The Narrow 2-Class Field Tower of

Some Real Quadratic Number Fields with

2-Class Group Isomorphic to Z/2Z X Z/2Z

by Elliot Benjamin

(based upon joint work with Chip Snyder)

Let k be an algebraic number field. We define k¹ to be the Hilbert 2-class

field of k, which is the maximal abelian unramified extension of k such

that the degree of k^1 over k is a power of 2. Similarly, we define k^2 to be

the Hilbert 2-class field of k^1 . We let $C_2(k)$ denote the 2-class group of k,

 $G = Gal(k^2/k)$, and G' be the commutator subgroup of G. Then

 $G/G' \simeq Gal(k^{1}/k), G' \simeq Gal(k^{2}/k^{1}),$

and from class field theory we know that

$$C_2(k) \simeq Gal(k^{1/k})$$
 and $C_2(k^{1}) \simeq Gal(k^{2/k^1})$.

We define the 2-class field tower of k to be the sequence

 $k^0 = k \subseteq k^1 \subseteq k^2 \subseteq \ldots \subseteq k^i \subseteq k^{i+1} \subseteq \ldots$ where k^{i+1} is the Hilbert 2-

class field of k^i , for any positive integer i. If $k^n = k^{n+1}$ for

some positive integer n with n minimal, then the sequence ends

at kⁿ and we say that the tower has finite length n.

If not we say that k has infinite 2-class field tower length. Analogously,

we can define the standard class field tower of k without any restrictions

on the degree of k^1 over k, and the p-class field tower of k for any

prime p, such that the degree of k^1 over k is a power of p. All these class

fields have been studied extensively. We define k_1^1 to be the narrow

Hilbert

2-class field of k, which is the maximal abelian extension of k that is

unramified at the finite prime ideals of k,

with the degree of k_1^1 over k a power of 2. Thus there may be

ramification from k to k_{+}^{1} at the infinite real primes of k. We define

the narrow 2-class field tower of k as follows: $k_{+}^{0} = k \subseteq k_{+}^{1} \subseteq k_{+}^{2} \subseteq .$

 $\ldots \subseteq k_{\downarrow}^{i} \subseteq k_{\downarrow}^{i+1} \subseteq \ldots$, analogously to the definition of the 2-class field

tower of k. Furthermore, we define

the narrow 2-class group of k, $C_2^+(k)$,

to be the 2-Sylow subgroup of the ideals in the ring of

algebraic integers of k mod its principal ideals generated by

totally positive elements. Denoting

 $G_{+} = Gal(k_{+}^{2}/k)$ we obtain (again with the above

generalizations) that $G_{+}/G_{+}^{-1} \simeq Gal(k_{+}^{-1}/k) \simeq C_{2}^{-+}(k)$, and $G_{+}^{-1} \simeq$

 $Gal(k_{+}^{2}/k_{+}^{1}) \simeq C_{2}^{+}(k_{+}^{1}).$

We now let $k = Q(\sqrt{d})$ be a real quadratic number field

with d > 0 square-free, such that $C_2(k) \simeq Z/2Z X$

Z/2Z (which we denote as

(2, 2), etc). We observe that $C_2^+(k_1^-) = C_2(k_1^-)$ since k_1^-

is totally imaginary, and we utilize the following notation.

--ε is the fundamental unit of k

--N(ϵ) denotes the norm of ϵ from k to the rational numbers Q

--t denotes the length of the narrow 2-class field tower of k

--"rank" refers to the minimal number of generators.

We have the following narrow 2-class group results.

1) If $N(\epsilon) = -1$ then $C_2(k) = C_2^{+}(k) = (2, 2)$ and t = 1 or 2.

2) If N(ϵ) = 1 and d is a sum of two squares, then C₂⁺(k) = (2, 4).

3) If $N(\epsilon) = 1$ and d is not a sum of two squares (i.e., d is divisible by a

prime $q \equiv 3 \mod 4$), then $C_2^+(k) = (2, 2, 2)$.

