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Notation

T =

[
1 1
0 1

]
, S =

[
0 −1
1 0

]
H = complex upper half plane.
τ ∈ H
q = e2πiτ

G = finite index subgroup of SL2(Z)
ρ : G → GLn(C) is a n-dim. complex representation
k ∈ Z
If F : H → Cn is a function then

F |k
[
a b
c d

]
(z) := (cz + d)−kF (

az + b

cz + d
)



Definition of a vector-valued modular form (vvmf)

on a subgroup

A vector-valued modular form (vvmf) of dimension n and
weight k with respect to a complex n-dimensional
representation ρ of a subgroup G of SL2(Z) is:

A holomorphic function F : H → Cn such that F has a
holomorphic q-series expansion at all the cusps of G and

F |kγ = ρ(γ)F for all γ ∈ G .



The transformation equation

Let F =


F1

F2
...
Fn

 .
The transformation equation is:

F1|kγ
F2|kγ

...
Fn|kγ

 = ρ(γ)


F1

F2
...
Fn

 .



Mk(ρ) := {vector-valued modular forms of weight k for ρ}.
M(ρ) :=

⊕
k∈Z Mk(ρ)

Mk(G ) := {modular forms of weight k on G}.
M(G ) :=

⊕
k∈Z Mk(G )

The vector spaces Mk(ρ) are finite dimensional. Moreover,
Mk(ρ) = 0 if k << 0.

If F ∈ Mk(ρ) and if m ∈ Mt(G ) then mF ∈ Mk+t(ρ). In this
way, we view M(ρ) as a Z-graded M(G )-module.



Goals

Goal 1: Understand the structure of vector-valued modular
forms M(ρ) as a M(G )-module.
Approaches to this problem use:

Algebraic geometry (Cameron Franc and Luca Candelori)

Adapt the classical theory of modular forms to vector-valued
modular forms (Geoff Mason and Chris Marks)

A Riemann-Hilbert perspective (Terry Gannon).

Theorem
(Mason-Marks, Gannon, Candelori-Franc.) Let ρ denote a
representation of SL2(Z) of dimension n. Then M(ρ) is a free
M(SL2(Z)) = C[E4,E6]-module of rank n.



Theorem
(Gottesman, Candelori-Franc) Let G denote a finite index
subgroup of SL2(Z) such that there exist X ,Y ∈ M(G ) which
are algebraically independent and such that M(G ) = C[X ,Y ].
Let ρ denote a representation of G . Then M(ρ) is a free
M(G )-module of rank dim ρ.

Examples: The groups SL2(Z), Γ0(2), and Γ(2) satisfy the
hypothesis of this theorem.



Goal 2: If M(ρ) is a free M(G )-module, give explicit formulas
for a M(G )-basis for M(ρ) in terms of classical functions such
as hypergeometric series.

There has been extensive progress made on this problem when
ρ is an irreducible representation of SL2(Z) of small dimension.
My work gives explicit formulas in the case when ρ is an
irreducible representation of Γ0(2) of dimension two.



Goal 3: Study scalar-valued modular forms via vector-valued
modular forms. This is possible since the component functions
of a vector-valued modular form with respect to a
representation ρ are modular forms on the subgroup kerρ..



Noncongruence subgroups

A subgroup of SL2(Z) is congruence if membership in the
subgroup is determined by congruence conditions on the
entries of the matrix.
Atkin and Swinnerton-Dyer noticed examples of modular forms
on noncongruence subgroups whose sequence of Fourier
coefficients have unbounded denominators. One way to attack
and to generalize the unbounded denominator conjecture (i.e.
”Modular forms on non-congruence subgroups have
unbounded denominators”) is via vector-valued modular forms.



The Unbounded Denominator Conjecture for

Vector Valued Modular Forms

Definition
Let α denote an algebraic number. The denominator of α is
the smallest positive integer N such that Nα is an algebraic
integer. The number Nα is the numerator of α.

Conjecture
Let ρ be a representation of a finite index subgroup G of
SL2(Z). If ker ρ is noncongruence then for any vector valued
modular form X with respect to ρ, the sequence of the
denominators of the Fourier coefficients of at least one of the
component functions of X is unbounded. (Provided the
Fourier coefficients are algebraic numbers.)



