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Let k be an algebraic number field.  We define k1 to be the Hilbert 2-class

field of k, which is the maximal abelian unramified extension of k such 

that the degree of k1 over k is a power of 2.  Similarly, we define k2 to be 

the Hilbert 2-class field of k1.  We let C
2
(k) denote the 2-class group of k, 

G = Gal(k2 /k), and G’ be the commutator subgroup of G.  Then 

G/G’ ≃ Gal(k1/k), G’ ≃ Gal(k2/k1), 

and from class field theory we know that 

C
2
(k) ≃ Gal(k1/k) and C

2
(k1) ≃ Gal(k2/k1).  



We define the 2-class field tower of k to be the sequence 

k0 = k ⊆ k1⊆ k2⊆ . . . ⊆ ki⊆ ki+1⊆ . . . where ki+1 is the Hilbert 2-

class field of ki, for any positive integer i.        If kn = kn+1 for 

some positive integer n with n minimal, then the sequence ends 

at kn and we say that the tower has finite length n.   
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If not we say that k has infinite 2-class field tower length.     Analogously, 

we can define the standard class field tower of k without any restrictions 

on the degree of k1 over k, and the      p-class field tower of k for any 

prime p, such that the degree of k1 over k is a power of p.  All these class 

fields have been studied extensively.  We define k
+

1 to be the narrow 

Hilbert 

2-class field of k, which is the maximal abelian extension of k    that is 

unramified at the finite prime ideals of k,                                                                                  
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with the degree of k
+

1 over k a power of 2.  Thus there may be 

ramification from k to k+
1 at the infinite real primes of k.          We define 

the narrow 2-class field tower of k as follows:           k
+

0 = k ⊆ k
+

1⊆ k
+

2⊆ . 

. . ⊆ k
+

i⊆ k
+

i+1⊆ . . . , analogously to the definition of the 2-class field 

tower of k.  Furthermore, we define

the narrow 2-class group of k, C
2

+(k), 



to be the 2-Sylow subgroup of the ideals in the ring of 

algebraic integers of k mod its principal ideals generated by 

totally positive elements.  Denoting 

G
+

= Gal(k
+

2/k) we obtain (again with the above 

generalizations) that G
+
/G

+
1≃ Gal(k

+
1/ k) ≃ C

2
+(k), and G

+
1 ≃

Gal(k
+

2/k
+

1) ≃ C
2
+(k

+
1).   



We now let k = Q(√d) be a real quadratic number field 

with d > 0 square-free, such that             C2(k) ≃ Z/2Z X 

Z/2Z (which we denote as 

(2, 2), etc).  We observe that C
2

+(k
+

1) = C
2
(k

+
1) since k

+
1

is totally imaginary, and we utilize the following notation. 



--ε is the fundamental unit of k 

--N(ε) denotes the norm of ε from k to the rational numbers Q  

--t denotes the length of the narrow 2-class field  tower of k 

--”rank” refers to the minimal number of generators.   

We have the following narrow 2-class group results.



1) If N(ε) = -1 then C
2
(k) = C

2
+(k) = (2, 2) and t = 1 or 2. 

2) If N(ε) = 1 and d is a sum of two squares, then C
2

+(k) = (2, 4).

3) If N(ε) = 1 and d is not a sum of two squares (i.e., d is divisible by a 

prime q ≡ 3 mod 4), then C
2

+(k) = (2, 2, 2).

When N(ε) = -1, since C
2

+(k) (resp. C
2
(k))  = (2, 2), from group theory 

we know G+ (resp. G) is dihedral, semidihedral, quaternion, or abelian 

and consequently G
+
’ (resp. G’) is cyclic. 



Couture & Derhem (1992) have determined completely the above types 

of G and G
+

in this case.        

However, in the case when N(ε) = 1, although the type of G has been 

completely determined (Couture & Derhem, 1992; Benjamin & Snyder, 

1995) neither G
+

nor t has been determined.  In this talk we focus on the 

case when N(ε) = 1  and d is a sum of two squares, and we state the 

following    main result. 



Theorem (Benjamin & Snyder, to appear):

Let k be a real quadratic number field with discriminant       dk = 

d1.d2.d3 for positive prime discriminants dj such that      C2(k)  = (2, 2) and 

N(ε) = 1, which all implies (wlog) that the Kronecker symbols (d1/d2) = 

(d2/d3) = 1, (d1/d3) = -1, and biquadratic residue symbols (d1/d2)4
.(d2/d1)4

= 

-1, and       (d2/d3)4
.(d3/d2)4

= 1.  If (d2/d3)4
= -1 then rank(C2(k+

1)) = 2 and       

t = 2.  



If (d2/d3)4
= 1 then rank(C2(k+

1 )) = 3 and t ≥ 3.  Furthermore, C2(k+
1) is 

not elementary. 

Rough Sketch of Proof:         We first note that if rank(C
2
(k

+
1) = 2 then it is 

immediate by group theory that t = 2 (Blackburn, 1957).   Let ki = k(√di), i = 1, 2, 

3, be the three unramified quadratic extensions of k.  We know there are two 

cyclic quartic extensions of k that are unramified outside of ∞, which we denote 

as K1 and K2, and that k2 ⊆ Ki ⊆ k
+

1, i = 1, 2.  We have the following diagram:





To obtain our results for rank(C
2
(k

+
1)) we make 

use of the following table from Benjamin & Snyder 

(2019), where h
2

+ ( ) denotes the narrow 2-class 

number, and   C
2
(Ki) = C

2
+(Ki) since Ki is totally 

imaginary.





