Rank and Bias in Families of Hyperelliptic Curves

Trajan Hammonds ${ }^{1}$ Ben Logsdon ${ }^{2}$
thammond@andrew.cmu.edu bcl5@williams.edu Joint with Seoyoung Kim ${ }^{3}$ and Steven J. Miller ${ }^{2}$
${ }^{1}$ Carnegie Mellon University ${ }^{2}$ Williams College ${ }^{3}$ Brown University
Québec-Maine Number Theory Conference Université Laval, October 2018

Hyperelliptic Curves

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$
\mathcal{X}: y^{2}=f(x, T)=x^{2 g+1}+A_{2 g}(T) x^{2 g}+\cdots+A_{1}(T) x+A_{0}(T) .
$$

Hyperelliptic Curves

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$
\mathcal{X}: y^{2}=f(x, T)=x^{2 g+1}+A_{2 g}(T) x^{2 g}+\cdots+A_{1}(T) x+A_{0}(T) .
$$

Let $a_{\mathcal{X}}(p)=p+1-\# \mathcal{X}\left(\mathbb{F}_{p}\right)$. Then

$$
a_{\mathcal{X}}(p)=-\sum_{x(p)}\left(\frac{f(x, t)}{p}\right)
$$

Hyperelliptic Curves

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$
\mathcal{X}: y^{2}=f(x, T)=x^{2 g+1}+A_{2 g}(T) x^{2 g}+\cdots+A_{1}(T) x+A_{0}(T) .
$$

Let $a_{\mathcal{X}}(p)=p+1-\# \mathcal{X}\left(\mathbb{F}_{p}\right)$. Then

$$
a_{\chi}(p)=-\sum_{x(p)}\left(\frac{f(x, t)}{p}\right)
$$

and its m-th power sum

$$
A_{m, \mathcal{X}}(p)=\sum_{t(p)} a_{\mathcal{X}}(p)^{m}
$$

Generalized Nagao's conjecture

Generalized Nagao's Conjecture

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq x}-\frac{1}{p} A_{1, \chi}(p) \log p=\operatorname{rank} \mathrm{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))
$$

Generalized Nagao's conjecture

Generalized Nagao's Conjecture

$$
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{p \leq x}-\frac{1}{p} A_{1, \chi}(p) \log p=\operatorname{rank} \mathbf{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))
$$

Goal: Construct families of hyperelliptic curves with high rank.

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \geq 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

$$
\operatorname{rank} \mathrm{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))=4 \mathrm{~g}+2 .
$$

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \geq 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

$$
\operatorname{rank} \mathrm{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))=4 \mathrm{~g}+2 .
$$

- Close to current record of $4 g+7$.

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \geq 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

$$
\operatorname{rank} \mathrm{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))=4 \mathrm{~g}+2 .
$$

- Close to current record of $4 g+7$.
- No height matrix or basis computation.

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \geq 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

$$
\operatorname{rank} \mathrm{J}_{\mathcal{X}}(\mathbb{Q}(\mathrm{T}))=4 \mathrm{~g}+2 .
$$

- Close to current record of $4 g+7$.
- No height matrix or basis computation.

This generalizes a construction of Arms, Lozano-Robledo, and Miller in the elliptic surface case.

Idea of Construction

Define a genus g curve

$$
\begin{gathered}
\mathcal{X}: y^{2}=f(x, T)=x^{2 g+1} T^{2}+2 g(x) T-h(x) \\
g(x)=x^{2 g+1}+\sum_{i=0}^{2 g} a_{i} x^{i} \\
h(x)=(A-1) x^{2 g+1}+\sum_{i=0}^{2 g} A_{i} x^{i}
\end{gathered}
$$

The discriminant of the quadratic polynomial is

$$
D_{T}(x):=g(x)^{2}+x^{2 g+1} h(x) .
$$

Idea of Construction

$$
-A_{1, \mathcal{X}}(p)=\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right)
$$

Idea of Construction

$$
\begin{aligned}
-A_{1, \mathcal{X}}(p) & =\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}}(p-1)\left(\frac{x^{2 g+1}}{p}\right)+\sum_{\substack{x(p) \\
D_{t}(x) \neq 0}}(-1)\left(\frac{x^{2 g+1}}{p}\right)
\end{aligned}
$$

Idea of Construction

$$
\begin{aligned}
-A_{1, \mathcal{X}}(p) & =\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}}(p-1)\left(\frac{x^{2 g+1}}{p}\right)+\sum_{\substack{x(p) \\
D_{t}(x) \neq 0}}(-1)\left(\frac{x^{2 g+1}}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}} p\left(\frac{x}{p}\right)-\sum_{x(p)}\left(\frac{x}{p}\right)
\end{aligned}
$$

