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Hyperelliptic Curves

Define a hyperelliptic curve of genus g over Q(T):
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Define a hyperelliptic curve of genus g over Q(T):

Xy = (X, T) = X294 Aog(T)X9+- - -+ Ay (T)x+Ao(T).

Let axv(p) = p+ 1 — #X(Fp). Then

ax(p) = - <¥)

x(p)

and its m-th power sum

Amx(P) = Z ax(p)”.
t(p)
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Generalized Nagao’s conjecture

Generalized Nagao’s Conjecture

Goal: Construct families of hyperelliptic curves with high
rank.
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Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial
Chow trace Jacobian. For any g > 1, we can construct

infinitely many genus g hyperelliptic curves X over Q(T)
such that

rank J (Q(T)) = 4g + 2.




Hyperelliptic curves with moderately large rank over Q(T)
©00000

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial
Chow trace Jacobian. For any g > 1, we can construct

infinitely many genus g hyperelliptic curves X over Q(T)
such that

rank J (Q(T)) = 4g + 2.

@ Close to current record of 4g + 7.




Hyperelliptic curves with moderately large rank over Q(T)
©00000

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial
Chow trace Jacobian. For any g > 1, we can construct

infinitely many genus g hyperelliptic curves X over Q(T)
such that

rank J (Q(T)) = 4g + 2.

@ Close to current record of 4g + 7.
@ No height matrix or basis computation.




Hyperelliptic curves with moderately large rank over Q(T)
©00000

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial
Chow trace Jacobian. For any g > 1, we can construct
infinitely many genus g hyperelliptic curves X over Q(T)
such that

rank J (Q(T)) = 4g + 2.

@ Close to current record of 4g + 7.
@ No height matrix or basis computation.

This generalizes a construction of Arms, Lozano-Robledo,
and Miller in the elliptic surface case.
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Idea of Construction

Define a genus g curve

X yP=1f(x,T)=x%""T?+2g9(x)T — h(x)

29
g(x) =x*9"" 4y "ax’
i=0

29
h(x) = (A= 1)x%" 13 " Ax'.
i=0

The discriminant of the quadratic polynomial is

Dr(x) := g(x)? + x?9" 1 h(x).
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Idea of Construction

~Au(p) =3 Y (1)

t(p) x(p)
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Idea of Construction

nn T ()

t(p) x(p)
X29+1 XZQ—H
:Z(p_1)(p)+ (_1)(/0)
x(p) x(p)
Di(x)=0 Dy(x)#0

-2 e(5)20)

x(p)
Dy(x)=0
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Idea of Construction

nn T ()

t(p) x(p)

E () g o)

x(p) x(p)
Di(x)=0 Dy(x)#0

- 3 ()

Di(x)=0

Therefore, —A; x(p) is p (g) summed over the roots of
Dt(X).
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Idea of Construction

~Atp) = X5 (50)

t(p) x(p)

= > (P—1)(X2;+1) +

= o)

x(p) x(p)
D((X)EO Dt(X);_éO
- ¥ (%)
x(p) P
Dy(x)=0

Therefore, —A; x(p) is p (g) summed over the roots of

D:(x). To maximize the sum, we make each x a perfect
square.
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Idea of Construction

Key Idea
Make the roots of Dy(x) distinct nonzero perfect squares.

@ Choose roots p? of Dy(x) so that

4g+2

Di(x) = A H (x —p?).
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Idea of Construction

Key Idea
Make the roots of Dy(x) distinct nonzero perfect squares.

@ Choose roots p? of Dy(x) so that

4g+2

Di(x) = A H (x —p?).

e Equate coefficients in

4g+2

Dix) = A [T (x = 72) = g(x)° + 27 h(x).

@ Solve the nonlinear system for the coefficients of g, h.
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Idea of the Construction

_A1,x(p)
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Idea of the Construction

' =
(49 +2)
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Idea of the Construction

= p - (# of perfect-square roots of D;(x))
=p-(49+2).

