A q-Analog of Fleck's congruence

Andrew Schultz

Wellesley College

October 2, 2011

Fleck's congruence

In the early 1900's, Fleck proved that for p a prime number and $0 \leq j<p$, one has

$$
\sum_{m \equiv j(\bmod p)}(-1)^{m}\binom{n}{m} \equiv 0\left(\bmod p^{\left\lfloor\frac{n-1}{\rho-1}\right\rfloor}\right) .
$$

Later this was generalized by Sun: for $\alpha \in \mathbb{N}$ and $0 \leq j<p^{\alpha}$,

$$
\sum_{m \equiv j\left(\bmod p^{\alpha}\right)}(-1)^{m}\binom{n}{m} \equiv 0\left(\bmod p^{\left[\frac{n-\rho^{\alpha-1}}{\phi\left(p^{\alpha}\right)}\right\rfloor}\right) .
$$

Where Fleck's congruence appears

- Weisman considered $\sum_{m \equiv j\left(\bmod \rho^{\alpha}\right)}(-1)^{m}\binom{n}{m}$ to study continuity properties in p-adic analysis
- Wan saw a generalization of Fleck's congruence in working on p-adic L-functions
- Davis and Sun saw it in investigating homotopy p-exponents for $S U(n)$

Our goal

Find a q-analog of Fleck's congruence by investigating divisibility
of $\sum_{m \equiv j(\bmod p)}^{n}(-1)^{m}\binom{n}{m}_{q}$
Recall that

$$
\binom{n}{m}_{q}= \begin{cases}\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-m+1}\right)}{\left(1-q^{m}\right)\left(1-q^{m-1}\right) \cdots(1-q)}, & \text { if } 0 \leq m \leq n \\ 0, & \text { else }\end{cases}
$$

Some basics

Example. $\binom{5}{2}_{q}=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}$
Observation. $\binom{n}{m}_{q \rightarrow 1}=\binom{n}{m}$
Fact. $\binom{n}{m}_{q}=\#\left\{m\right.$-dimensional subspaces in $\left.\mathbb{F}_{q}^{n}\right\}$.

Some basics about q-binomial coefficients

The q-binomial coefficients satisfy some familiar identities:
$\bullet\binom{n+1}{m}_{q}=q^{m}\binom{n}{m}_{q}+\binom{n}{m-1}_{q}$

- $\left(1-q^{m}\right)\binom{n}{m}_{q}=\left(1-q^{n}\right)\binom{n-1}{m-1}_{q}$

Some more basics about q-binomial coefficients

They also satisfy some less familiar properties:

- $\Phi_{r}(q) \mid\left(1-q^{s}\right)$ if and only if $r \mid s$
- $\Phi_{n}(q) \left\lvert\,\binom{ n}{m}_{q}\right.$ when $m \neq 0, n$

The Gaussian Formula

The generalization of $\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}=0$ is

Theorem (Gaussian Formula)

$$
\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}_{q}= \begin{cases}0, & \text { if } n \text { is odd } \\ \prod_{\text {kodd }}\left(1-q^{k}\right) & \text { if } n \text { is even }\end{cases}
$$

Returning to a q-analog of Fleck's congruence

To get started, we did lots of computations
These made it clear that

$$
\sum_{m \equiv j(\bmod p)}(-1)^{m}\binom{n}{m}_{q} \equiv 0\left(\bmod \prod_{k \text { odd }} \Phi_{k p}(q)^{\epsilon(k)}\right)
$$

where $\epsilon(k)=\left\lfloor\frac{n}{2 k p}\right\rceil$.

Surprisingly, this works more generally than one might guess based on the binomial identity alone.

Theorem (S., Walker '11)

Let $c \in \mathbb{N}$ be given. Then for $0 \leq j<c, P \in \mathbb{Z}[x]$ and $z \in \mathbb{N}$ we have

$$
\sum_{m \equiv j(\bmod c)}(-1)^{\frac{m-j}{c}} P(m)\left(q^{2}\right)^{m}\binom{n}{m}_{q} \equiv 0\left(\bmod \prod_{k o d d} \Phi_{k c}^{\epsilon(k, P)}\right)
$$

where $\epsilon(k, P)=\left\lfloor\frac{n}{2 k c}-\frac{\operatorname{deg}(P)}{2}\right\rceil$.

