Basic ingredients in proof

Observations 0000

A q-ANALOG OF FLECK'S CONGRUENCE

Andrew Schultz

Wellesley College

October 2, 2011

Introducing Fleck's Congruence	<i>q</i> -binomial coefficients	Basic ingredients in proof	Observations
●00	000000	0000	0000
Fleck's congruence			

In the early 1900's, Fleck proved that for p a prime number and $0 \le j < p$, one has

$$\sum_{m\equiv j \pmod{p}} (-1)^m \binom{n}{m} \equiv 0 \pmod{p^{\left\lfloor \frac{n-1}{p-1} \right\rfloor}}.$$

Later this was generalized by Sun: for $\alpha \in \mathbb{N}$ and $0 \leq j < p^{\alpha}$,

$$\sum_{m\equiv j \pmod{p^{\alpha}}} (-1)^m \binom{n}{m} \equiv 0 \pmod{p^{\left\lfloor \frac{n-p^{\alpha-1}}{\phi(p^{\alpha})} \right\rfloor}}.$$

Introducing Fleck's Congruence ○●○ *q*-binomial coefficients

Basic ingredients in proof 0000

Observations 0000

Where Fleck's congruence appears

- Weisman considered $\sum_{m\equiv j \pmod{p^{\alpha}}} (-1)^m \binom{n}{m}$ to study continuity properties in *p*-adic analysis
- Wan saw a generalization of Fleck's congruence in working on *p*-adic *L*-functions
- Davis and Sun saw it in investigating homotopy *p*-exponents for SU(n)

Introducing Fleck's Congruence	<i>q</i> -binomial coefficients	Basic ingredients in proof	Observations
00●	000000	0000	0000
Our goal			

Find a *q*-analog of Fleck's congruence by investigating divisibility of $\sum_{m\equiv j \pmod{p}}^{n} (-1)^m \binom{n}{m}_q$

Recall that

$$\binom{n}{m}_{q} = \begin{cases} \frac{(1-q^{n})(1-q^{n-1})\cdots(1-q^{n-m+1})}{(1-q^{m})(1-q^{m-1})\cdots(1-q)}, & \text{if } 0 \le m \le n \\ 0, & \text{else} \end{cases}$$

Introducing	Fleck's	Congruence

Basic ingredients in proof

Observations 0000

Some basics

Example.
$$\binom{5}{2}_q = 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6$$

Observation.
$$\binom{n}{m}_{q \to 1} = \binom{n}{m}$$

Fact.
$$\binom{n}{m}_{q} = \# \{ m \text{-dimensional subspaces in } \mathbb{F}_{q}^{n} \}.$$

q-binomial coefficients ○●○○○○ Basic ingredients in proof 0000

Observations 0000

Some basics about *q*-binomial coefficients

The *q*-binomial coefficients satisfy some familiar identities:

•
$$\binom{n+1}{m}_q = q^m \binom{n}{m}_q + \binom{n}{m-1}_q$$

•
$$(1-q^m)\binom{n}{m}_q = (1-q^n)\binom{n-1}{m-1}_q$$

Basic ingredients in proof 0000

Observations 0000

Some more basics about *q*-binomial coefficients

They also satisfy some less familiar properties:

•
$$\Phi_r(q) \mid (1-q^s)$$
 if and only if $r \mid s$

•
$$\Phi_n(q) \mid \binom{n}{m}_q$$
 when $m \neq 0, n$

Introducing Fleck's Congruence

q-binomial coefficients

Basic ingredients in proof

Observations 0000

The Gaussian Formula

The generalization of
$$\sum_{m=0}^{n} (-1)^m \binom{n}{m} = 0$$
 is

Theorem (Gaussian Formula)

$$\sum_{m=0}^{n} (-1)^{m} {n \choose m}_{q} = \begin{cases} 0, & \text{if } n \text{ is odd} \\ \prod_{k \text{ odd}} (1-q^{k}) & \text{if } n \text{ is even} \end{cases}$$

Basic ingredients in proof 0000

Observations 0000

Returning to a *q*-analog of Fleck's congruence

To get started, we did lots of computations

These made it clear that

$$\sum_{m \equiv j \pmod{p}} (-1)^m \binom{n}{m}_q \equiv 0 \pmod{\prod_{k \text{ odd}} \Phi_{kp}(q)^{\epsilon(k)}}$$

where $\epsilon(k) = \lfloor \frac{n}{2kp} \rfloor$.

Introducing Fleck's Congruence	<i>q</i> -binomial coefficients	Basic ingredients in proof	Observations
	00000●	0000	0000

Surprisingly, this works more generally than one might guess based on the binomial identity alone.

