The Narrow 2-Class Field Tower of

Some Real Quadratic Number Fields with

2-Class Group Isomorphic to Z/2Z X Z/2Z

by Elliot Benjamin

(based upon joint work with Chip Snyder)

Let k be an algebraic number field. We define k^{1} to be the Hilbert 2-class field of k, which is the maximal abelian unramified extension of k such that the degree of k^{1} over k is a power of 2. Similarly, we define k^{2} to be the Hilbert 2-class field of k^{1}. We let $\mathrm{C}_{2}(\mathrm{k})$ denote the 2-class group of k,

$$
G=\operatorname{Gal}\left(k^{2} / k\right) \text {, and } G^{\prime} \text { be the commutator subgroup of } G \text {. Then }
$$

$$
G / G^{\prime} \simeq \operatorname{Gal}\left(k^{1} / k\right), G^{\prime} \simeq \operatorname{Gal}\left(k^{2} / k^{1}\right)
$$

and from class field theory we know that

$$
\mathrm{C}_{2}(\mathrm{k}) \simeq \mathrm{Gal}\left(\mathrm{k}^{1} / \mathrm{k}\right) \text { and } \mathrm{C}_{2}\left(\mathrm{k}^{1}\right) \simeq \mathrm{Gal}\left(\mathrm{k}^{2} / \mathrm{k}^{1}\right) .
$$

We define the 2-class field tower of k to be the sequence
$k^{0}=k \subseteq k^{1} \subseteq k^{2} \subseteq \ldots \subseteq k^{i} \subseteq k^{i+1} \subseteq \ldots$ where k^{i+1} is the Hilbert 2-
class field of k^{i}, for any positive integer i. If $k^{n}=k^{n+1}$ for
some positive integer n with n minimal, then the sequence ends at k^{n} and we say that the tower has finite length n .

If not we say that k has infinite 2-class field tower length. Analogously, we can define the standard class field tower of k without any restrictions on the degree of k^{1} over k, and the p-class field tower of k for any prime p, such that the degree of k^{1} over k is a power of p. All these class fields have been studied extensively. We define $k_{+}{ }^{1}$ to be the narrow Hilbert

2-class field of k, which is the maximal abelian extension of k that is unramified at the finite prime ideals of k,
with the degree of $k_{+}{ }^{1}$ over k a power of 2 . Thus there may be ramification from k to $k_{+}{ }^{1}$ at the infinite real primes of k. We define the narrow 2-class field tower of k as follows:

$$
\mathrm{k}_{+}^{0}=\mathrm{k} \subseteq \mathrm{k}_{+}^{1} \subseteq \mathrm{k}_{+}^{2} \subseteq .
$$

$\ldots \subseteq k_{+}{ }^{i} \subseteq k_{+}{ }^{i+1} \subseteq \ldots$, analogously to the definition of the 2-class field
tower of k. Furthermore, we define the narrow 2-class group of $k, \mathrm{C}_{2}{ }^{+}(\mathrm{k})$,
to be the 2-Sylow subgroup of the ideals in the ring of
algebraic integers of k mod its principal ideals generated by totally positive elements. Denoting

$$
\mathrm{G}_{+}=\mathrm{Gal}\left(\mathrm{k}_{+}^{2} / \mathrm{k}\right) \text { we obtain (again with the above }
$$

generalizations) that $G_{+} / G_{+}{ }^{1} \simeq \operatorname{Gal}\left(k_{+}{ }^{1 / k}\right) \simeq \mathrm{C}_{2}{ }^{+}(\mathrm{k})$, and $\mathrm{G}_{+}{ }^{1} \simeq$

$$
\operatorname{Gal}\left(\mathrm{k}_{+}{ }^{2} / \mathrm{k}_{+}^{1}\right) \simeq \mathrm{C}_{2}{ }^{+}\left(\mathrm{k}_{+}^{1}\right) .
$$

We now let $k=Q(\sqrt{ } d)$ be a real quadratic number field with $d>0$ square-free, such that $\quad C_{2}(k) \simeq Z / 2 Z X$ $Z / 2 Z$ (which we denote as
$(2,2)$, etc). We observe that $C_{2}{ }^{+}\left(\mathrm{k}_{+}{ }^{1}\right)=\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$ since $\mathrm{k}_{+}{ }^{1}$ is totally imaginary, and we utilize the following notation.
$--\varepsilon$ is the fundamental unit of k
-- $N(\varepsilon)$ denotes the norm of ε from k to the rational numbers Q
--t denotes the length of the narrow 2-class field tower of k
--"rank" refers to the minimal number of generators.
We have the following narrow 2-class group results.

