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Let k be an algebraic number field. We define k! to be the Hilbert 2-class
field of k, which is the maximal abelian unramified extension of k such
that the degree of k! over k is a power of 2. Similarly, we define k? to be
the Hilbert 2-class field of k*. We let C,(k) denote the 2-class group of k,
G = Gal(k?/k), and G be the commutator subgroup of G. Then
G/G = Gal(k¥/k), G =~ Gal(k?/k%),
and from class field theory we know that

C,(k) = Gal(k¥/k) and C, (k%) = Gal(k?/k?),



We define the 2-class field tower of k to be the sequence
kKl=kcklick?c...ckck*lc...wherek*tisthe Hilbert 2-
class field of k', for any positive integer i. If k" = k™! for
some positive integer n with n minimal, then the sequence ends

at k" and we say that the tower has finite length n.



If not we say that k has infinite 2-class field tower length.  Analogously,
we can define the standard class field tower of k without any restrictions
on the degree of k! over k, and the  p-class field tower of k for any
prime p, such that the degree of k! over k is a power of p. All these class
fields have been studied extensively. We define k,! to be the narrow
Hilbert
2-class field of k, which is the maximal abelian extension of k that is

unramified at the finite prime ideals of k,



with the degree of k,! over k a power of 2. Thus there may be

ramification from k to k+! at the infinite real primes of k. We define
the narrow 2-class field tower of k as follows: k=kcklck?c.
.. Cklck™c ..., analogously to the definition of the 2-class field

tower of k. Furthermore, we define

the narrow 2-class group of k, C,*(k),



to be the 2-Sylow subgroup of the ideals in the ring of
algebraic integers of k mod its principal ideals generated by
totally positive elements. Denoting
G, = Gal(k,4/k) we obtain (again with the above
generalizations) that G,/G,* = Gal(k,'/ k) = C,*(k), and G,' =

Gal(k,2/k,1) = C,*(k,1).



We now let k = Q(vd) be a real quadratic number field
with d > 0 square-free, such that Co(k) = Z/2Z X
Z/2Z (which we denote as
(2, 2), etc). We observe that C,*(k,?) = C,(k,') since k,*

IS totally imaginary, and we utilize the following notation.



--¢ IS the fundamental unit of k

--N(¢) denotes the norm of € from k to the rational numbers Q
--t denotes the length of the narrow 2-class field tower of k
--rank” refers to the minimal number of generators.

We have the following narrow 2-class group results.



1) If N(e) = -1 then C,(k) = C,"(k) =(2,2) and t=1 or 2.
2) If N(¢) = 1 and d Is a sum of two squares, then C,*(k) = (2, 4).
3) If N(¢) = 1 and d is not a sum of two squares (i.e., d is divisible by a
prime g = 3 mod 4), then C,*(k) = (2, 2, 2).

When N(g) = -1, since C,*(Kk) (resp. C,(k)) = (2, 2), from group theory
we know G+ (resp. G) is dihedral, semidihedral, quaternion, or abelian

and consequently G, (resp. G)) is cyclic.



Couture & Derhem (1992) have determined completely the above types
of G and G, in this case.

However, in the case when N(g) = 1, although the type of G has been
completely determined (Couture & Derhem, 1992; Benjamin & Snyder,
1995) neither G, nor t has been determined. In this talk we focus on the
case when N(¢) =1 and d is a sum of two squares, and we state the

following main result.



Theorem (Benjamin & Snyder, to appear):

Let k be a real quadratic number field with discriminant dy =
d;.d».ds for positive prime discriminants dj such that  Cx(k) = (2, 2) and
N(e) = 1, which all implies (wlog) that the Kronecker symbols (d1/dy) =
(d2/d3) = 1, (d1/ds) = -1, and biquadratic residue symbols (d1/dz),.(d2/d1), =
-1, and (d2/d3),.(d3/d2), = 1. If (d2/d3), = -1 then rank(C2(k,')) = 2 and

t=2.



If (d2/d3), = 1 then rank(Cz(k,')) =3 and t > 3. Furthermore, Cz(k,') is

not elementary.

Rough Sketch of Proof: We first note that if rank(C,(k,!) = 2 then it is
immediate by group theory that t = 2 (Blackburn, 1957). Let ki = k(\d), i=1, 2,
3, be the three unramified quadratic extensions of k. We know there are two
cyclic quartic extensions of k that are unramified outside of «, which we denote

as Ky and K, and that ko € Kic k.1, i =1, 2. We have the following diagram:
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To obtain our results for rank(C,(k,)) we make
use of the following table from Benjamin & Snyder
(2019), where h," () denotes the narrow 2-class
number, and C,(Ki) = C,*(Kj) since K; Is totally

iImaginary.
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We use the Kuroda Class Number Formula, the Ambiguous
Class Number Formula, and Capitulation theory to establish
the following four results to show that if (d2/ds), = -1 then we
are in Row 9 of our table and therefore rank(C,(k,*)) = 2; if

(d2/ds), = 1 then we are in Row 6 of our table and thus

rank(C,(k,%)) = 3.