Ideas involved in the proof

We begin with a fairly standard trick: expressing a sum over elements in a fixed congruence class by "twisting" sums over all elements.

Proposition

The desired congruence is equivalent to

$$
\sum_{m=0}^{n} \zeta_{2 c}^{m} P(m)\left(q^{z}\right)^{m}\binom{n}{m}_{q} \equiv 0\left(\bmod \prod_{k \text { odd }} \Phi_{k c}^{\epsilon(k, P)}\right)
$$

Relations for various n

$$
\begin{aligned}
& \sum \zeta_{2 c}^{m} P(m)\binom{n}{m}_{q}=\sum \zeta_{2 c}^{m} P(m)\left(q^{m}\binom{n-1}{m}_{q}+\binom{n-1}{m-1}_{q}\right)^{2} \\
& =\sum \zeta_{2 c}^{m} P(m)\binom{n-1}{m}_{q}-\sum \zeta_{2 c}^{m} P(m)\left(1-q^{m}\right)\binom{n-1}{m}_{q} \\
& \\
& \quad+\sum \zeta_{2 c}^{m} P(m)\binom{n-1}{m-1} \\
& =\sum \zeta_{2 c}^{m} P(m)\binom{n-1}{m}_{q}-\left(1-q^{n}\right) \sum \zeta_{2 c}^{m} P(m)\binom{n-2}{m-1}_{q} \\
& \\
& \quad+\sum \zeta_{2 c}^{m} P(m)\binom{n-1}{m-1}
\end{aligned}
$$

Accounting for multiplicities

One can account for additional cyclotomic factors and deal with $\operatorname{deg}(P)>0$ by using a q-analog of Chu-Vandermonde:

Theorem

$$
\begin{aligned}
& \sum_{m=0}^{n} \zeta_{2 c}^{m} P(m)\binom{n}{m}_{q}= \\
& \quad \sum_{j=0}^{k c} \zeta_{2 c}^{k c-j}\binom{k c}{j}_{q}\left(\sum_{m=0}^{n-k c} \zeta_{2 c}^{m} P(m+k c-j)\left(q^{j}\right)^{m}\binom{n-k c}{m}_{q}\right)
\end{aligned}
$$

...and finally...

Lots and lots of induction.

Alternating sums for even moduli

Fleck's original congruence uses $(-1)^{m}$ to alternate, so when $p=2$ this is not an alternating sum.

The q-analog of Fleck's congruence requires a bona fide alternating sum.

Forcing alternation in Fleck's congruence when $p=2$ drops the 2-divisibility by half.

Recovering half of Fleck's congruence

$\Phi_{k c}(1) \neq 1$ if and only if $k c=p^{\alpha}$ for odd prime p or $k=1$ and $c=2$.

The number of factors of p when evaluating our q-analog at $c=p$ and $q=1$ is

$$
\left\lfloor\frac{n}{p}\right\rceil+\left\lfloor\frac{n}{p^{2}}\right\rceil+\cdots \approx \frac{1}{2}\left\lfloor\frac{n-p^{\alpha-1}}{\phi\left(p^{\alpha}\right)}\right\rfloor .
$$

Future directions

It seems that this deficiency isn't fault of our theorem; it appears that (at least some) of the cyclotomic factors are sharp

Conjecture

$$
\begin{aligned}
& \sum_{m \equiv j(\bmod c)}(-1)^{\frac{m-j}{c}}\binom{(2 r+1) c-1}{m}_{q} \equiv \\
& (-1)^{j}\left(\prod_{l=0}^{r-1}(2 l+1)\right)\left(-c\left(q^{c}-1\right)\right)^{c} q^{c-T(j)}\left(\bmod \Phi_{c}(q)^{r+1}\right)
\end{aligned}
$$

Whence the other factors?

Non-cyclotomic factors of $\sum_{m \equiv 1(\bmod 3)}(-1)^{\frac{m-1}{3}}\binom{8}{m}_{q}$

$$
\left(q^{3}+q+1\right)\left(q^{7}+q^{4}+q^{3}+q-1\right)
$$

Can we interpret these remained polynomials? Can we prove they are highly p-divisible without Fleck's congruence?