When N(ϵ) = -1, since C₂⁺(k) (resp. C₂(k)) = (2, 2), from group theory

we know G₊ (resp. G) is dihedral, semidihedral, quaternion, or abelian

and consequently G_{+} ' (resp. G') is cyclic.

Couture & Derhem (1992) have determined completely the above types

of G and G_{+} in this case.

However, in the case when $N(\varepsilon) = 1$, although the type of G has been

completely determined (Couture & Derhem, 1992; Benjamin & Snyder,

1995) neither G_{\perp} nor t has been determined. In this talk we focus on the

case when $N(\varepsilon) = 1$ and d is a sum of two squares, and we state the

following main result.

Theorem (Benjamin & Snyder, to appear):

Let k be a real quadratic number field with discriminant $d_k =$

 $d_1.d_2.d_3$ for positive prime discriminants d_j such that $C_2(k) = (2, 2)$ and

 $N(\epsilon) = 1$, which all implies (wlog) that the Kronecker symbols $(d_1/d_2) =$

 $(d_2/d_3) = 1$, $(d_1/d_3) = -1$, and biquadratic residue symbols $(d_1/d_2)_4 \cdot (d_2/d_1)_4 =$

-1, and
$$(d_2/d_3)_4 \cdot (d_3/d_2)_4 = 1$$
. If $(d_2/d_3)_4 = -1$ then rank $(C_2(k_1^{-1})) = 2$ and

t = 2.

If $(d_2/d_3)_4 = 1$ then rank $(C_2(k_1^1)) = 3$ and $t \ge 3$. Furthermore, $C_2(k_1^1)$ is

not elementary.

Rough Sketch of Proof: We first note that if rank($C_2(k_+^1) = 2$ then it is immediate by group theory that t = 2 (Blackburn, 1957). Let $k_i = k(\sqrt{d_i})$, i = 1, 2,

3, be the three unramified quadratic extensions of k. We know there are two

cyclic quartic extensions of k that are unramified outside of ∞ , which we denote

as K₁ and K₂, and that $k_2 \subseteq K_i \subseteq k_1^{-1}$, i = 1, 2. We have the following diagram:

.

To obtain our results for rank($C_2(k_1^{-1})$) we make

use of the following table from Benjamin & Snyder

(2019), where h_2^+ () denotes the narrow 2-class

number, and $C_2(K_i) = C_2^+(K_i)$ since K_i is totally

imaginary.

Row	$h_2^+(k_2)$	$h_{2}^{+}(k_{\mu})$	$h_{2}^{+}(k_{\nu})$	$h_2^+(k^1)$	$C_2(K_i)$	$C_2(K_j)$	$C_2(k_+^1)$
1	= 4	= 4	= 4	= 2	(2)	(2)	\simeq (1)
2	= 8	= 8	= 8	= 4	# = 4	# = 4	\simeq (2)
3	≥ 16	= 8	= 8	≥ 8	$\# \ge 4$	$\# \ge 4$	$\simeq (4^*)$
4	= 8	= 8	≥ 16	≥ 8	$\# \ge 4$	$\# \ge 4$	$\simeq (4^*)$
5	= 8	≥ 16	≥ 16	≥ 8	# = 8	# = 8	d = 2
6	= 8	≥ 16	≥ 16	≥ 8	$\# \ge 16$	$\# \ge 16$	d = 3
7	= 8	= 8	= 8	≥ 8	# = 8	# = 8	$\simeq (2,2)$
8	= 8	= 8	= 8	≥ 8	$\simeq (2,4)$	$\# \ge 16$	d = 3
9	= 8	= 8	= 8	≥ 8	$\simeq (2,2,2)$	$\# \ge 16$	d = 2