1) If $\mathrm{N}(\varepsilon)=-1$ then $\mathrm{C}_{2}(\mathrm{k})=\mathrm{C}_{2}{ }^{+}(\mathrm{k})=(2,2)$ and $\mathrm{t}=1$ or 2 .
2) If $N(\varepsilon)=1$ and d is a sum of two squares, then $\mathrm{C}_{2}{ }^{+}(\mathrm{k})=(2,4)$.
3) If $\mathrm{N}(\varepsilon)=1$ and d is not a sum of two squares (i.e., d is divisible by a prime $\mathrm{q} \equiv 3 \bmod 4)$, then $\mathrm{C}_{2}{ }^{+}(\mathrm{k})=(2,2,2)$.

When $N(\varepsilon)=-1$, since $C_{2}{ }^{+}(k)\left(\right.$ resp. $\left.C_{2}(k)\right)=(2,2)$, from group theory
we know G_{+}(resp. G) is dihedral, semidihedral, quaternion, or abelian and consequently $G_{+}^{\prime}\left(\right.$ resp. $\left.G^{\prime}\right)$ is cyclic.

Couture \& Derhem (1992) have determined completely the above types of G and G_{+}in this case.

However, in the case when $N(\varepsilon)=1$, although the type of G has been completely determined (Couture \& Derhem, 1992; Benjamin \& Snyder, 1995) neither G_{+}nor t has been determined. In this talk we focus on the
case when $N(\varepsilon)=1$ and d is a sum of two squares, and we state the following main result.

Theorem (Benjamin \& Snyder, to appear):

Let k be a real quadratic number field with discriminant $\quad \mathrm{d}_{\mathrm{k}}=$
$d_{1} \cdot d_{2} . d_{3}$ for positive prime discriminants d_{j} such that $\quad C_{2}(k)=(2,2)$ and
$\mathrm{N}(\varepsilon)=1$, which all implies (wlog) that the Kronecker symbols $\left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)=$
$\left(d_{2} / d_{3}\right)=1,\left(d_{1} / d_{3}\right)=-1$, and biquadratic residue symbols $\left(d_{1} / d_{2}\right)_{4} \cdot\left(d_{2} / d_{1}\right)_{4}=$
-1, and $\quad\left(d_{2} / d_{3}\right)_{4} \cdot\left(d_{3} / d_{2}\right)_{4}=1$. If $\left(d_{2} / d_{3}\right)_{4}=-1$ then $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=2$ and
$t=2$.

If $\left(d_{2} / d_{3}\right)_{4}=1$ then $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=3$ and $\mathrm{t} \geq 3$. Furthermore, $\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$ is not elementary. Rough Sketch of Proof: We first note that if $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=2\right.$ then it is immediate by group theory that $\mathrm{t}=2$ (Blackburn, 1957). Let $\mathrm{k}_{\mathrm{i}}=\mathrm{k}\left(\mathrm{V}_{\mathrm{i}}\right), \mathrm{i}=1,2$, 3 , be the three unramified quadratic extensions of k. We know there are two cyclic quartic extensions of k that are unramified outside of ∞, which we denote as K_{1} and K_{2}, and that $\mathrm{k}_{2} \subseteq \mathrm{~K}_{\mathrm{i}} \subseteq \mathrm{k}_{+}{ }^{1}, \mathrm{i}=1,2$. We have the following diagram:

To obtain our results for rank $\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)$ we make

 use of the following table from Benjamin \& Snyder(2019), where $h_{2}{ }^{+}$() denotes the narrow 2-class number, and $\mathrm{C}_{2}\left(\mathrm{~K}_{\mathrm{i}}\right)=\mathrm{C}_{2}{ }^{+}\left(\mathrm{K}_{\mathrm{i}}\right)$ since K_{i} is totally imaginary.

