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Background Results Sketch of Proof

Motivation

Theorem (Prime Number Theorem)

π(x) := #{p ≤ x : p is prime} ∼ Li(x).

Theorem

Refinement to arithmetic progressions: Let a, q be such that
gcd(a, q) = 1. Then

π(x ; q, a) := #{p ≤ x : p prime and p ≡ a mod q} ∼ 1

ϕ(q)
Li(x).
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Modular Forms

Recall that a modular form of weight k on SL2(Z) is a
function f : H→ C with

f (z) =
∞∑
n=0

af (n)qn, q = e2πiz

and
f (γz) = (cz + d)k f (z) for all γ ∈ SL2(Z).

By restricting to the action of a congruence subgroup
Γ ⊂ SL2(Z) of level N, we can associate that level to our
modular form f (z).

We say a modular form is a cusp form if it vanishes at the
cusps of Γ; hence af (0) = 0 for a cusp form f (z).
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Newforms

We say f is a Hecke eigenform if it is a cusp form and

Tnf = λ(n)f for n = 1, 2, 3, . . . ,

where Tn is the Hecke operator.

A newform is a cusp form that is an eigenform for all Hecke
operators.

For a newform, the coefficients af (n) are multiplicative.

We consider holomorphic cuspidal newforms of even weight
k ≥ 2 and squarefree level N.



Background Results Sketch of Proof

Newforms

We say f is a Hecke eigenform if it is a cusp form and

Tnf = λ(n)f for n = 1, 2, 3, . . . ,

where Tn is the Hecke operator.

A newform is a cusp form that is an eigenform for all Hecke
operators.

For a newform, the coefficients af (n) are multiplicative.

We consider holomorphic cuspidal newforms of even weight
k ≥ 2 and squarefree level N.



Background Results Sketch of Proof

Newforms

We say f is a Hecke eigenform if it is a cusp form and

Tnf = λ(n)f for n = 1, 2, 3, . . . ,

where Tn is the Hecke operator.

A newform is a cusp form that is an eigenform for all Hecke
operators.

For a newform, the coefficients af (n) are multiplicative.

We consider holomorphic cuspidal newforms of even weight
k ≥ 2 and squarefree level N.



Background Results Sketch of Proof

Newforms

We say f is a Hecke eigenform if it is a cusp form and

Tnf = λ(n)f for n = 1, 2, 3, . . . ,

where Tn is the Hecke operator.

A newform is a cusp form that is an eigenform for all Hecke
operators.

For a newform, the coefficients af (n) are multiplicative.

We consider holomorphic cuspidal newforms of even weight
k ≥ 2 and squarefree level N.



Background Results Sketch of Proof

The Ramanujan Tau Function

Ramanujan tau function:

∆(z) := q
∞∏
n=1

(1−qn)24 =
∞∑
n=1

τ(n)qn = q−24q2+252q3+· · · .

The multiplicativity of the Ramanujan tau function follows
from the fact that ∆(z) is a newform.

Conjecture (Lehmer)

For all n ≥ 1, τ(n) 6= 0.
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The Sato-Tate Law

Theorem (Deligne, 1974)

If f is a newform as above, then for each prime p we have

|af (p)| ≤ 2p
k−1
2 .

By the Deligne bound,

af (p) = 2p(k−1)/2 cos(θp)

for some angle θp ∈ [0, π].

Natural question: What is the distribution of the sequence
{θp}?
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The Sato-Tate Law (Continued)

Theorem(Barnet-Lamb, Geraghty, Harris, Taylor)

Let f (z) ∈ Snew
k (Γ0(N)) be a non-CM newform. If F : [0, π]→ C

is a continuous function, then

lim
x→∞

1

π(x)

∑
p≤x

F (θp) =

∫ π

0
F (θ)dµST

where dµST = 2
π sin2(θ)dθ is the Sato-Tate measure. Further

πf ,I (x) := #{p ≤ x : θp ∈ I} ∼ µST (I )Li(x).
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Symmetric Power L-functions

We begin by writing

f (z) =
∞∑

m=1

af (m)qm =
∞∑

m=1

m
k−1
2 λf (m)qm.

From this normalization, we have

L(s, f ) =
∏
p

(
1− e iθpp−s

)−1 (
1− e−iθpp−s

)−1
,

and the n-th symmetric power L-function

L (s,Symnf ) =

∏
p-N

n∏
j=0

(
1− e ijθpe(j−n)iθpp−s

)−1∏
p|N

Lp(s)−1


To pass to arithmetic progressions, we consider
L(s,Symnf ⊗ χ).
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Previous Work

Define πf ,I (x) = #{p ≤ x : θp ∈ I} and let µST (I ) denote the
Sato-Tate measure of a subinterval I ⊂ [0, π].

