On Some Constructions using Marked Ruler and Compass

by C. Snyder at UMaine

Joint work with Elliot Benjamin

Happy Birthday, Hershy and Manfred!!

This is a report on some recent work:

 On the Construction of the Regular Hendecagon by Marked Ruler and Compass, Math. Proc. Camb. Phil. Soc., vol. 156 (2014), 409-424.

and

 Some Fifth Roots that are Constructible by Marked Ruler and Compass, Rocky Mountain J. of Math. (to appear)

Marked Ruler and Compass Constructions.

Tools of the trade:

Compass: Given 2 pts., may draw a circle centered at one point passing through the other.

Marked ruler (with 2 marks 1 unit apart):

(i) as an unmarked ruler: May draw line through 2 given pts.

(ii) as a verging tool: Given pt. V and curves, C_1, C_2 , determine pts. P_i on C_i such that the P_i are one unit apart and the line through the P_i passes through V. The P_i are said to be constructed by verging through V between the curves C_i .

MC-Constructible point:

is a point in \mathbb{R}^2 that is obtained from the "initial set" $\{(0,0),(1,0)\}$ by repeated use of the marked ruler and compass.

MC-Constructible number:

is the *x*-coordinate of an MC-constructible point.

General Problem:

Give a "useful" characterization of the field of MC-constructible numbers.

Some Simpler Cases:

I. The Classical Case.

Using compass and unmarked ruler:

Characterization Theorem.

Let $x \in \mathbb{R}$. Then

(a) x is constructible by compass and unmarked ruler \Leftrightarrow

(b) \exists fields K_i s.t. $\mathbb{Q} = K_0 \subset \cdots \subset K_n \subset \mathbb{R}$, $x \in K_n$ and $[K_{i+1} : K_i] = 2$.

Application: Regular *n*-gons are constructible if and only if $n = 2^a p_1 \cdots p_k$ where p_i are distinct Fermat primes, ($p = 2^m + 1$).

II. Verging between Lines.

Using compass and marked ruler, (as an unmarked ruler, but) verging only between lines:

Characterization Theorem.

Let $x \in \mathbb{R}$; then

(a) x is constructible by compass and marked ruler, verging only between lines \Leftrightarrow

(b) \exists fields K_i s.t. $\mathbb{Q} = K_0 \subset \cdots \subset K_n \subset \mathbb{R}$, $x \in K_n$ and $[K_{i+1} : K_i] = 2, 3$.

Application: Regular *n*-gons are constructible if and only if $n = 2^a 3^b p_1 \cdots p_k$ where p_i are distinct Pierpont primes, ($p = 2^\ell 3^m + 1$).

III. RMC-Constructions.

Using Compass and Marked ruler with verging Restricted between pairs of lines or a line and a circle (no verging between circles).

Consider verging between a line and a circle:

Want the verging points to define an algebraic set:

The conchoid of Nicomedes:

Given verging pt. V = (0,0) and a fixed vertical line L_0 : x = a > 0,

 $Con_{L_0,V}$: $r = a \sec \theta \pm 1$,

is the conchoid through V with axis L_0 .

$$Con_{L_0,V}$$
: $(x-a)^2(x^2+y^2) = x^2$.

The verging points:

•

Con :
$$(x - a)^2(x^2 + y^2) = x^2$$

 \cap
Cir : $(x - b)^2 + (y - c)^2 = s^2$
 \Rightarrow
x-coordinate of points of \cap satisfies a de-
gree 6 poly.

Change of variable: $z = \frac{x}{x-a}$.

If $(x,y) \in Con$, then $z^2 = x^2 + y^2$.

z is the "signed distance" between V and (x, y).

Verging Theorem (Part I).

If (x, y) is in $Con \cap Cir$, then z is a root of the "verging poly (with parameters a, b, c, s)"

$$f(X) = X^6 + a_1 X^5 + \dots + a_5 X + a_6,$$

where

$$a_{1} = -2,$$

$$a_{2} = 1 - 2(s^{2} - b^{2} + c^{2} + 2ab),$$

$$a_{3} = 4(s^{2} - b^{2} + c^{2} + ab),$$

$$a_{4} = (s^{2} - b^{2} + c^{2} + 2ab)^{2} - 2(s^{2} - b^{2} + c^{2}) - 4c^{2}(s^{2} - (a - b)^{2}),$$

$$a_{5} = 2(ab)^{2} - 2(s^{2} - b^{2} - c^{2} + ab)^{2},$$

$$a_{6} = (s^{2} - b^{2} - c^{2})^{2}.$$

Verging Theorem (Part II).

