Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o

Rank and Bias in Families of Hyperelliptic Curves

Trajan Hammonds¹ Ben Logsdon² thammond@andrew.cmu.edu bcl5@williams.edu Joint with Seoyoung Kim³ and Steven J. Miller²

¹Carnegie Mellon University ²Williams College ³Brown University

Québec-Maine Number Theory Conference Université Laval, October 2018

Background ●○	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements o
Hyperelli	ptic Curves		

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$\mathcal{X}: y^2 = f(x, T) = x^{2g+1} + A_{2g}(T)x^{2g} + \cdots + A_1(T)x + A_0(T).$$

Background ●○	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o
Hyperelli	otic Curves		

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$\mathcal{X}: y^2 = f(x, T) = x^{2g+1} + A_{2g}(T)x^{2g} + \cdots + A_1(T)x + A_0(T).$$

Let $a_{\mathcal{X}}(p) = p + 1 - \# \mathcal{X}(\mathbb{F}_p)$. Then

$$a_{\mathcal{X}}(p) = -\sum_{x(p)} \left(rac{f(x,t)}{p}
ight)$$

Background ●○	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o
Hyperelli	ptic Curves		

Define a hyperelliptic curve of genus g over $\mathbb{Q}(T)$:

$$\mathcal{X}: y^2 = f(x, T) = x^{2g+1} + A_{2g}(T)x^{2g} + \cdots + A_1(T)x + A_0(T).$$

Let $a_{\mathcal{X}}(p) = p + 1 - \# \mathcal{X}(\mathbb{F}_p)$. Then

$$a_{\mathcal{X}}(p) = -\sum_{x(p)} \left(rac{f(x,t)}{p}
ight)$$

and its *m*-th power sum

$$A_{m,\mathcal{X}}(p) = \sum_{t(p)} a_{\mathcal{X}}(p)^m.$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$	Bias Conjecture	Acknowledgements
00			

Generalized Nagao's conjecture

Generalized Nagao's Conjecture

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}-\frac{1}{p}A_{1,\chi}(p)\log p=\operatorname{rank} \operatorname{J}_{\mathcal{X}}\left(\mathbb{Q}(\mathrm{T})\right).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$	Bias Conjecture	Acknowledgements
00			

Generalized Nagao's conjecture

Generalized Nagao's Conjecture

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}-\frac{1}{p}A_{1,\chi}(p)\log p=\operatorname{rank} \operatorname{J}_{\mathcal{X}}\left(\mathbb{Q}(\mathrm{T})\right).$$

Goal: Construct families of hyperelliptic curves with high rank.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ $\bullet \circ \circ \circ \circ \circ \circ$ Bias Conjecture

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \ge 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

rank $J_{\mathcal{X}}(\mathbb{Q}(T)) = 4g + 2$.

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ $\bullet \circ \circ \circ \circ \circ \circ$ Bias Conjecture

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \ge 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

rank
$$J_{\mathcal{X}}(\mathbb{Q}(T)) = 4g + 2$$
.

• Close to current record of 4g + 7.

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ $\bullet \circ \circ \circ \circ \circ \circ$ Bias Conjecture

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \ge 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

rank
$$J_{\mathcal{X}}(\mathbb{Q}(T)) = 4g + 2$$
.

- Close to current record of 4g + 7.
- No height matrix or basis computation.

Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ $\bullet \circ \circ \circ \circ \circ \circ$ Bias Conjecture

Moderate-Rank Family

Theorem (HLKM, 2018)

Assume the Generalized Nagao Conjecture and trivial Chow trace Jacobian. For any $g \ge 1$, we can construct infinitely many genus g hyperelliptic curves \mathcal{X} over $\mathbb{Q}(T)$ such that

rank
$$J_{\mathcal{X}}(\mathbb{Q}(T)) = 4g + 2$$
.

- Close to current record of 4g + 7.
- No height matrix or basis computation.