Rouse and Thorner (2017): under certain analytic hypotheses
on the symmetric power L-functions,

|πf ,I (x)−µST (I )Li(x)| ≤ 3.33x3/4−3x3/4 log log x

log x
+

202x3/4 log q(f )

log x

for all x ≥ 2, where q(f ) = N(k − 1)

Rouse-Thorner also leads to an explicit upper bound for the
Lang-Trotter conjecture, which predicts the asymptotic of the
number of primes for which af (p) = c for a fixed constant c .
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Assumptions on Symmetric Power L-functions

We make some reasonable assumptions about the twisted
Symmetric Power L-functions associated to a newform f ,
including:

The Generalized Riemann Hypothesis for the twisted
symmetric power L-functions L(s,Symnf ⊗ χ).
The existence of an analytic continuation of L(s,Symnf ⊗ χ)
to an entire function on C (and a corresponding functional
equation).
Assumptions about the form of the above completed
L-function, including its gamma factor and conductor.
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Our Results

Assuming the aforementioned hypotheses, we prove:

Sato-Tate Conjecture for Primes in Arithmetic Progressions

Fix a modulus q. Let φ(t) be a compactly supported C∞ test
function, and set φx(t) = φ(t/x). For x ≥ max{3.5× 107,
7400(q log q)2}:

∣∣∣∣∣ ∑
p-N, θp∈I
p≡a(q)

log(p)φx(p)− xµST (I )

ϕ(q)

(∫ ∞
−∞

φ(t)dt

) ∣∣∣∣∣ ≤ Cx3/4
√

log x√
ϕ(q)

for some computable constant C depending on φ.
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Our Results (continued)

Theorem

Let τ(n) be the Ramanujan tau function. Then for x ≥ 1050,

#{x < p ≤ 2x | τ(p) = 0} ≤ 5.973× 10−7
x3/4√
log x

.

As a consequence, we obtain the following strong evidence in favor
of Lehmer’s conjecture:

Theorem

Let τ(n) be the Ramanujan tau function. Then

lim
X→∞

#{n ≤ X | τ(n) 6= 0}
X

> 1− 5.2× 10−14.
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Proof Outline: Bounding #{x < p ≤ 2x | τ(p) = 0}

If τ(p) = 0, then θp = π/2 and, by the work of Serre (1981),
p is in one of 33 possible residue classes modulo

q = 24× 49× 3094972416000.

If we let φx(t) = φ(t/x), where φ(t) ∈ C∞c is a test function
such that φ(t) ≥ χ[1,2], then we have

33

log x

∑
p

θp=π/2
p≡a(q)

log(p)φx(p) ≥ #{x < p ≤ 2x | τ(p) = 0}.



Background Results Sketch of Proof

Proof Outline: Bounding #{x < p ≤ 2x | τ(p) = 0}

If τ(p) = 0, then θp = π/2 and, by the work of Serre (1981),
p is in one of 33 possible residue classes modulo

q = 24× 49× 3094972416000.

If we let φx(t) = φ(t/x), where φ(t) ∈ C∞c is a test function
such that φ(t) ≥ χ[1,2], then we have

33

log x

∑
p

θp=π/2
p≡a(q)

log(p)φx(p) ≥ #{x < p ≤ 2x | τ(p) = 0}.



Background Results Sketch of Proof

Proof Outline: Bounding #{x < p ≤ 2x | τ(p) = 0}

If τ(p) = 0, then θp = π/2 and, by the work of Serre (1981),
p is in one of 33 possible residue classes modulo

q = 24× 49× 3094972416000.

If we let φx(t) = φ(t/x), where φ(t) ∈ C∞c is a test function
such that φ(t) ≥ χ[1,2], then we have

33

log x

∑
p

θp=π/2
p≡a(q)

log(p)φx(p) ≥ #{x < p ≤ 2x | τ(p) = 0}.



Background Results Sketch of Proof

Proof Outline: Bounding #{x < p ≤ 2x | τ(p) = 0}
Bounding the θp ∈ [π/2, π/2] condition

Rouse-Thorner (2017) construct trigonometric polynomials

F±I ,M(θ) =
M∑
n=0

F̂±I ,M(n)Un(cos θ)

which satisfy ∀x ∈ [0, π],

F−I ,M(x) ≤ χI (x) ≤ F+
I ,M(x)

and best approximate the indicator function for any interval
I ∈ [0, π]. Using these we can expand out the sum from the
previous slide.
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Proof Outline: Bounding #{p < x ≤ 2x | τ(p) = 0}
Fourier Expansion

Therefore, setting I = [π/2− ε, π/2 + ε]:∑
p

θp=π/2
p≡a(q)

log p

log x
φx(p)

≤ 1

log x

M∑
n=0

|F̂+
I ,M(n)| 1

ϕ(q)

∑
χ(q)

χ(a)

∣∣∣∣∣∑
p

Un(cos θp) log(p)χ(p)φx(p)

∣∣∣∣∣ .
Through contour integration we can bound this innermost sum,
and consequently, obtain a bound for the entire expression.
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Proof Outline: The Contour Integral

The innermost sum is related to the contour integral of the n-th
symmetric L-function twisted by χ:

∑
pj

Un(cos(jθp))χ(pj) log(p) =
1

2πi

∫ 2+i∞

2−i∞
−L′

L
(s,Symnf⊗χ)Φx(s) ds.

By pushing this contour to −∞ and summing the residues from
the zeros of L(s,Symnf ⊗ χ), we have∑
p

Un(cos θp) log(p)χ(p)φx(p) = δ n=0
χ=χ0

Φ(1)x−
∑
ρ

Φ(ρ)xρ+O(n
√
x).
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Proof Outline: From the Contour Integral to the Final
Bound

Evaluates to∣∣∣∣∣∑
p

Un(cos θp) log(p)χ(p)φx(p)

∣∣∣∣∣ ≤ δ n=0
χ=χ0

Φ(1)x + O(n log n
√
x)

where we can compute explicit bounds for the error term.

Then,∑
p

θp=π/2
p≡a(q)

log p

log x
φx(p) ≤ 1

log x

(
1.33x

ϕ(q)M
+ 7.63M logM

√
x + O(M

√
x)

)
.

Selecting M = 6.894× 10−9 x1/4√
log x

, gives us our final bound.
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