Row	$h_{2}^{+}\left(k_{2}\right)$	$h_{2}^{+}\left(k_{\mu}\right)$	$h_{2}^{+}\left(k_{\nu}\right)$	$h_{2}^{+}\left(k^{1}\right)$	$\mathrm{C}_{2}\left(K_{i}\right)$	$\mathrm{C}_{2}\left(K_{j}\right)$	$\mathrm{C}_{2}\left(k_{+}^{1}\right)$
1	$=4$	$=4$	$=4$	$=2$	(2)	(2)	$\simeq(1)$
2	$=8$	$=8$	$=8$	$=4$	$\#=4$	$\#=4$	$\simeq(2)$
3	≥ 16	$=8$	$=8$	≥ 8	$\# \geq 4$	$\# \geq 4$	$\simeq\left(4^{*}\right)$
4	$=8$	$=8$	≥ 16	≥ 8	$\# \geq 4$	$\# \geq 4$	$\simeq\left(4^{*}\right)$
5	$=8$	≥ 16	≥ 16	≥ 8	$\#=8$	$\#=8$	$d=2$
6	$=8$	≥ 16	≥ 16	≥ 8	$\# \geq 16$	$\# \geq 16$	$d=3$
7	$=8$	$=8$	$=8$	≥ 8	$\#=8$	$\#=8$	$\simeq(2,2)$
8	$=8$	$=8$	$=8$	≥ 8	$\simeq(2,4)$	$\# \geq 16$	$d=3$
9	$=8$	$=8$	$=8$	≥ 8	$\simeq(2,2,2)$	$\# \geq 16$	$d=2$

We use the Kuroda Class Number Formula, the Ambiguous
Class Number Formula, and Capitulation theory to establish the following four results to show that if $\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=-1$ then we are in Row 9 of our table and therefore $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=2$; if
$\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=1$ then we are in Row 6 of our table and thus $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=3$.

1) $h_{2}{ }^{+}\left(\mathrm{k}_{2}\right)=8, \mathrm{~h}_{2}{ }^{+}\left(\mathrm{k}_{3}\right)=8$ or 16 (depending on the values of some relative norms of units), and if $\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=-1$ then

$$
\mathrm{h}_{2}{ }^{+}\left(\mathrm{k}_{1}\right)=8 ; \text { if }\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=1
$$

then $h_{2}{ }^{+}\left(\mathrm{k}_{1}\right) \geq 16$
2) $\mathrm{h}_{2}{ }^{+}\left(\mathrm{k}_{1}\right) \equiv \mathrm{h}_{2}{ }^{+}\left(\mathrm{k}_{3}\right) \bmod 16$
3) $h_{2}\left(\mathrm{~K}_{1}\right) \geq 16$ or $\mathrm{h}_{2}\left(\mathrm{~K}_{2}\right) \geq 16$; consequently $\mathrm{h}_{2}\left(\mathrm{k}_{+}{ }^{1}\right) \geq 8$
4) $h_{2}{ }^{+}\left(k^{1}\right) \geq 8$
5) If $\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=-1$ and $\mathrm{h}_{2}\left(\mathrm{~K}_{\mathrm{i}}\right)=8$ then $\mathrm{C}_{2}\left(\mathrm{~K}_{\mathrm{i}}\right)=(2,2,2)$

