On Some Constructions using Marked Ruler and Compass
 by
 C. Snyder
 at
 UMaine

Joint work with
Elliot Benjamin

Happy Birthday, Hershy and Manfred!!

This is a report on some recent work:

- On the Construction of the Regular Hendecagon by Marked Ruler and Compass, Math. Proc. Camb. Phil. Soc.,
vol. 156 (2014), 409-424.
and
- Some Fifth Roots that are Constructible by Marked Ruler and Compass,
Rocky Mountain J. of Math. (to appear)

Marked Ruler and Compass Constructions.

Tools of the trade:

Compass: Given 2 pts., may draw a circle centered at one point passing through the other.

Marked ruler (with 2 marks 1 unit apart):
(i) as an unmarked ruler: May draw line through 2 given pts.
(ii) as a verging tool: Given pt. V and curves, C_{1}, C_{2}, determine pts. P_{i} on C_{i} such that the P_{i} are one unit apart and the line through the P_{i} passes through V. The P_{i} are said to be constructed by verging through V between the curves C_{i}.

MC-Constructible point:

is a point in \mathbb{R}^{2} that is obtained from the "initial set" $\{(0,0),(1,0)\}$ by repeated use of the marked ruler and compass.

MC-Constructible number:

is the x-coordinate of an MC-constructible point.

General Problem:

Give a "useful" characterization of the field of MC-constructible numbers.

Some Simpler Cases:

I. The Classical Case.

Using compass and unmarked ruler:

Characterization Theorem.

Let $x \in \mathbb{R}$. Then
(a) x is constructible by compass and unmarked ruler \Leftrightarrow
(b) \exists fields K_{i} s.t. $\mathbb{Q}=K_{0} \subset \cdots \subset K_{n} \subset \mathbb{R}$, $x \in K_{n}$ and $\left[K_{i+1}: K_{i}\right]=2$.

Application: Regular n-gons are constructible if and only if $n=2^{a} p_{1} \cdots p_{k}$ where p_{i} are distinct Fermat primes, ($p=2^{m}+1$).

II. Verging between Lines.

Using compass and marked ruler, (as an unmarked ruler, but) verging only between lines:

Characterization Theorem.

Let $x \in \mathbb{R}$; then
(a) x is constructible by compass and marked ruler, verging only between lines \Leftrightarrow
(b) \exists fields K_{i} s.t. $\mathbb{Q}=K_{0} \subset \cdots \subset K_{n} \subset \mathbb{R}$, $x \in K_{n}$ and $\left[K_{i+1}: K_{i}\right]=2,3$.

Application: Regular n-gons are constructible if and only if $n=2^{a} 3^{b} p_{1} \cdots p_{k}$ where p_{i} are distinct Pierpont primes, ($p=2^{\ell} 3^{m}+1$).

III. RMC-Constructions.

Using Compass and Marked ruler with verging Restricted between pairs of lines or a line and a circle (no verging between circles).

Consider verging between a line and a circle:

Want the verging points to define an algebraic set:

The conchoid of Nicomedes:

Given verging pt. $V=(0,0)$ and a fixed vertical line $L_{0}: x=a>0$,
$\operatorname{Con}_{L_{0}, V}: r=a \sec \theta \pm 1$,
is the conchoid through V with axis L_{0}.

$\operatorname{Con}_{L_{0}, V}:(x-a)^{2}\left(x^{2}+y^{2}\right)=x^{2}$.

The verging points:
Con: $(x-a)^{2}\left(x^{2}+y^{2}\right)=x^{2}$
\cap
Cir $:(x-b)^{2}+(y-c)^{2}=s^{2}$
\Rightarrow
x-coordinate of points of \cap satisfies a degree 6 poly.

Change of variable: $z=\frac{x}{x-a}$.
If $(x, y) \in C o n$, then $z^{2}=x^{2}+y^{2}$.
z is the "signed distance" between V and (x, y).

Verging Theorem (Part I).

If (x, y) is in Con \cap Cir, then z is a root of the "verging poly (with parameters a, b, c, s)"

$$
f(X)=X^{6}+a_{1} X^{5}+\cdots+a_{5} X+a_{6},
$$

where

$$
\begin{aligned}
& a_{1}=-2, \\
& a_{2}=1-2\left(s^{2}-b^{2}+c^{2}+2 a b\right), \\
& a_{3}=4\left(s^{2}-b^{2}+c^{2}+a b\right), \\
& a_{4}=\left(s^{2}-b^{2}+c^{2}+2 a b\right)^{2}-2\left(s^{2}-b^{2}+c^{2}\right)- \\
& \\
& a_{5}=2\left(c^{2}\left(s^{2}-(a-b)^{2}\right),\right. \\
& a_{6}=\left(s^{2}-b^{2}-2\left(s^{2}-c^{2}\right)^{2} .\right.
\end{aligned}
$$

Verging Theorem (Part II).