This generalizes a construction of Arms, Lozano-Robledo, and Miller in the elliptic surface case.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T) = 0 = 0 = 0$	Bias Conjecture	Acknowledgements o
Idea of Co	onstruction		

Define a genus g curve

$$\mathcal{X}: y^2 = f(x, T) = x^{2g+1}T^2 + 2g(x)T - h(x)$$

 $g(x) = x^{2g+1} + \sum_{i=0}^{2g} a_i x^i$
 $h(x) = (A-1)x^{2g+1} + \sum_{i=0}^{2g} A_i x^i.$

The discriminant of the quadratic polynomial is

$$D_T(x) := g(x)^2 + x^{2g+1}h(x).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements o
Idea of C	construction		

$$-A_{1,\mathcal{X}}(p) = \sum_{t(p)} \sum_{x(p)} \left(\frac{f(x,t)}{p} \right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements
Idea of C	onstruction		

$$-A_{1,\mathcal{X}}(\boldsymbol{p}) = \sum_{t(\boldsymbol{p})} \sum_{x(\boldsymbol{p})} \left(\frac{f(x,t)}{\boldsymbol{p}}\right)$$
$$= \sum_{\substack{x(\boldsymbol{p})\\D_t(x)\equiv 0}} (\boldsymbol{p}-1) \left(\frac{x^{2g+1}}{\boldsymbol{p}}\right) + \sum_{\substack{x(\boldsymbol{p})\\D_t(x)\neq 0}} (-1) \left(\frac{x^{2g+1}}{\boldsymbol{p}}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements o
Idea of C	construction		

$$-A_{1,\mathcal{X}}(p) = \sum_{t(p)} \sum_{x(p)} \left(\frac{f(x,t)}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x) \equiv 0}} (p-1) \left(\frac{x^{2g+1}}{p}\right) + \sum_{\substack{x(p)\\D_t(x) \neq 0}} (-1) \left(\frac{x^{2g+1}}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x) \equiv 0}} p\left(\frac{x}{p}\right) - \sum_{x(p)} \left(\frac{x}{p}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements
Idea of C	onstruction		

$$-A_{1,\mathcal{X}}(\boldsymbol{p}) = \sum_{t(\boldsymbol{p})} \sum_{x(\boldsymbol{p})} \left(\frac{f(x,t)}{\boldsymbol{p}}\right)$$
$$= \sum_{\substack{x(\boldsymbol{p})\\D_t(x)\equiv 0}} (\boldsymbol{p}-1) \left(\frac{x^{2g+1}}{\boldsymbol{p}}\right) + \sum_{\substack{x(\boldsymbol{p})\\D_t(x)\neq 0}} (-1) \left(\frac{x^{2g+1}}{\boldsymbol{p}}\right)$$
$$= \sum_{\substack{x(\boldsymbol{p})\\D_t(x)\equiv 0}} \boldsymbol{p}\left(\frac{x}{\boldsymbol{p}}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements
Idea of Co	onstruction		

$$-A_{1,\mathcal{X}}(p) = \sum_{t(p)} \sum_{x(p)} \left(\frac{f(x,t)}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x) \equiv 0}} (p-1) \left(\frac{x^{2g+1}}{p}\right) + \sum_{\substack{x(p)\\D_t(x) \neq 0}} (-1) \left(\frac{x^{2g+1}}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x) \equiv 0}} p\left(\frac{x}{p}\right)$$

Therefore, $-A_{1,\mathcal{X}}(p)$ is $p\left(\frac{x}{p}\right)$ summed over the roots of $D_t(x)$.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements
Idea of Co			

$$-A_{1,\mathcal{X}}(p) = \sum_{t(p)} \sum_{x(p)} \left(\frac{f(x,t)}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x)\equiv 0}} (p-1) \left(\frac{x^{2g+1}}{p}\right) + \sum_{\substack{x(p)\\D_t(x)\neq 0}} (-1) \left(\frac{x^{2g+1}}{p}\right)$$
$$= \sum_{\substack{x(p)\\D_t(x)\equiv 0}} p\left(\frac{x}{p}\right)$$

Therefore, $-A_{1,\mathcal{X}}(p)$ is $p\left(\frac{x}{p}\right)$ summed over the roots of $D_t(x)$. To maximize the sum, we make each x a perfect square.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements
Idea of C	onstruction		

Key Idea

Make the roots of $D_t(x)$ distinct nonzero perfect squares.

• Choose roots ρ_i^2 of $D_t(x)$ so that

$$D_t(x) = A \prod_{i=1}^{4g+2} \left(x - \rho_i^2 \right).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o
Idea of C	onstruction		

Key Idea

Make the roots of $D_t(x)$ distinct nonzero perfect squares.