Idea of Construction

$$
\begin{aligned}
-A_{1, \chi}(p) & =\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}}(p-1)\left(\frac{x^{2 g+1}}{p}\right)+\sum_{\substack{x(p) \\
D_{t}(x) \not \equiv 0}}(-1)\left(\frac{x^{2 g+1}}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}} p\left(\frac{x}{p}\right)
\end{aligned}
$$

Idea of Construction

$$
\begin{aligned}
-A_{1, \chi}(p) & =\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}}(p-1)\left(\frac{x^{2 g+1}}{p}\right)+\sum_{\substack{x(p) \\
D_{t}(x) \not \equiv 0}}(-1)\left(\frac{x^{2 g+1}}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}} p\left(\frac{x}{p}\right)
\end{aligned}
$$

Therefore, $-A_{1, \mathcal{X}}(p)$ is $p\left(\frac{x}{p}\right)$ summed over the roots of $D_{t}(x)$.

Idea of Construction

$$
\begin{aligned}
-A_{1, \chi}(p) & =\sum_{t(p)} \sum_{x(p)}\left(\frac{f(x, t)}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}}(p-1)\left(\frac{x^{2 g+1}}{p}\right)+\sum_{\substack{x(p) \\
D_{t}(x) \not \equiv 0}}(-1)\left(\frac{x^{2 g+1}}{p}\right) \\
& =\sum_{\substack{x(p) \\
D_{t}(x) \equiv 0}} p\left(\frac{x}{p}\right)
\end{aligned}
$$

Therefore, $-A_{1, \chi}(p)$ is $p\left(\frac{x}{p}\right)$ summed over the roots of $D_{t}(x)$. To maximize the sum, we make each x a perfect square.

Idea of Construction

Key Idea

Make the roots of $D_{t}(x)$ distinct nonzero perfect squares.

- Choose roots ρ_{i}^{2} of $D_{t}(x)$ so that

$$
D_{t}(x)=A \prod_{i=1}^{4 g+2}\left(x-\rho_{i}^{2}\right)
$$

Idea of Construction

Key Idea

Make the roots of $D_{t}(x)$ distinct nonzero perfect squares.

- Choose roots ρ_{i}^{2} of $D_{t}(x)$ so that

$$
D_{t}(x)=A \prod_{i=1}^{4 g+2}\left(x-\rho_{i}^{2}\right)
$$

- Equate coefficients in

$$
D_{t}(x)=A \prod_{i=1}^{4 g+2}\left(x-\rho_{i}^{2}\right)=g(x)^{2}+x^{2 g+1} h(x) .
$$

Idea of Construction

Key Idea

Make the roots of $D_{t}(x)$ distinct nonzero perfect squares.

- Choose roots ρ_{i}^{2} of $D_{t}(x)$ so that

$$
D_{t}(x)=A \prod_{i=1}^{4 g+2}\left(x-\rho_{i}^{2}\right)
$$

- Equate coefficients in

$$
D_{t}(x)=A \prod_{i=1}^{4 g+2}\left(x-\rho_{i}^{2}\right)=g(x)^{2}+x^{2 g+1} h(x) .
$$

- Solve the nonlinear system for the coefficients of g, h.

Idea of the Construction

$-A_{1, \chi}(p)$

Idea of the Construction

$$
-A_{1, \chi}(p)=p \sum_{\substack{x \bmod p^{D_{t}(x) \equiv 0}}}\left(\frac{x^{2 g+1}}{p}\right)
$$

Idea of the Construction

$$
\begin{aligned}
-A_{1, \chi}(p) & =p \sum_{\substack{x \\
\bmod ^{2}(x) \equiv 0}}\left(\frac{x^{2 g+1}}{p}\right) \\
& =p \cdot\left(\# \text { of perfect-square roots of } D_{t}(x)\right) \\
& =p \cdot(4 g+2)
\end{aligned}
$$

Idea of the Construction

$$
\begin{aligned}
-A_{1, \chi}(p) & =p \sum_{\substack{x \bmod p \\
D_{t}(x)=0}}\left(\frac{x^{2 g+1}}{p}\right) \\
& =p \cdot\left(\# \text { of perfect-square roots of } D_{t}(x)\right) \\
& =p \cdot(4 g+2) .
\end{aligned}
$$

Then by the Generalized Nagao Conjecture

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq x} \frac{1}{p} \cdot p \cdot(4 g+2) \log p=4 g+2=\operatorname{rank} J_{\mathcal{X}}(\mathbb{Q}(T)) .
$$

Future Work

- Find a linearly independent basis.
- Generalizing another technique in Arms, Lozano-Robledo, and Miller.

Bias Conjecture

Bias Conjecture

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E}, the second moment $A_{2, \varepsilon}(p)$ is

$$
A_{2, \mathcal{E}}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

Bias Conjecture

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E}, the second moment $A_{2, \varepsilon}(p)$ is

$$
A_{2, \mathcal{E}}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

Bias Conjecture (Miller)

The largest lower order term in the second moment expansion that does not average to 0 is on average negative.

