On Thue equations

(Joint results with Michel Waldschmidt)
Claude Levesque (U. Laval)

1. Introduction

Some infinite families of diophantine Thue equations having only trivial solutions (or a finite number of integral solutions) have been exhibited by a few mathematicians:

Thomas, Gyốry, Schlickewei, Pethő, Evertse, Gaál, Tichy, Heuberger, de Weger, Fuchs, Lettl, Voutier, Chen, Mignotte, Tzanakis, Wakabayashi, Togbé, Ziegler, Berczes, Walsh, Halter-Koch, Dujella, etc. ... and of course Michel Waldschmidt.

2. The first family of Thomas

In 1990 Thomas studied the families of diophantine equations

$$
F_{n}(X, Y)=c
$$

where
$F_{n}(X, Y)=X^{3}-(n-1) X^{2} Y-(n+2) X Y^{2}-Y^{3} \quad$ and $\quad c= \pm 1$.
The polynomial $F_{n}(X, Y)$ is the homogenized form of the minimal polynomial $f_{n}(X)$ of Shanks's simplest cubic fields, namely

$$
f_{n}(X)=X^{3}-(n-1) X^{2}-(n+2) X-1
$$

Theorem (Thomas). Let
$F_{n}(X, Y)=X^{3}-(n-1) X^{2} Y-(n+2) X Y^{2}-Y^{3} \quad$ with $\quad c= \pm 1$.
(i) For $n \geq 1.365 \times 10^{7}$, there are only the trivial solutions:

$$
(c, 0), \quad(0, c), \quad(c,-c)
$$

(ii) For $0 \leq n \leq 1000$, the other solutions are:

$$
\begin{array}{llll}
n=0: & (-9 c, 5 c), & (-c, 2 c), & (2 c-c) \\
& (4 c,-9 c), & (5 c, 4 c), & (-c,-c) \\
n=1: & (-3 c, 2 c), & (c,-3 c), & (2 c, c) ; \\
n=3 & : & (-7 c,-2 c), & (-2 c, 9 c), \\
(9 c,-7 c)
\end{array}
$$

Theorem (Mignotte). For $n \geq 0$, the only solutions are the above ones.

3. Our main theorem

Theorem (Waldschmidt-L).
Let K be an algebraic number field of degree $d \geq 3$. For every unit ε of degree at least 3 in K, except for a finite number of them, the following holds true: Let $f_{\varepsilon}(X)$ be the minimal polynomial of ε and let $F_{\varepsilon}(X, Y)$ be the homogenized binary form associated to $f_{\varepsilon}(X)$. Then the solutions (x, y) of the Thue equation

$$
F_{\varepsilon}(X, Y)=1
$$

are given by $x y=0$.
The proof (which is not effective) uses the subspace lemma of Wolfgang Schmidt.
4. A general result involving powers of units

Let $d \geq 3$ be a given integer. Let $F(X, Y)$ be a monic irreducible binary form in $\mathbf{Z}[X, Y]$ satisfying $F(0,1)= \pm 1$ and that we write as

$$
F(X, Y)=\prod_{j=1}^{d}\left(X-\alpha_{j} Y\right)
$$

with $\left|\alpha_{1}\right| \leq\left|\alpha_{2}\right| \leq \cdots \leq\left|\alpha_{d}\right|$. Denote by R the regulator of the number field $\mathbf{Q}\left(\alpha_{1}\right)$. Further, let $\lambda=\left|\alpha_{\boldsymbol{d}}\right|$. For $a \geq 0$, consider the polynomial of $\mathbf{Z}[X, Y]$ defined by

$$
F_{a}(X, Y)=\prod_{j=1}^{d}\left(X-\alpha_{j}^{a} Y\right)
$$

Theorem (Waldschmidt-L). Assume that α_{1} is not a root of unity. There exists an effectively computable constant κ, depending only on d, with the following property. Let $(x, y, a) \in Z^{3}$ satisfy

$$
x y \neq 0, \quad\left[\mathbf{Q}\left(\alpha_{1}^{a}\right): \mathbf{Q}\right]=d, \quad F_{a}(x, y)= \pm 1
$$

Then,

$$
|a| \leq \kappa \lambda^{d^{4}} R \log R .
$$

Moreover, there exists another effectively computable constant κ such that

$$
\max \{\log |x|, \log |y|\}<\kappa R \log (R)(R+|a| \log (\lambda))
$$

Our proof actually gives a much stronger estimate which depends on the following parameter $\mu>1$ defined by

$$
\mu= \begin{cases}\max \{2, \lambda\} & \text { if }\left|\alpha_{1}\right|=\left|\alpha_{d-1}\right| \text { or }\left|\alpha_{2}\right|=\left|\alpha_{d}\right|, \\ \min \left\{\frac{\left|\alpha_{d-1}\right|}{\left|\alpha_{1}\right|}, \frac{\left|\alpha_{d}\right|}{\left|\alpha_{2}\right|}\right\} & \text { if }\left|\alpha_{1}\right|<\left|\alpha_{2}\right|=\left|\alpha_{d-1}\right|<\left|\alpha_{d}\right|, \\ \frac{\left|\alpha_{d-1}\right|}{\left|\alpha_{2}\right|} & \text { if }\left|\alpha_{2}\right|<\left|\alpha_{d-1}\right| .\end{cases}
$$

Theorem. There exists an effectively computable constant κ such that

$$
|a| \leq \kappa R \frac{\log \lambda}{\log \mu}(R+\log \lambda) \log (R+\log \lambda)
$$

Thank you very much!