Then by the Generalized Nagao Conjecture

lim 72— p-(4g9+2)logp = 4g + 2 = rank Jx (Q(T)).

X—o0
p<X
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Future Work

e Find a linearly independent basis.

e Generalizing another technique in Arms,
Lozano-Robledo, and Miller.
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Michel’s Theorem

For one-parameter families of elliptic curves &, the second
moment Az ¢(p) is

Aze(p) = P>+ O (p*?).
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expansion that does not average to 0 is on average
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Bias Conjecture

Michel’s Theorem

For one-parameter families of elliptic curves &, the second
moment Az ¢(p) is

Aze(p) = P>+ O (p*?).

Bias Conjecture (Miller)

The largest lower order term in the second moment
expansion that does not average to 0 is on average
negative.

Goal: Find as many hyperelliptic families with as much
bias as possible.
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The Bias Family

Theorem (HLKM 2018)
Consider X : y2 = x" + x"T*. If gcd(k,n— h,p—1) =1,
then

(ged(n—h,p—1) —1)(p* — p) heven
Az.x(p) = { ged(n — h,p —1)(p* — p) hodd (-)
0 otherwise

v
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Calculations Part 1: k-Periodicity

X" 4 Xhtk yn 4 yhtk
Az x(p) = Z ( ) ( )
| p P

tx.y(p
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Calculations Part 1: k-Periodicity

Xn—i-Xhtk n htk
AZ’X(p):Z( p )(y py )

t.x,y(p)
B Z ((t_an)—i-(l’_hXh)tk) ((t‘”y”)+(t‘”y”)t">
t.x,y(p) P p
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Calculations Part 1: k-Periodicity

X" 4 Xhtk yn 4 yhtk
Az x(p) = Z ( ) ( )
| p P

_ Zi) () +p(t—hxh>tk> () +p<t—hy“)tk>

Z (Xn+Xht(k+(n—h))) (yn+yht(k+(n—h)))
. p p
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Calculations Part 1: k-Periodicity

Az, x(p) = Z (Xn+xhtk> (y”+y”tk)
, ; .
| (“‘”X”> + (f‘*’xh)t") ((t—ny") + (t_hyh)tk>

[
3\

t.x,y(p) P P
Z (Xn + Xht(k—i-(n—h))) (yn + yht(k+(n—h)))
t.x,y(p) p p

The second moment is periodic in k with period (n — h).

‘.
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Calculations Part 2

Xn—l—Xth n+ hfk
A”(p)zz( p )(y py )

t.x,y(p)
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Calculations Part 2

Xn—l—Xth n+ hfk
A”(p)zz( p )(y py )
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Calculations Part 2

Xn+Xhtk y”—l—yhtk
A”(p)zz( p )( p )

t.x,y(p)
n h+m n h+m
_ Z (x + x"t )(y +pyt ) (M =1 K)
t.x,y(p) P
n h n h
= Z (X X t) (y Yy t) (Frobenius)
t.x.y(p) P p
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Calculations Part 2

Xn+Xhtk y”—l—yhtk
A”(p)zz( p )( p )

t.x,y(p)
n h+m n h+m
_ Z (x + x"t )(y +pyt ) (M =1 K)
t.x,y(p) P
n h n h
= Z (X X t) (y Yy t) (Frobenius)
t.x.y(p) P p

ged(n—h k,p—1) =1




Bias Conjecture
[e]e]e] )

Calculations Part 2

Xn—l—Xth n+ hfk
feato)= 3 (5) ()

t.x.y(p)
Xhl'm n+ htm
-2 (T () mmvn
t.x.y(p)
h n h
= ( X t) (y J;y t) (Frobenius)

tx,y(p)

ged(n—h k,p—1) =1

Thus, this reduces to calculating the second moment of
y2 = x" + x"T, which is straightforward.
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