• Choose roots ρ_i^2 of $D_t(x)$ so that

$$\mathcal{D}_t(\mathbf{x}) = \mathcal{A} \prod_{i=1}^{4g+2} \left(\mathbf{x} -
ho_i^2
ight).$$

Equate coefficients in

$$D_t(x) = A \prod_{i=1}^{4g+2} (x - \rho_i^2) = g(x)^2 + x^{2g+1}h(x).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture	Acknowledgements o
Idea of C	Construction		

Key Idea

Make the roots of $D_t(x)$ distinct nonzero perfect squares.

• Choose roots ρ_i^2 of $D_t(x)$ so that

$$D_t(x) = A \prod_{i=1}^{4g+2} (x - \rho_i^2).$$

Equate coefficients in

$$D_t(x) = A \prod_{i=1}^{4g+2} (x - \rho_i^2) = g(x)^2 + x^{2g+1}h(x)$$

• Solve the nonlinear system for the coefficients of *g*, *h*.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o
Idea of th	e Construction		

$$-A_{1,\chi}(p)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o
Idea of th	e Construction		

$$-A_{1,\chi}(\rho) = \rho \sum_{\substack{x \mod \rho \\ D_t(x) \equiv 0}} \left(\frac{x^{2g+1}}{\rho}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o
Idea of th	e Construction		

$$\begin{aligned} -A_{1,\chi}(p) &= p \sum_{\substack{x \mod p \\ D_t(x) \equiv 0}} \left(\frac{x^{2g+1}}{p} \right) \\ &= p \cdot (\text{\# of perfect-square roots of } D_t(x)) \\ &= p \cdot (4g+2) \,. \end{aligned}$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o
Idea of th	e Construction		

$$\begin{aligned} -A_{1,\chi}(p) &= p \sum_{\substack{x \mod p \\ D_t(x) \equiv 0}} \left(\frac{x^{2g+1}}{p} \right) \\ &= p \cdot (\text{\# of perfect-square roots of } D_t(x)) \\ &= p \cdot (4g+2) \,. \end{aligned}$$

Then by the Generalized Nagao Conjecture

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{1}{p}\cdot p\cdot (4g+2)\log p = 4g+2 = \operatorname{rank} J_{\mathcal{X}}\left(\mathbb{Q}(T)\right).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 00000	Bias Conjecture	Acknowledgements o
Future Wo	ork		

• Find a linearly independent basis.

• Generalizing another technique in Arms, Lozano-Robledo, and Miller.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o

Bias Conjecture

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture ●000	Acknowledgements
Bias Con	jecture		

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E} , the second moment $A_{2,\mathcal{E}}(p)$ is

$$A_{2,\mathcal{E}}(\boldsymbol{\rho}) = \boldsymbol{\rho}^2 + O\left(\boldsymbol{\rho}^{3/2}
ight).$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture ●000	Acknowledgements o
Bias Con	iecture		

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E} , the second moment $A_{2,\mathcal{E}}(p)$ is

$$A_{2,\mathcal{E}}(\boldsymbol{p}) = \boldsymbol{p}^2 + O\left(\boldsymbol{p}^{3/2}\right).$$

Bias Conjecture (Miller)

The largest lower order term in the second moment expansion that does not average to 0 is on average **negative**.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture ●○○○	Acknowledgements o
Bias Con	iecture		

Michel's Theorem

For one-parameter families of elliptic curves \mathcal{E} , the second moment $A_{2,\mathcal{E}}(p)$ is

$$A_{2,\mathcal{E}}(p)=p^2+O\left(p^{3/2}
ight)$$
 .

Bias Conjecture (Miller)

The largest lower order term in the second moment expansion that does not average to 0 is on average **negative**.

Goal: Find as many hyperelliptic families with as much bias as possible.