$f(X)=X^{6}+a_{1} X^{5}+\cdots+a_{6} \in \mathbb{R}[X]$ is a verging poly with parameters $a_{\varepsilon}, b_{\varepsilon}, c_{\varepsilon}, s_{\varepsilon}$, if

- $a_{1}=-2$;
- $\left(2 a_{6}+a_{5}\right)^{2}=m^{2} a_{6} \quad\left(m=2-2 a_{2}-a_{3}\right)$;
- $a_{3}>-\varepsilon \sqrt{m^{2}-8 a_{5}}, \quad(\varepsilon= \pm 1) \quad \Rightarrow$
$c=c_{\varepsilon}=\sqrt{\frac{1}{8}\left(a_{3}+\varepsilon \sqrt{m^{2}-8 a_{5}}\right)} ;$
- $m>-\frac{B}{2 c_{\varepsilon}^{2}} \quad(B=\ldots) \Rightarrow$

$$
a=a_{\varepsilon}=\sqrt{\frac{m}{4}+\frac{B}{8 c_{\varepsilon}^{2}}}, \quad b=b_{\varepsilon}=\frac{m}{4 a_{\varepsilon}}
$$

- $\frac{m^{2}}{a_{\varepsilon}^{2}}>16 c_{\varepsilon}^{2}+8\left(1-a_{2}-a_{3}\right) \quad \Rightarrow$

$$
s=s_{\varepsilon}=\sqrt{\frac{m^{2}}{16 a_{\varepsilon}^{2}}-\frac{1}{2}\left(1-a_{2}-a_{3}\right)-c_{\varepsilon}^{2}}
$$

- $\left(s_{\varepsilon}^{2}-b_{\varepsilon}^{2}-c_{\varepsilon}^{2}\right)^{2}=a_{6}$.

A Characterization Theorem.

Let $x \in \mathbb{R}$. Then
x is an RMC number \Leftrightarrow
\exists fields K_{i} s.t. $\mathbb{Q}=K_{0} \subset \cdots \subset K_{n} \subset \mathbb{R}$, $x \in K_{n}$ and $\left[K_{i+1}: K_{i}\right] \leq 6$ and
$\left[K_{i+1}: K_{i}\right]=5,6 \Rightarrow K_{i+1}=K_{i}\left(z_{i+1}\right)$ for some signed distance z_{i+1} corresponding to a point of \cap of a Con and Cir with parameters in K_{i}.

We'll call $\left\{K_{j}\right\}_{j}$ an RMC tower.
Notice $\sqrt[7]{2}$ is not RMC (actually not MC) nor is the regular 23-gon.

Is $\sqrt[5]{2}$ an RMC number? Not known.

Our Main Application.

$2 \cos \frac{2 \pi}{11}$ is an RMC number.
Hence a regular 11-gon is constructible by marked ruler and compass.
"Idea" of the proof:

We found that $\alpha:=2 \cos \frac{2 \pi}{11}$ is contained in an RMC tower of length 2 :

$$
\mathbb{Q} \subset K_{1} \subset K_{2},
$$

with
$\left[K_{1}: \mathbb{Q}\right]=3$ and $\left[K_{2}: K_{1}\right]=5$.

Since $K_{2}=K_{1}(\alpha)$ and of degree 5 over K_{1} we wanted to find a generator z_{2}
$K_{1}(\alpha)=K_{2}=K_{1}\left(z_{2}\right)$,
s.t. z_{2} is the root of a verging poly over K_{1}.

In general
$z_{2}=u \alpha+u_{2} \alpha_{2}+u_{3} \alpha_{3}+u_{4} \alpha_{4}+u_{5} \alpha_{5}$
where $\alpha, \ldots, \alpha_{5}$ form a basis of K_{2} / K_{1}.

Simplifying assumption: Take $z_{2}=u \alpha$.

The Verging Theorem implies u is a real root of
$g(x):=$
$5 x^{12}+22 x^{11}+48 x^{10}+76 x^{9}+84 x^{8}+64 x^{7}+36 x^{6}+8 x^{5}$

Miracle!!!

$$
g(x)=x^{5}(5 x+2)\left(x^{3}+2 x^{2}+2 x+2\right)^{2}
$$

and taking u to be the real root of the irreducible cubic works.

By taking $K_{1}=\mathbb{Q}(u)$, we get the RMC tower:
$\mathbb{Q} \subset \mathbb{Q}(u) \subset \mathbb{Q}\left(u, z_{2}\right)=\mathbb{Q}(u, \alpha)$.

Selected References.

A. Baragar, Constructions Using a Compass and Twice-Notched Straightedge, MAA Monthly, 109, (2002), 151-164.
D. Cox, Galois Theory, Wiley, 2003.
G. E. Martin, Geometric Constructions, Springer, 1998.
R. Hartshorne, Geometry: Euclid and Beyond, Springer, 2000.