If $\left(\mathrm{d}_{2} / \mathrm{d}_{3}\right)_{4}=-1$ then since $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=2\right.$ we know by Result 3 that
$\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$ is not elementary.
If $\left(d_{2} / d_{3}\right)_{4}=1$ then we show that $\left(k^{2} \cdot K_{+}{ }^{1}\right) / k_{+}{ }^{1}$ is a cyclic extension of $k_{+}{ }^{1}$ in $\mathrm{k}_{+}{ }^{2}$ of degree ≥ 4, and therefore $\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$ is not elementary. To prove that if $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=3$ then $\mathrm{t} \geq 3$, we make use of the following formulation and subsequent results, where ε_{12} is the fundamental unit of

$$
\mathrm{Q}\left(\sqrt{ }\left(\mathrm{~d}_{1} \mathrm{~d}_{2}\right)\right)=\mathrm{F}_{12} .
$$

Since $\left(d_{1} / d_{2}\right)_{4} \neq\left(d_{2} / d_{1}\right)_{4}$ we know that $h_{2}{ }^{+}\left(\mathrm{F}_{12}\right)=4$ and $N\left(\varepsilon_{12}\right)=1$
(Scholz, 1934). Furthermore, $\left(F_{12}\right)_{+}{ }^{1}=F_{12}(\sqrt{ } a)$ where $a=x+y \sqrt{ } d_{2}$ for some half-integers $x, y, z \in((1 / 2) Z)^{3}$ satisfying $x^{2}-y^{2} d_{2}-z^{2} d_{1}=$

0 , and such that $\mathrm{a} \in \mathrm{O}\left(\mathrm{F}_{2}\right) \quad$ (the ring of algebraic integers in $\mathrm{F}_{2}=$
$\left.Q\left(\sqrt{ } d_{2}\right)\right)$ and is not divisible in $O\left(F_{2}\right)$ by any rational prime
(Lemmermeyer, 1995).

We let k_{c} be the fixed field of the third term G_{3} in the lower central series of $\mathrm{G}=\mathrm{Gal}\left(\mathrm{k}^{2} / \mathrm{k}\right)$. Then k_{c} is the unramified (everywhere) quadratic extension of k^{1}.

We let L be the compositum $k_{c} \cdot k_{+}^{1}$ of k_{c} with $k_{+}{ }^{1}$. Then L / k^{1} is a V_{4}
extension unramified outside ${ }^{\infty}$, and thus $L \subseteq k_{+}{ }^{2}$. This implies that there is a third quadratic extension of k^{1} in L, which we refer to as N. We have the following diagram.

We show that when $\left(d_{2} / d_{3}\right)_{4}=1, h_{2}(\mathrm{~L}) \geq 2 h_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$, which implies that
k_{+}^{2} is not contained in L^{1} and consequently that $t \geq 3$.
To prove this we make use of the following three results, which we
obtained through applications of the Kuroda Class Number
Formula, the Ambiguous Class Number Formula, and Kummer
extensions, where
$F=Q\left(\sqrt{ }\left(d_{3} a\right)\right)$ and we are assuming that $\left(d_{2} / d_{3}\right)_{4}=1$.
5) $\mathrm{h}_{2}(\mathrm{~L}) / \mathrm{h}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=\mathrm{h}_{2}(\mathrm{~N}) / 8 \mathrm{~h}_{2}\left(\mathrm{k}^{1}\right)$
6) $h_{2}(N) / h_{2}\left(k^{1}\right)=\left((1 / 2) h_{2}(F)\right)^{2}$
7) $h_{2}(F) \geq 8$

Thus our calculations are reduced to the 2 -class number of a quartic extension of Q .

The following examples were obtained with the help of pari, utilizing our above formulations applied to any finitely
unramified cyclic quartic extension of a quadratic number field
(Lemmermeryer, 1995).
Example 1: $k=Q(\sqrt{ } 1885), d_{k}=d_{1} \cdot d_{2} . d_{3}$ where $d_{1}=13$,
$d_{2}=29$, and $d_{3}=5$. The fundamental unit $\varepsilon_{k}=521+12 \sqrt{ } 1885$

We have $(13 / 5)=-1,(29 / 13)=(29 / 5)=1,(13 / 29)_{4} \cdot(29 / 13)_{4}=-1,(29 / 5)_{4} \cdot(5 / 29)_{4}=$
1 , and $(29 / 5)_{4}=-1$. We obtain

$$
\mathrm{k}_{+}{ }^{1}=\mathrm{Q}(\sqrt{ } 13, \sqrt{ } 5, \sqrt{ }(-
$$

$23+4 \sqrt{ } 29)$). By our theorem, we conclude that rank $\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=2$, and by pari we found that $\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=(4,8)$.