We use the Kuroda Class Number Formula, the Ambiguous

Class Number Formula, and Capitulation theory to establish

the following four results to show that if $(d_2/d_3)_4 = -1$ then we

are in Row 9 of our table and therefore $rank(C_2(k_1^{-1})) = 2$; if

 $(d_2/d_3)_4 = 1$ then we are in Row 6 of our table and thus

 $rank(C_2(k_1^{-1})) = 3.$

1) $h_2^+(k_2) = 8$, $h_2^+(k_3) = 8$ or 16 (depending on the values of some relative

norms of units), and if $(d_2/d_3)_4 = -1$ then $h_2^+(k_1) = 8$; if $(d_2/d_3)_4 = 1$

then $h_2^+(k_1) \ge 16$

2) $h_2^+(k_1) \equiv h_2^+(k_3) \mod 16$

3) $h_2(K_1) \ge 16$ or $h_2(K_2) \ge 16$; consequently $h_2(k_1) \ge 8$

4) $h_2^+(k^1) \ge 8$

5) If $(d_2/d_3)_4 = -1$ and $h_2(K_i) = 8$ then $C_2(K_i) = (2, 2, 2)$

If $(d_2/d_3)_4 = -1$ then since rank $(C_2(k_+^{-1}) = 2$ we know by Result 3 that $C_2(k_+^{-1})$ is not elementary.

If $(d_2/d_3)_4 = 1$ then we show that $(k^2 \cdot K_1)/k_1$ is a cyclic extension of k_1

in k_{\perp}^2 of degree ≥ 4 , and therefore $C_2(k_{\perp}^1)$ is not elementary. To prove

that if rank($C_2(k_1^{-1})$) = 3 then t ≥ 3, we make use of the following

formulation and subsequent results, where ε_{12} is the fundamental unit of

 $Q(\sqrt{d_1d_2}) = F_{12}.$

Since $(d_1/d_2)_4 \neq (d_2/d_1)_4$ we know that $h_2^+(F_{12}) = 4$ and $N(\epsilon_{12}) = 1$

(Scholz, 1934). Furthermore, $(F_{12})_{+}^{1} = F_{12}(\sqrt{a})$ where $a = x+y\sqrt{d_2}$

for some half-integers x, y, $z \in ((\frac{1}{2})Z)^3$ satisfying $x^2 - y^2d_2 - z^2d_1 =$

0, and such that $a \in O(F_2)$ (the ring of algebraic integers in $F_2 =$

 $Q(\sqrt{d_2})$ and is not divisible in $O(F_2)$ by any rational prime

(Lemmermeyer, 1995).

We let k_c be the fixed field of the third term G_3 in the lower central series

of G = Gal(k^2/k). Then k_c is the unramified (everywhere) quadratic extension of k^1 .

We let L be the compositum $k_c k_1^{-1}$ of k_c with k_1^{-1} . Then L/k¹ is a V₄ extension unramified outside ∞ , and thus L $\subseteq k_1^{-2}$. This implies that there is a third quadratic extension of k^1 in L, which we refer to as N. We have the following diagram.

We show that when $(d_2/d_3)_4 = 1$, $h_2(L) \ge 2h_2(k_1^{-1})$, which implies that

 k_{+}^{2} is not contained in L¹ and consequently that t \geq 3.

To prove this we make use of the following three results, which we

obtained through applications of the Kuroda Class Number

Formula, the Ambiguous Class Number Formula, and Kummer

extensions, where

 $F = Q(\sqrt{d_3a})$ and we are assuming that $(d_2/d_3)_4 = 1$.

- 5) $h_2(L)/h_2(k_1^{-1}) = h_2(N)/8h_2(k^1)$
- 6) $h_2(N)/h_2(k^1) = ((\frac{1}{2})h_2(F))^2$

7) h₂(F) ≥ 8

Thus our calculations are reduced to the 2-class number

of a quartic extension of Q.

The following examples were obtained with the help of pari,

utilizing our above formulations applied to any finitely

unramified cyclic quartic extension of a quadratic number field

(Lemmermeryer, 1995).