Theorem (S., Walker '11)

Let $c \in \mathbb{N}$ be given. Then for $0 \leq j < c, \ P \in \mathbb{Z}[x]$ and $z \in \mathbb{N}$ we have

$$\sum_{\substack{m \equiv j \pmod{c}}} (-1)^{\frac{m-j}{c}} P(m)(q^z)^m \binom{n}{m}_q \equiv 0 \pmod{\prod_{k \text{ odd}} \Phi_{kc}^{\epsilon(k,P)}}$$
where $\epsilon(k, P) = \left\lfloor \frac{n}{2kc} - \frac{\deg(P)}{2} \right\rfloor$.

Basic ingredients in proof

Observations 0000

Ideas involved in the proof

We begin with a fairly standard trick: expressing a sum over elements in a fixed congruence class by "twisting" sums over all elements.

Proposition

The desired congruence is equivalent to

$$\sum_{m=0}^{n} \zeta_{2c}^{m} P(m)(q^{z})^{m} {n \choose m}_{q} \equiv 0 \quad \left(\mod \prod_{k \text{ odd}} \Phi_{kc}^{\epsilon(k,P)} \right).$$

Introducing Fleck's Congruence

q-binomial coefficients

Basic ingredients in proof

Observations 0000

Relations for various *n*

$$\sum \zeta_{2c}^{m} P(m) \binom{n}{m}_{q} = \sum \zeta_{2c}^{m} P(m) \left(q^{m} \binom{n-1}{m}_{q} + \binom{n-1}{m-1}_{q} \right)$$
$$= \sum \zeta_{2c}^{m} P(m) \binom{n-1}{m}_{q} - \sum \zeta_{2c}^{m} P(m) (1-q^{m}) \binom{n-1}{m}_{q}$$
$$+ \sum \zeta_{2c}^{m} P(m) \binom{n-1}{m-1}$$

$$= \sum \zeta_{2c}^{m} P(m) {\binom{n-1}{m}}_{q} - (1-q^{n}) \sum \zeta_{2c}^{m} P(m) {\binom{n-2}{m-1}}_{q}$$
$$+ \sum \zeta_{2c}^{m} P(m) {\binom{n-1}{m-1}}$$

Basic ingredients in proof 0000

Observations 0000

Accounting for multiplicities

One can account for additional cyclotomic factors and deal with deg(P) > 0 by using a *q*-analog of Chu-Vandermonde:

Theorem $\sum_{m=0}^{n} \zeta_{2c}^{m} P(m) \binom{n}{m}_{q} = \sum_{i=0}^{kc} \zeta_{2c}^{kc-j} \binom{kc}{j}_{q} \left(\sum_{m=0}^{n-kc} \zeta_{2c}^{m} P(m+kc-j)(q^{j})^{m} \binom{n-kc}{m}_{q} \right)$

Introducing Fleck's Congruence	<i>q</i> -binomial coefficients	Basic ingredients in proof	Observations
	000000	000●	0000
and finally			

Lots and lots of induction.

Basic ingredients in proof 0000

Alternating sums for even moduli

Fleck's original congruence uses $(-1)^m$ to alternate, so when p = 2 this is not an alternating sum.

The q-analog of Fleck's congruence requires a bona fide alternating sum.

Forcing alternation in Fleck's congruence when p = 2 drops the 2-divisibility by half.

Basic ingredients in proof 0000

Observations 0000

Recovering half of Fleck's congruence

 $\Phi_{kc}(1) \neq 1$ if and only if $kc = p^{\alpha}$ for odd prime p or k = 1 and c = 2.

The number of factors of p when evaluating our q-analog at c = p and q = 1 is

$$\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots \approx \frac{1}{2} \left\lfloor \frac{n - p^{\alpha - 1}}{\phi(p^{\alpha})} \right\rfloor$$

Introducing	Fleck's	Congruence

Basic ingredients in proof

Future directions

It seems that this deficiency isn't fault of our theorem; it appears that (at least some) of the cyclotomic factors are sharp

Conjecture $\sum_{m\equiv j \pmod{c}} (-1)^{\frac{m-j}{c}} \binom{(2r+1)c-1}{m}_{q} \equiv (-1)^{j} \left(\prod_{l=0}^{r-1} (2l+1)\right) (-c(q^{c}-1))^{c} q^{c-T(j)} \pmod{\Phi_{c}(q)^{r+1}}.$

Introducing Fleck's Congruence

q-binomial coefficients

Basic ingredients in proof

Observations

Whence the other factors?

Non-cyclotomic factors of
$$\sum_{m\equiv 1 \pmod{3}} (-1)^{\frac{m-1}{3}} {8 \choose m}_q$$

$$(q^3 + q + 1)(q^7 + q^4 + q^3 + q - 1)$$

Can we interpret these remained polynomials? Can we prove they are highly *p*-divisible without Fleck's congruence?