]) +O

(
u

logc u

)
uniformly for 2 ≤ v ≤ u, j = 0, 1, . . . , q − 1, as u→∞. Further, let T be defined on
N by

T (n) = T (pa1
1 · · · parr ) = H(p1) . . . H(pr),

where

H(p) =

{
j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R

Then,
ξ = 0.T (1)T (2)T (3)T (4) . . .

is a q-normal number.

Example: Let

℘0 = {p : p ≡ 1 (mod 4)}, ℘1 = {p : p ≡ 3 (mod 4)}, R = {2}.

Then,
{T (1), T (2), . . . , T (15)} = {Λ,Λ, 1,Λ, 0, 1, 1,Λ, 1, 0, 1, 1, 0, 1, 10}

and

ξ = 0.T (1)T (2)T (3)T (4) . . . = 0.101110110110 . . . is a normal number

Theorem 2. Given two co-prime positive integers a and D, let ℘h := {p : p ≡ h
(mod D)} for gcd(h,D) = 1. Let h0, h1, . . . , hϕ(D)−1 be those positive integers < D
which are relatively prime with D. Further let R = {p : p|D} and set

T (pa) = T (p) =

{
j if p ≡ hj (mod D),
Λ if p|D.

Let ξ be the real number whose ϕ(D)-ary expansion is given by

ξ = 0.T (2 + a)T (3 + a)T (5 + a) . . . T (p+ a) . . . ,

where p+ a is the sequence of shifted primes. Then ξ is a ϕ(D)-normal number.
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Theorem 3. Let k ≥ 2 be a fixed integer and set E(n) := n(n + 1) · · · (n + k − 1).
Moreover, for each positive integer n, define

e(n) =
∏

qβ‖E(n)
q≤k−1

qβ.

We shall now define the sequence ρn on the prime powers qa of E(n) as follows:

ρn(qa) = ρn(q) =

{
Λ if q|e(n),
` if q|n+ `, gcd(q, e(n)) = 1, 0 ≤ ` ≤ k − 1.

If E(n) = qa1
1 q

a2
2 · · · qarr where q1 < q2 < · · · < qr are primes an each ai ∈ N, then

we set
S(E(n)) = ρn(q1)ρn(q2) . . . ρn(qr).

Let ξ be the real number whose k-ary expansion is given by

(2) ξ = 0.S(E(1))S(E(2)) . . . S(E(n)) . . .

Then, ξ is a k-normal number.

Theorem 4. Let p1 < p2 < · · · be the sequence of all primes, and let k, E and S be
as above. Let ξ be the real number whose k-ary expansion is given by

ξ = 0.S(E(p1 + 1))S(E(p2 + 1)) . . .

Then ξ is a k-normal number.

Theorem 5. Let q ≥ 2 be a fixed integer. Given a positive integer

n = pe11 · · · p
ek+1

k+1 ,

let

cj(n) :=

⌊
q log pj
log pj+1

⌋
∈ Aq (j = 1, . . . , k).

Define the arithmetic function H by

H(n) = H(pe11 · · · p
ek+1

k+1 ) =

{
c1(n) . . . ck(n) if ω(n) ≥ 2,
Λ if ω(n) ≤ 1.

Then the number
ξ = 0.H(1)H(2)H(3) . . .

is a q-normal number.
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Given a positive integer n, write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where each εi(n) ∈ Aq and εt(n) 6= 0. Then write

n = ε0(n)ε1(n) . . . εt(n)

n = εt(n)εt−1(n) . . . ε0(n)

Theorem 6. Let F ∈ Z[x] be a primitive polynomial with positive leading coefficient
and of positive degree. Then the numbers

ξ = 0.F (P (2))F (P (3)) . . . F (P (p)) . . .

and
ξ∗ = 0.F (P (2))F (P (3)) . . . F (P (p)) . . .

are normal.

Theorem 7. Let F be as in Theorem 6. Then the numbers

η = 0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . .

and
η̃ = 0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . .

are normal.
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One of the key result being used is the following:

Theorem A (JMDK & IK, Acta Arith., 1995) Let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint
classification of primes such that

(1.1) π([u, u+ v]|℘i) = δiπ([u, u+ v]) +O

(
u

(log u)c1

)
holds uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, where c1 ≥ 5 is a constant,
δ0, δ1, . . . , δq−1 are positive constants such that

∑q−1
i=0 δi = 1. Let limx→∞wx = +∞,

wx = O(x3),
√
x ≤ Y ≤ x and 1 ≤ k ≤ c2x2, where c2 is an arbitrary constant. Let

A ≤ x2 with P (A) ≤ wx. Then,

#{n = An1 ≤ Y : p(n1) > wx, ω(n1) = k, H(n1) = i1 . . . ik}

= (1 + o(1))δi1 · · · δik
Y

A log Y

xk−1
2

(k − 1)!
ϕwx

(
k − 1

x2

)
F

(
k − 1

x2

)
,

where

ϕw(z) :=
∏
p≤w

(
1 +

z

p

)−1

and F (z) :=
1

Γ(z)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
.
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