We use the Kuroda Class Number Formula, the Ambiguous 

Class Number Formula, and Capitulation theory to establish 

the following four results to show that if (d2/d3)4
= -1 then we 

are in Row 9 of our table and therefore rank(C
2
(k

+
1)) = 2; if 

(d2/d3)4
= 1 then we are in Row 6 of our table and thus 

rank(C
2
(k

+
1)) = 3. 



1) h
2

+(k2) = 8, h
2

+(k3) = 8 or 16 (depending on the values of some relative 

norms of units), and if (d2/d3)4
= -1 then              h

2
+(k1) = 8; if (d2/d3)4

= 1 

then h
2

+(k1) ≥ 16

2) h
2

+(k1) ≡ h
2

+(k3) mod 16

3) h
2
(K1) ≥ 16 or h

2
(K2) ≥ 16; consequently h

2
(k

+
1 ) ≥ 8

4) h
2

+(k1) ≥ 8

5) If (d2/d3)4
= -1 and h

2
(Ki) = 8 then C

2
(K

i
) = (2, 2, 2) 



If (d2/d3)4
= -1 then since rank(C

2
(k

+
1) = 2 we know by Result 3 that 

C
2
(k

+
1) is not elementary.

If (d2/d3)4
= 1 then we show that (k2. K

+
1) /k

+
1 is a cyclic extension of k

+
1

in k
+

2 of degree ≥ 4, and therefore C2(k+
1 ) is  not elementary.  To prove 

that if rank(C
2
(k

+
1)) = 3 then t ≥ 3,   we make use of the following 

formulation and subsequent results, where ε12 is the fundamental unit of 

Q(√(d1d2)) = F12. 



Since (d1/d2)4
≠ (d2/d1)4

we know that h
2

+(F12) = 4 and  N(ε12) = 1 

(Scholz, 1934).  Furthermore, (F12)+
1 = F12(√a) where  a = x+y√d2

for some half-integers x, y, z ⋲ ((½)Z)3 satisfying x2 – y2d2 – z2d1 = 

0, and such that a ⋲ O(F2)       (the ring of algebraic integers in F2 = 

Q(√d2)) and is not divisible in O(F2) by any rational prime        

(Lemmermeyer, 1995).



We let kc be the fixed field of the third term G3 in the lower central series 

of G = Gal(k2/k).  Then kc is the unramified (everywhere) quadratic 

extension of k1 .               

We let L be the compositum kc.k+
1 of kc with k

+
1.  Then L/k1 is a V4

extension unramified outside ∞, and thus L ⊆ k
+

2.  This implies that there 

is a third quadratic extension of k1 in L, which we refer to as N.  We have 

the following diagram.    





We show that when (d2/d3)4
= 1, h

2
(L) ≥ 2h

2
(k

+
1), which implies that 

k
+

2 is not contained in L1 and consequently that t ≥ 3.  

To prove this we make use of the following three results, which we 

obtained through applications of the Kuroda Class Number 

Formula, the Ambiguous Class Number Formula, and Kummer 

extensions, where 



F = Q(√(d3a)) and we are assuming that (d2/d3)4
= 1. 

5) h2(L)/h2(k+
1 ) = h2(N)/8h2(k1)

6) h2(N)/h2(k1) = ((½)h2(F))2

7) h2(F) ≥ 8

Thus our calculations are reduced to the 2-class number 

of a quartic extension of Q.



The following examples were obtained with the help of pari, 

utilizing our above formulations applied to any finitely 

unramified cyclic quartic extension of a quadratic number field 

(Lemmermeryer, 1995).

Example 1: k = Q(√1885), dk = d1.d2.d3 where           d1 = 13, 

d2 = 29, and d3 = 5.  The fundamental unit   εk = 521+12√1885 

and N(εk) = 1.                                     



We have (13/5) = -1, (29/13) = (29/5) = 1, (13/29)
4
.(29/13)

4
= -1, (29/5)

4
.(5/29)

4
= 

1, and (29/5)
4
= -1. We obtain                                    k

+
1 = Q(√13, √5, √(-

23+4√29)). By our theorem, we conclude that rank(C
2
(k

+
1 )) = 2, and by pari we 

found that C
2
(k

+
1 ) = (4, 8). 

Example 2: k = Q(√2938), dk = d1.d2.d3 where d1 = 13, d2 = 113, and d3 = 8. εk = 

786707+14514√1885 and N(εk) = 1, (13/8) = -1, (113/8) = (113/13) = 1, 



(13/113)
4
.(113/13)

4
= -1, (113/8)

4
.(8/113)

4
= 1, and (113/8)

4
= 1. We 

obtain k
+

1 = Q(√13, √2, √(-23+√113)).  

By our theorem, we conclude that rank(C2(k+
1)) = 3, and by pari we 

found that C2(k+
1 ) = (4, 4, 4).  

Remark: By our theorem we also know that since C2(k+
1)  is not 

elementary, if (d2/d3)4 = -1 then h2(k+
1) ≥ 8, 



and if (d2/d3)4
= 1 then h2(k+

1) ≥ 16.  However, notice that in 

Example 1 we obtained the result that      h2(k+
1) = 32 and in 

Example 2 we obtained the result that h2(k+
1) = 64.  These 

greater narrow 2-class numbers as lower bounds for k
+

1 are 

consistent with all our heuristic investigations (Benjamin, 

2019).



Open Question: We note that although our theorem 

distinguishes between t = 2 and t ≥ 3, it does not 

distinguish between finite narrow 2-class field tower 

length and infinite 2-class field tower length, and we thus 

leave this as an open question. 
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