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•  Given an algebraic number field k, we denote by 
k1 the Hilbert 2-class field of k, i.e. the maximal 
abelian unramified extension of k with degree a 
power of 2.  For non-negative integers n we define 
the Hilbert 2-class field kn inductively as k0 = k 
and kn+1 = (kn)1.  Denoting by С the containment 
symbol, we define k0 С k1 С k2 С ... kn С ... to be 
the 2-class field tower of k.  We say that the tower 
is finite if kn = kn+1 for some n, with length n if n is 
minimal, and infinite otherwise. 

 

 

 



•  It is well known that if k is an imaginary 

quadratic number field with the rank of  

2-class group Ck,2, i.e. the 2-Sylow 

subgroup of the ideal class group Ck (in the 

wide sense) of k, greater than or equal to 5, 

then k has infinite 2-class field tower. 



• It is also well known that for k imaginary 

quadratic with rank Ck,2 = 2 or 3, then the  

2-class field tower of k may be finite or 

infinite, and that if rank Ck,2 = 1 then the  

2-class field tower of k is finite and has 

length 1. 

 

 



•  It was conjectured in the late 1970s that if k 

is imaginary quadratic with rank Ck,2 = 4, 

then k has infinite 2-class field tower.  From 

our earlier work (Benjamin, 2001, 2002), in 

addition to the work of Hajir (1996, 2000), 

Mouhib (2010), and Sueyoshi (2004, 2009, 

2010), we know that if k is as above then k 

has infinite 2-class field tower in the 

following cases:  



• A) 4-rank of Ck greater than or equal to 3 (Hajir, 1996, 

2000)  

• B) exactly one negative prime discriminant divides the  

discriminant dk of k (Mouhib, 2010)  

• C) 4-rank of Ck equal to 2 and five negative prime  

discriminants divide dk (Benjamin, 2002)  

• D) 4-rank of Ck equal to 2, exactly three negative prime  

discriminants divide dk, and dk not congruent to 4 mod 8  

(Benjamin, 2002)  

• E) 4-rank of Ck equal to 1, five negative prime 

discriminants  divide dk, and dk not congruent to 4 mod 8 

(Sueyoshi, 2009) 



• NOTE: For the remainder of this talk, 

unless stated otherwise k will always denote 

an imaginary quadratic number field with 

rank Ck,2 = 4. 



•  In the case when the 4-rank of Ck is equal 
to 2, exactly three negative prime 
discriminants divide dk, and dk is congruent 
to 4 mod 8, we have shown (Benjamin, 
2002) that k has infinite 2-class field tower 
except for one particular family with certain 
specified Kronecker symbols of the primes 
dividing dk, which has been corroborated by 
Sueyoshi (2004, 2010) using Rédei 
matrices. 

 



•  The above specified Kronecker symbols are 

as follows, where p1 and p2 are distinct 

primes dividing positive prime 

discriminants dividing dk, and q1 = 2 (wlog), 

q2, and q3 are distinct primes dividing 

negative prime discriminants dividing  

dk:  (p1/q1) = (p1/q2) = (p1/q3) = (p2/q1) = 

(p2/q2) = (p2/q3) = -1.  



•  We define “new” imaginary quadratic number 
fields k with rank Ck,2 = 4 and infinite 2-class field 
tower, as fields that to the best of our knowledge 
were not previously known to have infinite 2-class 
field tower.  With this definition of new fields k, 
through a generalization of a result by Mouhib 
(2010) when k is an imaginary quadratic number 
field with rank Ck,2 = 2, we have demonstrated that 
there are new fields k in the above family when 
the 4-rank of Ck is equal to 2, exactly three 
negative prime discriminants divide dk, and dk is 
congruent to 4 mod 8.  



•  Through the above generalization of 

Mouhib’s result, we have also shown that 

there are new fields k when the 4-rank of Ck 

is equal to 1, dk is congruent to 4 mod 8, and 

either five or exactly three negative prime 

discriminants divide dk, and infinitely many 

new fields k when the 4-rank of Ck is equal 

to 1, exactly three prime discriminants divide 

dk, and dk is not congruent to 4 mod 8. 

 



•  Our above results all lend support to the  

2-class field tower conjecture.  To give an 

indication of how we have obtained our 

results, we first state the Golod & 

Shafarevich Inequality (1964) (as refined by 

Gaschutz and Vinberg—see Koch (1969)), 

and two related inequalities used by 

Sueyoshi (2004, 2009, 2010) that have been 

derived from a more generic inequality by 

Martinet (1978). 