Example 1: $k = Q(\sqrt{1885}), d_k = d_1.d_2.d_3$ where $d_1 = 13$,

 $d_2 = 29$, and $d_3 = 5$. The fundamental unit $\epsilon_k = 521 + 12\sqrt{1885}$

and N($\varepsilon_{\rm k}$) = 1

We have (13/5) = -1, (29/13) = (29/5) = 1, $(13/29)_4 \cdot (29/13)_4 = -1$, $(29/5)_4 \cdot (5/29)_4 = -1$

1, and $(29/5)_4 = -1$. We obtain $k_1^1 = Q(\sqrt{13}, \sqrt{5}, \sqrt{-13})$

23+4 $\sqrt{29}$)). By our theorem, we conclude that rank(C₂(k₊¹)) = 2, and by pari we

found that $C_2(k_1^1) = (4, 8)$.

Example 2: $k = Q(\sqrt{2938}), d_k = d_1.d_2.d_3$ where $d_1 = 13, d_2 = 113$, and $d_3 = 8$. $\varepsilon_k = 100$

786707+14514 $\sqrt{1885}$ and N(ϵ_k) = 1, (13/8) = -1, (113/8) = (113/13) = 1,

$$(13/113)_4 \cdot (113/13)_4 = -1$$
, $(113/8)_4 \cdot (8/113)_4 = 1$, and $(113/8)_4 = 1$. We obtain $k_1^{-1} = Q(\sqrt{13}, \sqrt{2}, \sqrt{(-23+\sqrt{113})})$.

By our theorem, we conclude that $rank(C_2(k_1^{-1})) = 3$, and by pari we

found that $C_2(k_1^1) = (4, 4, 4)$.

Remark: By our theorem we also know that since $C_2(k_1^{-1})$ is not

elementary, if $(d_2/d_3)_4 = -1$ then $h_2(k_1^{-1}) \ge 8$,

and if $(d_2/d_3)_4 = 1$ then $h_2(k_1) \ge 16$. However, notice that in

Example 1 we obtained the result that $h_2(k_1) = 32$ and in

Example 2 we obtained the result that $h_2(k_1) = 64$. These

greater narrow 2-class numbers as lower bounds for k_1^1 are

consistent with all our heuristic investigations (Benjamin,

2019).

Open Question: We note that although our theorem

distinguishes between t = 2 and t \geq 3, it does not

distinguish between finite narrow 2-class field tower

length and infinite 2-class field tower length, and we thus

leave this as an open question.

References

- 1) E. Benjamin, Some 2-Class Groups Related to the Narrow 2-Class Field of Some Real
- Quadratic Number Fields: A Preliminary Heuristic Investigation, Pinnacle Mathematics &
- Computer Science, 3(1), (2019), 1422-1428.
- 2) E. Benjamin & C. Snyder, Real Quadratic Number Fields with 2-Class Groups of Type (2, 2),
- Math. Scan., 70, (1995), 161-178.
- 3) E. Benjamin & C. Snyder, Classification of Metabelian 2-Groups G with Gab ≈ (2, 2n), n ≥ 2, and
- Rank d(G') = 2; Applications to Real Quadratic Number Fields, Journal of Pure and Applied
- Algebra, 223(1), (2019), 108-130.

4) E. Benjamin, & C. Snyder, The Narrow 2-Class Field Tower of Some Real Quadratic

Number Fields, Acta Arithmetica (to appear).

5) N. Blackburn, On Prime-Power Groups in which the Derived Group has Two

Generators, Proc.Camb.Philo.Soc., 53, (1957), 19-27.

6) R. Couture & A. Derhem, Un Problem de Capitulation, C. R. Acad. Sci. Paris, 314 Serie 1. (1992), 785-788.

7) Lemmermeyer, Die Konstruktion von Klassenkoerpern, Diss. Univ. Heilderberg (1995).

8) A. Scholz, Ueber die Losbarkeit der Gleichung $t^2 - Du^2 = 4$, *Math. Z.*, 39, (1934),

95-111.