1) h,*(k2) = 8, h,*(ks) = 8 or 16 (depending on the values of some relative
norms of units), and if (d2/ds), = -1 then h,"(k1) = 8; if (d2/d3), =1
then h,"(k1) > 16

2) h,*(k1) = h,*(ks) mod 16

3) h,(K1) > 16 or h,(K2) > 16; consequently h,(k,*) > 8

4) h,*(k') > 8

5 If (d2/ds), = -1 and h,(K;) = 8 then C,(K) = (2, 2, 2)



If (d2/d3), = -1 then since rank(C,(k,') = 2 we know by Result 3 that
C,(k,) is not elementary.

If (d2/d3), = 1 then we show that (k2. K,*) /k,! is a cyclic extension of k,*
in k2 of degree = 4, and therefore Cz(k,!) is not elementary. To prove
that if rank(C,(k,')) = 3 thent= 3, we make use of the following

formulation and subsequent results, where €12 is the fundamental unit of

Q(V(d1d2)) = F12.



Since (di/d2), # (d2/d1), we know that h,*(F12) =4 and N(g2) =1
(Scholz, 1934). Furthermore, (F12),! = Fi2(Na) where a = x+y\d>
for some half-integers x, y, z € ((¥2)2)3 satisfying x*— y?d, — z°d; =
0, and such that a € O(F>) (the ring of algebraic integers in F, =
Q(Vd>)) and is not divisible in O(F2) by any rational prime

(Lemmermeyer, 1995).



We let k be the fixed field of the third term G3z in the lower central series
of G = Gal(k?/k). Then k¢ is the unramified (everywhere) quadratic
extension of k.

We let L be the compositum kc.k,? of ke with k2. Then L/k! is a V4
extension unramified outside «, and thus L € k2. This implies that there
is a third quadratic extension of k! in L, which we refer to as N. We have

the following diagram.



AN
N,/




We show that when (d»/ds), = 1, h,(L) = 2h,(k,'), which implies that
k,2is not contained in L! and consequently that t > 3.

To prove this we make use of the following three results, which we
obtained through applications of the Kuroda Class Number

Formula, the Ambiguous Class Number Formula, and Kummer

extensions, where



F = Q(V(dza)) and we are assuming that (d2/d3), = 1.
5) ho(L)/ha(k, 1) = ho(N)/8ho(kt)
6) h2(N)/ha(k) = ((“2)h2(F))
7) ho(F) = 8
Thus our calculations are reduced to the 2-class number

of a quartic extension of Q.



The following examples were obtained with the help of pari,
utilizing our above formulations applied to any finitely
unramified cyclic quartic extension of a quadratic number field
(Lemmermeryer, 1995).

Example 1: k = Q(N1885), dk = d1.d2.dz where di = 13,

d> = 29. and d3= 5. The fundamental unit ex=521+121885

and N{(c.) — 1



We have (13/5) = -1, (29/13) = (29/5) = 1, (13/29),.(29/13),,= -1, (29/5),.(5/29),, =
1, and (29/5), = -1. We obtain k,l=Q(\13, V5, V(-
23+4+29)). By our theorem, we conclude that rank(C,(k,')) = 2, and by pari we
found that C,(k,*) = (4, 8).

Example 2: k = Q(\2938), dk = d1.d2.dswhere d; = 13, d2 = 113, and d3 = 8. &=

786707+145141885 and N(ex) = 1, (13/8) = -1, (113/8) = (113/13) = 1,



(13/113),.(113/13),= -1, (113/8),.(8/113),= 1, and (113/8),= 1. We
obtain k,* = Q(\N13, V2, V(-23+V113)).

By our theorem, we conclude that rank(Cz(k,1)) = 3, and by pari we
found that Co(k,!) = (4, 4, 4).

Remark: By our theorem we also know that since Cx(k,!) is not

elementary, if (d2/d3)s = -1 then ha(k 1) = 8,



and if (d2/d3), = 1 then h2(k,') =2 16. However, notice that in
Example 1 we obtained the result that  ha(k,') = 32 and in
Example 2 we obtained the result that ha(k,!) = 64. These
greater narrow 2-class numbers as lower bounds for k,* are
consistent with all our heuristic investigations (Benjamin,

2019).



Open Question: We note that although our theorem
distinguishes betweent = 2 and t > 3, it does not
distinguish between finite narrow 2-class field tower
length and infinite 2-class field tower length, and we thus

leave this as an open question.
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