Lemma 1: Golod & 

Shafarevich Inequality: 

• Let k be a number field, Ck be the class 

group of k, and Ek be the group of units of 

k.  Then the 2-class field tower of k is 

infinite if rank Ck,2 is greater than or equal 

to 2 + 2(√(rank2(Ek) + 1)), where rank2(Ek) 

is the rank of the elementary 2-group Ek/Ek
2 

(and can be described as the number of 

infinite primes of k). 



Lemma 2: 

• i) Let F be a totally real number field of 

degree n, and E be a totally imaginary 

quadratic extension of F.   

Let t be the number of prime ideals of F 

which ramify in E.  If t ≥ 3 + 2√(n + 1), then 

the 2-class field tower of E is infinite. 



Lemma 2: 

•  ii) Let F be a totally imaginary number 

field of degree n, and E be a quadratic 

extension of F.  Let t be the number of 

prime ideals of F which ramify in E.             

If t ≥ (n/2) + 3 + 2(√(n + 1)), then the  

2-class field tower of E is infinite.  



•  We next state the result of Mouhib (2010) 

in the rank Ck,2 = 2 case that we have 

generalized to prove our above results. 



Lemma 3: 

• Let k be an imaginary quadratic number 
field with Ck,2 = 2 and 4-rank of Ck equal to 
1.  Let p1 and p2 be distinct primes numbers 
such that the class number (in the wide 
sense) of Q(√p1p2) is divisible by 16.  Then 
for each prime number q congruent to  
3 mod 4 such that the Kronecker symbol  
(p1p2/q) = -1, the 2-class field of Q(√-p1p2q) 
is infinite. 



•  In order to prove this lemma, Mouhib used the 

following results from genus theory, that we 

made use of to generalize Mouhib’s above result 

to our fields k with rank Ck,2 = 4.  



Lemma 4: 

• Let K be a quadratic extension of a number field k.  
Then rank Ck,2 is greater than or equal to ram(K/k) 
– (dimension over the field F2 of  
Ek/(Ek ∩ NK/k(K*)) – 1, where ram(K/k) is the 
number of primes that ramify in the extension K/k, 
K* is the multiplicative group of K, and NK/k is the 
norm map in the extension K/k.  Furthermore, the 
dimension over F2 of Ek/(Ek ∩ NK/k(K*)) is less 
than or equal to [k:Q] if k is totally real, and is less 
than or equal to (1/2)[k:Q] otherwise, where Q is 
the field of rational numbers. 



Remark 1: 

• Recall the well-known result from genus theory 

that if k is a quadratic number field with 

discriminant dk, and t is the number of primes that 

ramify in k (which is the number of primes that 

divide dk), then rank Ck,2 = t – 2 if dk > 0 and is not 

a sum of two squares, and rank Ck,2 = t – 1 

otherwise.  To obtain our 4-ranks we utilize the 

standards technique of dk-splittings of the second 

kind, as well as an application of Rédei matrices. 



• We now state our generalization of 

Mouhib’s above result, where h(M) refers to 

the 2-class number of M. 



Lemma 5: 

• Let pi, qi, i = 1, 2, 3, 4, be distinct prime numbers such that   pi is 

congruent to 1 mod 4 and qi is congruent to  3 mod 4, and let q5 be a 

prime number such that q5 is congruent to 3 mod 4, or q5 = 2 if  

q5* = -4 or q5* = -8, and q5 is not equal to qi for i = 1, 2, 3 or 4.  

Without loss of generality let M = Q(√p1p2q1) (resp. Q√q1q2q3), 

Q√q1q2q3q4), Q(√p1p2q1q2), Q√2q1q2q3), Q(√2p1q1q2), Q(√2p1p2q1), 

Q(√2p1p2p3),     Q(√p1p2p3p4)).  Assume that 16 divides h(M), and 

(4p1p2q1/q5) = -1 (resp. (4q1q2q3/q5) = -1, (q1q2q3q4/q5) = -1, 

(p1p2q1q2/q5) = -1, (2q1q2q3/q5) = -1, (2p1q1q2/q5) = -1,  

(2p1p2q1/q5) = -1, (2p1p2p3/q5) = -1, (p1p2p3p4/q5) = -1).  Let L be an 

imaginary quadratic number field with exactly five primes dividing dL, 

and moreover let L = Q(√-p1p2q1q5) (resp. Q√-q1q2q3q5),  

Q√-q1q2q3q4q5), Q(√-p1p2q1q2q5), Q√-2q1q2q3q5), Q(√-2p1q1q2q5),  

Q(√-2p1p2q1q5), Q(√-2p1p2p3q5), Q(√-2p1p2p3p4q5)).  Then L has 

infinite 2-class field tower. 