Main Result

Theorem
(Gottesman) Let ρ denote an irreducible representation of
Γ0(2) of dimension two such that ρ(T ) has finite order, ρ is
induced from a character of Γ(2), and such that a certain mild
technical hypothesis on ρ holds. Then for any vector-valued
modular form V with respect to ρ, the sequence of the
denominators of the Fourier series coefficients of each
component function of V is unbounded provided these Fourier
coefficients are algebraic numbers.

Remark: This approach should allow us to eliminate the
assumption that ρ is induced from a character of Γ(2).



If ρ is an irreducible representation of Γ0(2) of dimension two,
if ρ(T ) has finite order and if a mild hypothesis on ρ holds
then for each k ∈ Z, there is a basis of Mk(ρ) consisting of
vector-valued modular forms which can be normalized so that
the Fourier coefficients of their normalization are elements of a
certain quadratic field Q(

√
M), which is determined by ρ.

In this context, normalizing means scaling each of the two
component functions by a complex number so that the leading
Fourier coefficient of each scaled component function is equal
to one.

Equivalent formulation: There is a representation ρ′, which is
conjugate to ρ, such that if ρ is an irreducible representation
of Γ0(2) of dimension two, if ρ(T ) has finite order and if a
mild hypothesis on ρ holds then for each k ∈ Z, there is a
basis of Mk(ρ′) consisting of vector-valued modular forms
whose Fourier coefficients belong to a certain quadratic field
Q(
√
M), which is determined by ρ.



Theorem
(Gottesman) Assume that ρ is an irreducible representation of
Γ0(2) of dimension two such that ρ(T ) has finite order, ρ is
induced from a character of Γ(2), and a mild hypothesis on ρ
holds. Let p denote a sufficiently large prime number such
that M is not a quadratic residue mod p. Let X denote a
vector-valued modular form for ρ′ whose component functions
have algebraic Fourier coefficients which lie in the quadratic
field Q(

√
M). Then p divides the denominator of at least one

Fourier coefficient of the first component function and of the
second component function of X .

Remark: For each k ∈ Z, we can always find a basis of
vector-valued modular forms for Mk(ρ′) whose Fourier
coefficients lie in the quadratic field Q(

√
M).



Remark: The density of prime numbers p for which M is not
a quadratic residue mod p is one half.

It follows that at least one half of the prime numbers divide
the denominator of at least one Fourier coefficient of the first
and of the second component functions of X . In particular,
the sequence of the denominators of the Fourier coefficients of
the first and of the second component functions of X are both
unbounded.

Remark: A similar idea should allow us to drop the
assumption that ρ is induced from a character of Γ(2)



Method of Proof :
Step 1. Prove that the module M(ρ) of vector valued
modular forms for a representation ρ of Γ0(2) is a free graded
module over the ring M(Γ0(2)), the ring of modular forms on
Γ0(2), (Note: Not true for many other subgroups of SL2(Z).)

Step 2. Use Step 1 and the modular derivative to compute a
basis for this module when ρ is irreducible and
two-dimensional. Let k0 denote the integer for which
Mk0(ρ) 6= 0 and Mk(ρ) = 0 if k < k0. Let F denote a nonzero
element in Mk0(ρ). Then F and Dk0F = q d

q
F − k0

12
E2F form a

basis for M(ρ) as a M(Γ0(2))-module. In particular,
Mk0(ρ) = CF and so F is unique up to scaling by a complex
number.



Method of Proof :
Step 3. Make this basis even more explicit by solving a
modular linear differential equation satisfied by a vector-valued
modular form F of minimal weight.
In particular, we then obtain formulas for the Fourier series
coefficients involve rising factorials or Pochhammer symbols
(r)n := r(r + 1) · · · (r + n − 1) =
product of the first n consecutive numbers starting with r .
Step 4. Apply the arithmetic of quadratic fields to show that
certain sets of prime numbers never divide (r)n for any n
where r is a certain type of element in a quadratic field. Then
prove that a vector-valued modular form of least weight whose
Fourier coefficients are algebraic numbers has unbounded
denominators.