Bias Conjecture

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E}, the second moment $A_{2, \varepsilon}(p)$ is

$$
A_{2, \mathcal{E}}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

Bias Conjecture (Miller)

The largest lower order term in the second moment expansion that does not average to 0 is on average negative.

Goal: Find as many hyperelliptic families with as much bias as possible.

The Bias Family

Theorem (HLKM 2018)

Consider $\mathcal{X}: y^{2}=x^{n}+x^{h} T^{k}$. If $\operatorname{gcd}(k, n-h, p-1)=1$, then

$$
A_{2, x}(p)= \begin{cases}(\operatorname{gcd}(n-h, p-1)-1)\left(p^{2}-p\right) & h \text { even } \\ \operatorname{gcd}(n-h, p-1)\left(p^{2}-p\right) & h \text { odd }(-) \\ 0 & \text { otherwise }\end{cases}
$$

Calculations Part 1: k-Periodicity

$$
A_{2, \chi}(p)=\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right)
$$

Calculations Part 1: k-Periodicity

$$
\begin{aligned}
A_{2, \mathcal{X}}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{\left(t^{-n} x^{n}\right)+\left(t^{-h} x^{h}\right) t^{k}}{p}\right)\left(\frac{\left(t^{-n} y^{n}\right)+\left(t^{-h} y^{h}\right) t^{k}}{p}\right)
\end{aligned}
$$

Calculations Part 1: k-Periodicity

$$
\begin{aligned}
A_{2, \mathcal{X}}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{\left(t^{-n} x^{n}\right)+\left(t^{-h} x^{h}\right) t^{k}}{p}\right)\left(\frac{\left(t^{-n} y^{n}\right)+\left(t^{-h} y^{h}\right) t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{(k+(n-h))}}{p}\right)\left(\frac{y^{n}+y^{h} t^{(k+(n-h))}}{p}\right)
\end{aligned}
$$

Calculations Part 1: k-Periodicity

$$
\begin{aligned}
A_{2, \chi}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{\left(t^{-n} x^{n}\right)+\left(t^{-h} x^{h}\right) t^{k}}{p}\right)\left(\frac{\left(t^{-n} y^{n}\right)+\left(t^{-h} y^{h}\right) t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{(k+(n-h))}}{p}\right)\left(\frac{y^{n}+y^{h} t^{(k+(n-h))}}{p}\right)
\end{aligned}
$$

The second moment is periodic in k with period $(n-h)$.

Calculations Part 2

$$
A_{2, \mathcal{X}}(p)=\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right)
$$

Calculations Part 2

$$
\begin{aligned}
A_{2, x}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{m}}{p}\right)\left(\frac{y^{n}+y^{h} t^{m}}{p}\right) \quad\left(m \equiv_{n-h} k\right)
\end{aligned}
$$

Calculations Part 2

$$
\begin{array}{rlr}
A_{2, x}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{m}}{p}\right)\left(\frac{y^{n}+y^{h} t^{m}}{p}\right) & \left(m \equiv_{n-h} k\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t}{p}\right)\left(\frac{y^{n}+y^{h} t}{p}\right) & \text { (Frobenius) }
\end{array}
$$

Calculations Part 2

$$
\begin{aligned}
A_{2, x}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{m}}{p}\right)\left(\frac{y^{n}+y^{h} t^{m}}{p}\right) \quad\left(m \equiv_{n-h} k\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t}{p}\right)\left(\frac{y^{n}+y^{h} t}{p}\right) \quad \text { (Frobenius) } \\
\quad \operatorname{gcd}(n-h, k, p-1)=1 &
\end{aligned}
$$

Calculations Part 2

$$
\begin{aligned}
A_{2, x}(p) & =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{k}}{p}\right)\left(\frac{y^{n}+y^{h} t^{k}}{p}\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t^{m}}{p}\right)\left(\frac{y^{n}+y^{h} t^{m}}{p}\right) \quad\left(m \equiv_{n-h} k\right) \\
& =\sum_{t, x, y(p)}\left(\frac{x^{n}+x^{h} t}{p}\right)\left(\frac{y^{n}+y^{h} t}{p}\right) \quad \text { (Frobenius) } \\
\quad \operatorname{gcd}(n-h, k, p-1)=1 &
\end{aligned}
$$

Thus, this reduces to calculating the second moment of $y^{2}=x^{n}+x^{h} T$, which is straightforward.

We thank our advisors Steven J. Miller and Seoyoung Kim, Williams College, the Finnerty Fund, the SMALL REU and the National Science Foundation (grants DMS-1659037 and DMS-1561945).