Proof: 

• The proof of Lemma 5 is analogous to the proof of Mouhib’s above 

rank Ck,2 = 2 result (Lemma 3).  We illustrate the proof for the case     

M = Q(√p1p2q1), L = Q(√-p1p2q1q5).  From the above remark we see 

that rank CL,2 = 4, as dL = -4p1p2q1q5, and we note that dM = 4p1p2q1.  

We let F be the composite field of M1 and Q(√-q5), and we see that F is 

a totally complex quadratic extension of the totally real field M1, and 

F/L is unramified.  The prime number q5 is inert in the extension M/Q, 

since (p1p2q1/q5) = -1, and therefore the q5-adic place of M is principal 

and consequently splits completely in M1.  Since the number of q5-adic 

places that ramify in F/M1 is equal to [M1:M], we obtain ram(F/M1) = 

[M1:M] + [M1:Q] = 3[M1:M].  Since   M1 is totally real, we know that 

the dimension of the unit index in Lemma 4, where k = M1 and K = F, 

is less than or equal to [M1:Q] = 2[M1:M], and consequently Lemma 4 

enables us to conclude that rank CF,2 ≥ |M1:M] – 1 ≥ 15.   



• On the other hand, since by the Dirichlet Unit Theorem we 

know that rank2(EF) = [M1:Q] = 2[M1:M], and we can 

verify that [M1:M] – 1 ≥ 2 + 2√(2|M1:M| + 1), we see that 

F satisfies the Golod & Shafarevich Inequality, as 

described in Lemma 1.  It follows that F has infinite  

2-class field tower, and since F/L is unramified we are able 

to conclude that L also has infinite 2-class field tower, 

which establishes our lemma for this case.  The rest of our 

cases can be proved in an analogous manner to the case for 

L = Q(√-p1p2q1q5), and we omit the details.    

 

 



•  To show there are infinitely many fields 

with infinite 2-class field tower in certain 

cases, we can make use of the Chinese 

Remainder Theorem (CRT) and Dirichlet’s 

Theorem of Primes in an Arithmetic 

Progression (DPAP), to establish the 

following lemma: 



Lemma 6: 

• Assume there exists a field k that satisfies the 

conditions of Lemma 5, and let M be the 

corresponding real quadratic number field given in 

Lemma 5.  Then there exist infinitely many such 

fields that also satisfy these conditions which have 

M as its corresponding real quadratic number 

field, and therefore there exist infinitely many 

such fields that have infinite 2-class field tower.  

 



Remark 2: 
• In the case when dk is congruent to 4 mod 8, the  

4-rank of Cj for a corresponding field j obtained by 
using the Chinese Remainder Theorem (CRT) and 
Dirichlet’s Theorem of Primes in an Arithmetic 
Progression (DPAP) may not be the same as the  
4-rank of Ck. To see an example of this, let  
k = Q(√-3.5.7.29) = Q(√-3045) and  
j = Q(√-3.263.5.7.29) = (√-800835).  It can be 
readily shown that Ck has 4-rank 1 and Cj has  
4-rank 0, and that the field j is obtained from the 
field k by CRT and DPAP as described in  
Lemma 6.   

 



•  However, if dk is not congruent to 4 mod 8 
then for all fields j in the infinite collection 
of fields described in Lemma 6, the 4-ranks 
of Ck and Cj will be the same.  It follows 
that in the case when the 4-rank of Ck is 
equal to 1, exactly three negative prime 
discriminants divide dk, and dk is not 
congruent to 4 mod 8, once we obtain a new 
field through Lemma 5 we are able to use 
Lemma 6 to obtain infinitely many such 
new fields.  



•  We state our above results in the form of 

the following theorem, where once again k 

is an imaginary quadratic number field such 

that rank Ck,2 = 4. 