Step 5. Use the module structure of vector-valued modular
forms and step 4 to show that all vector-valued modular forms
whose Fourier coefficients are algebraic numbers have
unbounded denominators.



Back to step 3: Solving the differential equation that F
satisfies
M(ρ) is a free M(Γ0(2))-module of rank two with basis
F ∈ Mk0(ρ) and Dk0F ∈ Mk0+2(ρ).
As Dk0+2(Dk0F ) ∈ Mk0+4(ρ):

Dk0+2(Dk0F ) = (weight two)Dk0F + (weight four)F .

Let G (τ) := −E2(τ) + 2E2(2τ) ∈ M2(Γ0(2)) where
E2(τ) := 1− 24

∑∞
n=1 σ(n)qn.

M(Γ0(2)) = C[G ,E4]

.
0 = Dk0+2(Dk0F ) + aGDk0F + (bG 2 + cE4)F



Let η = q
1
24

∏∞
n=1(1− qn) denote the Dedekind η-function.

Let J := 3G2

E4−G2 . (a Hauptmodul for Γ0(2))
Let r denote a complex number such that
r(r − 1) + (2−3a

3
)r + (b + 4c) = 0. Let A and B denote the

roots of the quadratic polynomial x2 − x(2r + 1−6a
6

) + r−6c
2
.

Then a basis of solutions to the differential equation
0 = Dk0+2(Dk0F ) + aGDk0F + (bG 2 + cE4)F is:

η2k0(τ)(J(τ)− 1)rJ(τ)−A 2F1(A,
1

2
+ A, 1 + A− B ; J(τ)−1),

η2k0(τ)(J(τ)− 1)rJ(τ)−B 2F1(B ,
1

2
+ B , 1 + B − A; J(τ)−1)

where 2F1(α, β, γ; z) = 1 +
∑

n≥1
(α)n(β)n

(γ)n
zn

n!
,

(α)n = α(α + 1) · · · (α + n − 1)



0 = Dk0+2(Dk0F ) + aGDk0F + (bG 2 + cE4)F .

The fact that Dk0(η
2k0) = 0 implies that

0 = D2

(
D0

(
F

η2k0

))
+ aGD0

(
F

η2k0

)
+ (bG 2 + cE4)

(
F

η2k0

)
.

Let J(τ) := 3G(τ)2

E4(τ)−G(τ)2
. The function J is a modular function

and it induces a complex-analytic isomorphism from
Γ0(2)\(H

⋃
P1(Q)) to P1(C). Therefore J is locally injective

(away from an elliptic point) and we may write F
η2k0

= H ◦ J.



F

η2k0
= H ◦ J.

The differential equation

0 = D2

(
D0

(
F

η2k0

))
+ aGD0

(
F

η2k0

)
+ (bG 2 + cE4)

(
F

η2k0

)
becomes (let Y = J(τ)) a Fuchsian differential equation on
the Riemann sphere with regular singularities at 0, 1,∞:

H
′′
(Y ) +

7Y − 6aY − 3

6Y (Y − 1)
H

′
(Y ) +

(b + c)Y + 3c

Y (Y − 1)2
H(Y ) = 0.

A basis for the solutions to this ODE can be found using the
Gaussian hypergeometric function 2F1. We then obtain explicit
formulas for F .



Arithmetic of Quadratic Fields

Here is the lemma we use in Step 4:

Lemma
Let M denote a square-free integer. Let p denote an odd
prime number for which M is not a quadratic residue mod p.
Let X ∈ Q(

√
M) such that X 6∈ Q. Let Z denote the smallest

positive integer such that ZX is an algebraic integer and let
Y := ZX. (We think of Z as the denominator and Y as the
numerator of X .) Let y and z denote the integers for which

Y = x+y
√
M

2
. If p - y then p does not divide the numerator of

any element in the set {(X )t : t ≥ 1}. (i.e. p does not divide
(X )t in the ring of algebraic integers.)



This lemma allows us to show that all sufficiently large primes
p for which M is not a quadratic residue mod p divide the
denominator of least one Fourier coefficient of the
vector-valued modular form F of minimal weight provided ρ
satisfies certain conditions, including the condition that ρ is
induced from a character of Γ(2).



Thank you!!