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture o●oo	Acknowledgements
The Rise	Eamily		

Theorem (HLKM 2018)

Consider $\mathcal{X} : y^2 = x^n + x^h T^k$. If gcd(k, n - h, p - 1) = 1, then

$$A_{2,\mathcal{X}}(p) = \begin{cases} (\gcd(n-h,p-1)-1)(p^2-p) & h \text{ even} \\ \gcd(n-h,p-1)(p^2-p) & h \text{ odd } (-) \\ 0 & \text{otherwise} \end{cases}$$

Background 00	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o
Calculatio	ons Part 1: <i>k</i> -Periodicity		

$$A_{2,\mathcal{X}}(\boldsymbol{p}) = \sum_{t,x,y(\boldsymbol{p})} \left(\frac{x^n + x^h t^k}{\boldsymbol{p}}\right) \left(\frac{y^n + y^h t^k}{\boldsymbol{p}}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements

Calculations Part 1: *k***-Periodicity**

$$\begin{aligned} \mathcal{A}_{2,\mathcal{X}}(\boldsymbol{p}) &= \sum_{t,x,y(\boldsymbol{p})} \left(\frac{x^n + x^h t^k}{\boldsymbol{p}} \right) \left(\frac{y^n + y^h t^k}{\boldsymbol{p}} \right) \\ &= \sum_{t,x,y(\boldsymbol{p})} \left(\frac{(t^{-n} x^n) + (t^{-h} x^h) t^k}{\boldsymbol{p}} \right) \left(\frac{(t^{-n} y^n) + (t^{-h} y^h) t^k}{\boldsymbol{p}} \right) \end{aligned}$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$	Bias Conjecture	Acknowledgements
		0000	

Calculations Part 1: *k***-Periodicity**

$$\begin{aligned} \mathcal{A}_{2,\mathcal{X}}(p) &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p} \right) \left(\frac{y^n + y^h t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{(t^{-n} x^n) + (t^{-h} x^h) t^k}{p} \right) \left(\frac{(t^{-n} y^n) + (t^{-h} y^h) t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^{(k+(n-h))}}{p} \right) \left(\frac{y^n + y^h t^{(k+(n-h))}}{p} \right) \end{aligned}$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements
		0000	

Calculations Part 1: k-Periodicity

$$\begin{aligned} \mathcal{A}_{2,\mathcal{X}}(p) &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p} \right) \left(\frac{y^n + y^h t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{(t^{-n} x^n) + (t^{-h} x^h) t^k}{p} \right) \left(\frac{(t^{-n} y^n) + (t^{-h} y^h) t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^{(k+(n-h))}}{p} \right) \left(\frac{y^n + y^h t^{(k+(n-h))}}{p} \right) \end{aligned}$$

The second moment is periodic in *k* with period (n - h).

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements o
Calculati	ons Part 2		

$$A_{2,\mathcal{X}}(p) = \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p}\right) \left(\frac{y^n + y^h t^k}{p}\right)$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(\mathcal{T})$ 000000	Bias Conjecture	Acknowledgements o	
Calculations Part 2				

$$\begin{aligned} \mathcal{A}_{2,\mathcal{X}}(p) &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p} \right) \left(\frac{y^n + y^h t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^m}{p} \right) \left(\frac{y^n + y^h t^m}{p} \right) \quad (m \equiv_{n-h} k) \end{aligned}$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture 000●	Acknowledgements o
Calculatio	ons Part 2		

$$\begin{aligned} \mathcal{A}_{2,\mathcal{X}}(p) &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^k}{p} \right) \left(\frac{y^n + y^h t^k}{p} \right) \\ &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t^m}{p} \right) \left(\frac{y^n + y^h t^m}{p} \right) \quad (m \equiv_{n-h} k) \\ &= \sum_{t,x,y(p)} \left(\frac{x^n + x^h t}{p} \right) \left(\frac{y^n + y^h t}{p} \right) \quad (\text{Frobenius}) \end{aligned}$$

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture 000●	Acknowledgements o
Calculatio	ons Part 2		

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$ 000000	Bias Conjecture 000●	Acknowledgements o
Calculatio	ons Part 2		

Thus, this reduces to calculating the second moment of $y^2 = x^n + x^h T$, which is straightforward.

1

Background	Hyperelliptic curves with moderately large rank over $\mathbb{Q}(T)$	Bias Conjecture	Acknowledgements ●

We thank our advisors Steven J. Miller and Seoyoung Kim, Williams College, the Finnerty Fund, the SMALL REU and the National Science Foundation (grants DMS-1659037 and DMS-1561945).