Theorem 1: 

• There exist new fields k that satisfy the  

2-class field tower conjecture when Ck has 

4-rank 2, and when Ck has 4-rank 1 with 

exactly three negative prime discriminants 

dividing dk and dk congruent (resp. not 

congruent) to 4 mod 8, or when five 

negative prime discriminants divide dk. 



• Furthermore, there are infinitely many new 

such fields k in the case when the 4-rank of 

Ck is equal to 1, exactly three negative 

prime discriminants divide dk, and dk is not 

congruent to 4 mod 8. 



•  We now give some examples of our above results, 

where we utilize Keith Mathews’ number theory 

website 

(www.numbertheory.org/php/classnopos.html)  

to obtain the 2-class numbers of our corresponding 

real quadratic number fields M.  



Example 1: 

• k = Q(√-5.13.7.827) = Q(√-376285),   

M = Q(√5.13.7.827) = Q(√376285);  

then we have h(M) = 16, (5.13.7.827/2) =  

-1, (5/2) = (13/2) = (5/7) = (5/827) =  

(13/7) = (13/827) =  -1, Ck has 4-rank 2, and it can 

be readily shown from Lemma 5 and our previous 

results that k is a new field with infinite 2-class field 

tower. 



Example 2: 

• k = Q(√-23.19.67.3) = Q(√-87837);  

M =  Q(√23.19.67.3) = Q(√87837); then we 

have h(Q(√23.19.67)) = 16, (-23/3) = 1,  

(-19/3) = (-67/3) = -1, (23.19.67/3) = -1,  

and we see that k is a new field with 4-rank 

of Ck equal to 1 and five negative prime 

discriminants dividing dk. 



Example 3: 

• k = Q(√-5.13.7.83) = Q(√-37765),   

M = Q(√5.13.7.83) = Q(√37765); then we 

have h(M) = 16, (5.13.7.83/2) = -1, and we 

see that k is a new field with 4-rank of Ck 

equal to 1, exactly three negative prime 

discriminants dividing dk, and dk congruent 

to 4 mod 8. 



Example 4: 
• k = Q(√-19.11.191.13.41) = Q(√-21276827),   

M = Q(√19.11.13.41) = Q(√111397); then we have 

h(M) = 16, (19/191) = (11/191) = (41/191) = -1, 

(13/191) = 1, (19.11.13.41/191) = -1, and we see 

that k is a new field with 4-rank of Ck equal to 1, 

exactly three negative prime discriminants 

dividing dk, and dk not congruent to 4 mod 8. 

From Lemma 6 and Remark 2 we conclude that 

there are infinitely many new such fields with 

infinite 2-class field tower. 

 

 

 



Remark 3: 

• We note that the method we have described 
above does not work when Ck has 4-rank 0 
(i.e. when Ck,2 is elementary) because in all 
such cases we obtain that either the 
corresponding real quadratic number field 
M in Lemma 5 is of the form Z/2Z x Z/2Z 
and therefore we do not have h(M) ≥ 16,  
or the kronecker symbol inequality required 
in Lemma 5 is not satisfied. 



•  Based upon our above results, we conclude 

with the following open questions, where 

once again k is an imaginary quadratic 

number field such that rank Ck,2 = 4. 



Question 1: 

• Do there exist infinitely many new fields k 

that have infinite 2-class field tower when 

Ck has 4-rank 1 and five negative prime 

discriminants divide dk?  (from Sueyoshi 

(2009) we know that dk must be congruent 

to 4 mod 8 for such new fields) 



Question 2: 

• Do there exist infinitely many new fields k 

that have infinite 2-class field tower when 

Ck has 4-rank 1 (resp. 4-rank 2), exactly 

three negative prime discriminants divide 

dk, and dk is congruent to 4 mod 8? 



Question 3: 

• Do there exist new fields k (resp. infinitely 

many new fields k) that have infinite   

2-class field tower when Ck has 4-rank 0, 

for any of the following cases: 



• A) dk congruent to 4 mod 8 and exactly 

three negative prime discriminants divide dk 

• B) dk not congruent to 4 mod 8 and exactly 

three negative prime discriminants divide dk  

• C) dk congruent to 4 mod 8 and five 

negative prime discriminants divide dk   

• D) dk not congruent to 4 mod 8 and five 

negative prime discriminants divide dk?  

 

 