Example 2: $\mathrm{k}=\mathrm{Q}(\sqrt{ } 2938), \mathrm{d}_{\mathrm{k}}=\mathrm{d}_{1} . \mathrm{d}_{2} . \mathrm{d}_{3}$ where $\mathrm{d}_{1}=13, \mathrm{~d}_{2}=113$, and $\mathrm{d}_{3}=8 . \varepsilon_{\mathrm{k}}=$ $786707+14514 \sqrt{ } 1885$ and $N\left(\varepsilon_{k}\right)=1,(13 / 8)=-1,(113 / 8)=(113 / 13)=1$,
$(13 / 113)_{4} \cdot(113 / 13)_{4}=-1,(113 / 8)_{4} \cdot(8 / 113)_{4}=1$, and $(113 / 8)_{4}=1 . \mathrm{We}$ obtain $k_{+}{ }^{1}=Q(\sqrt{ } 13, \sqrt{ } 2, \sqrt{ }(-23+\sqrt{ } 113))$.

By our theorem, we conclude that $\operatorname{rank}\left(\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)\right)=3$, and by pari we found that $\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=(4,4,4)$.

Remark: By our theorem we also know that since $\mathrm{C}_{2}\left(\mathrm{k}_{+}{ }^{1}\right)$ is not elementary, if $\left(d_{2} / d_{3}\right)_{4}=-1$ then $h_{2}\left(k_{+}{ }^{1}\right) \geq 8$,
and if $\left(d_{2} / d_{3}\right)_{4}=1$ then $h_{2}\left(k_{+}{ }^{1}\right) \geq 16$. However, notice that in
Example 1 we obtained the result that $\quad h_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=32$ and in
Example 2 we obtained the result that $h_{2}\left(\mathrm{k}_{+}{ }^{1}\right)=64$. These
greater narrow 2-class numbers as lower bounds for $\mathrm{k}_{+}{ }^{1}$ are
consistent with all our heuristic investigations (Benjamin,
2019).

Open Question: We note that although our theorem
distinguishes between $t=2$ and $t \geq 3$, it does not
distinguish between finite narrow 2-class field tower
length and infinite 2-class field tower length, and we thus
leave this as an open question.

References

1) E. Benjamin, Some 2-Class Groups Related to the Narrow 2-Class Field of Some Real

Quadratic Number Fields: A Preliminary Heuristic Investigation, Pinnacle Mathematics \&
Computer Science, 3(1), (2019), 1422-1428.
2) E. Benjamin \& C. Snyder, Real Quadratic Number Fields with 2-Class Groups of Type (2, 2),

Math. Scan., 70, (1995), 161-178.
3) E. Benjamin \& C. Snyder, Classification of Metabelian 2-Groups G with Gab $\approx(2,2 n), n \geq 2$, and Rank $d\left(G^{\prime}\right)=2$; Applications to Real Quadratic Number Fields, Journal of Pure and Applied

Algebra, 223(1), (2019), 108-130.
4) E. Benjamin, \& C. Snyder, The Narrow 2-Class Field Tower of Some Real Quadratic Number Fields, Acta Arithmetica (to appear).
5) N. Blackburn, On Prime-Power Groups in which the Derived Group has Two Generators, Proc.Camb.Philo.Soc., 53, (1957), 19-27.
6) R. Couture \& A. Derhem, Un Problem de Capitulation, C. R. Acad. Sci. Paris, 314 Serie 1.
(1992), 785-788.
7) Lemmermeyer, Die Konstruktion von Klassenkoerpern, Diss. Univ. Heilderberg (1995).
8) A. Scholz, Ueber die Losbarkeit der Gleichung t² - Du² = 4, Math. Z., 39, (1934),