 $f(X) = X^6 + a_1 X^5 + \dots + a_6 \in \mathbb{R}[X]$ is a verging poly with parameters $a_{\varepsilon}, b_{\varepsilon}, c_{\varepsilon}, s_{\varepsilon}$, if

•
$$a_1 = -2$$
;
• $(2a_6 + a_5)^2 = m^2 a_6 \quad (m = 2 - 2a_2 - a_3)$;
• $a_3 > -\varepsilon \sqrt{m^2 - 8a_5}, \quad (\varepsilon = \pm 1) \Rightarrow$
· $c = c_{\varepsilon} = \sqrt{\frac{1}{8}(a_3 + \varepsilon \sqrt{m^2 - 8a_5})}$;
• $m > -\frac{B}{2c_{\varepsilon}^2} \quad (B = \dots) \Rightarrow$
· $a = a_{\varepsilon} = \sqrt{\frac{m}{4} + \frac{B}{8c_{\varepsilon}^2}}, \quad b = b_{\varepsilon} = \frac{m}{4a_{\varepsilon}}$;
• $\frac{m^2}{a_{\varepsilon}^2} > 16c_{\varepsilon}^2 + 8(1 - a_2 - a_3) \Rightarrow$
· $s = s_{\varepsilon} = \sqrt{\frac{m^2}{16a_{\varepsilon}^2} - \frac{1}{2}(1 - a_2 - a_3) - c_{\varepsilon}^2}$;
• $(s_{\varepsilon}^2 - b_{\varepsilon}^2 - c_{\varepsilon}^2)^2 = a_6$.

A Characterization Theorem.

Let $x \in \mathbb{R}$. Then

x is an RMC number \Leftrightarrow

∃ fields K_i s.t. $\mathbb{Q} = K_0 \subset \cdots \subset K_n \subset \mathbb{R}$, $x \in K_n$ and $[K_{i+1} : K_i] \leq 6$ and $[K_{i+1} : K_i] = 5, 6 \Rightarrow K_{i+1} = K_i(z_{i+1})$ for some signed distance z_{i+1} corresponding to a point of \cap of a *Con* and *Cir* with parameters in K_i .

We'll call $\{K_j\}_j$ an RMC tower.

Notice $\sqrt[7]{2}$ is not RMC (actually not MC) nor is the regular 23-gon.

Is $\sqrt[5]{2}$ an RMC number? Not known.

Our Main Application.

 $2\cos\frac{2\pi}{11}$ is an RMC number.

Hence a regular 11-gon is constructible by marked ruler and compass.

"Idea" of the proof:

We found that $\alpha := 2 \cos \frac{2\pi}{11}$ is contained in an RMC tower of length 2:

$$\mathbb{Q} \subset K_1 \subset K_2,$$

with

 $[K_1 : \mathbb{Q}] = 3$ and $[K_2 : K_1] = 5$.

Since $K_2 = K_1(\alpha)$ and of degree 5 over K_1 we wanted to find a generator z_2

 $K_1(\alpha) = K_2 = K_1(z_2),$

s.t. z_2 is the root of a verging poly over K_1 .

In general

$$z_2 = u\alpha + u_2\alpha_2 + u_3\alpha_3 + u_4\alpha_4 + u_5\alpha_5$$

where α, \ldots, α_5 form a basis of K_2/K_1 .

Simplifying assumption: Take $z_2 = u\alpha$.

The Verging Theorem implies u is a real root of

 $g(x) := 5x^{12} + 22x^{11} + 48x^{10} + 76x^9 + 84x^8 + 64x^7 + 36x^6 + 8x^5$

Miracle!!!

$$g(x) = x^{5}(5x+2)(x^{3}+2x^{2}+2x+2)^{2},$$

and taking u to be the real root of the irreducible cubic works.

By taking $K_1 = \mathbb{Q}(u)$, we get the RMC tower:

$$\mathbb{Q} \subset \mathbb{Q}(u) \subset \mathbb{Q}(u, z_2) = \mathbb{Q}(u, \alpha)$$
.

Selected References.

A. Baragar, *Constructions Using a Compass and Twice-Notched Straightedge*, MAA Monthly, **109**, (2002), 151-164.

D. Cox, Galois Theory, Wiley, 2003.

G. E. Martin, *Geometric Constructions*, Springer, 1998.

R. Hartshorne, *Geometry: Euclid and Beyond*, Springer, 2000.