The Impossible Vanishing Spectrum

Thomas A. Hulse
Boston College

Joint work with Chan leong Kuan, David Lowry-Duda and Alexander Walker

University of Maine
Maine-Québec Number Theory Conference

5 October 2019

Congruent Number Problem

A rational right triangle is a right triangle where all three side lengths are rational.

Congruent Number Problem

A rational right triangle is a right triangle where all three side lengths are rational.

Congruent Number Problem

A rational right triangle is a right triangle where all three side lengths are rational.

Congruent Number Problem

A rational right triangle is a right triangle where all three side lengths are rational.

We say that the natural number n is a congruent number if it is the area of a rational right triangle.

Congruent Number Problem

A rational right triangle is a right triangle where all three side lengths are rational.

We say that the natural number n is a congruent number if it is the area of a rational right triangle.

This leads to a natural question:

This leads to a natural question:

Question (The Congruent Number Problem)

Given $n \in \mathbb{N}$, is there a terminating algorithm, whose duration depends on the size of n, that will determine if n is a congruent number?

This leads to a natural question:

Question (The Congruent Number Problem)

Given $n \in \mathbb{N}$, is there a terminating algorithm, whose duration depends on the size of n, that will determine if n is a congruent number?

There is an alternate way to formulate the congruent number problem concerning arithmetic progressions of squares.

This leads to a natural question:

Question (The Congruent Number Problem)

Given $n \in \mathbb{N}$, is there a terminating algorithm, whose duration depends on the size of n, that will determine if n is a congruent number?

There is an alternate way to formulate the congruent number problem concerning arithmetic progressions of squares.

Theorem

The square-free $t \in \mathbb{N}$ is a congruent number if and only if there exist $m, n \in \mathbb{N}$ such that

$$
(m-t n), m,(m+t n), \text { and } n
$$

are all squares.

This leads to a natural question:

Question (The Congruent Number Problem)

Given $n \in \mathbb{N}$, is there a terminating algorithm, whose duration depends on the size of n, that will determine if n is a congruent number?

There is an alternate way to formulate the congruent number problem concerning arithmetic progressions of squares.

Theorem

The square-free $t \in \mathbb{N}$ is a congruent number if and only if there exist $m, n \in \mathbb{N}$ such that

$$
(m-t n), m,(m+t n), \text { and } n
$$

are all squares.
Why?

Let $r_{1}: \mathbb{N}_{0} \rightarrow\{0,1\}$ be the square indicator function where

$$
r_{1}(n):= \begin{cases}0 & \text { if } n \text { is not a square } \\ 1 & \text { if } n=0 \\ 2 & \text { if } n \text { is a nonzero square. }\end{cases}
$$

Let $r_{1}: \mathbb{N}_{0} \rightarrow\{0,1\}$ be the square indicator function where

$$
r_{1}(n):= \begin{cases}0 & \text { if } n \text { is not a square } \\ 1 & \text { if } n=0 \\ 2 & \text { if } n \text { is a nonzero square. }\end{cases}
$$

From the previous slide we have that square-free t is congruent if and only if:

$$
r_{1}(m-n) r_{1}(m) r_{1}(m+n) r_{1}(t n) \neq 0
$$

for some $m, n \in \mathbb{N}$.

Let $r_{1}: \mathbb{N}_{0} \rightarrow\{0,1\}$ be the square indicator function where

$$
r_{1}(n):= \begin{cases}0 & \text { if } n \text { is not a square } \\ 1 & \text { if } n=0 \\ 2 & \text { if } n \text { is a nonzero square. }\end{cases}
$$

From the previous slide we have that square-free t is congruent if and only if:

$$
r_{1}(m-n) r_{1}(m) r_{1}(m+n) r_{1}(t n) \neq 0
$$

for some $m, n \in \mathbb{N}$.
Or alternately, a square-free t is congruent if any only if the double partial sum

$$
S_{t}(X)=\sum_{n, m<X} r_{1}(m-n) r_{1}(m) r_{1}(m+n) r_{1}(t n)
$$

is not the constant zero function.

It turns out we can make a more precise statement.

It turns out we can make a more precise statement.
Theorem (H., Kuan, Lowry-Duda, Walker ${ }^{[1]}$)
Let $t \in \mathbb{N}$ be squarefree, and let $r_{1}(n)$ as in the previous slide. Let s be the rank of the elliptic curve $E_{t}: y^{2}=x^{3}-t^{2} x \operatorname{over} \mathbb{Q}$. For $X>1$, we have the asymptotic expansion:
$S_{t}(X):=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) r_{1}(t n)=C_{t} X^{\frac{1}{2}}+O_{t}\left((\log X)^{s / 2}\right)$.
in which $C_{t}:=16 \sum_{h \in \mathcal{H}(t)} \frac{1}{h}$ is the convergent sum over $\mathcal{H}(t)$, the set of
hypotenuses, h, of dissimilar primitive right triangles with squarefree part of the area t.

The previous result, though pretty, says less than it looks like it does.

The previous result, though pretty, says less than it looks like it does.

$$
S_{t}(X):=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) r_{1}(t n)=C_{t} X^{\frac{1}{2}}+O_{t}\left((\log X)^{s / 2}\right)
$$

The previous result, though pretty, says less than it looks like it does.

$$
S_{t}(X):=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) r_{1}(t n)=C_{t} X^{\frac{1}{2}}+O_{t}\left((\log X)^{s / 2}\right)
$$

The problem is that evaluating this sum for large X is computationally inefficient. For $t=157$, Zagier showed the first nonzero term will not appear in the sum until $m \sim 10^{48}$.

The previous result, though pretty, says less than it looks like it does.
$S_{t}(X):=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) r_{1}(t n)=C_{t} X^{\frac{1}{2}}+O_{t}\left((\log X)^{s / 2}\right)$.
The problem is that evaluating this sum for large X is computationally inefficient. For $t=157$, Zagier showed the first nonzero term will not appear in the sum until $m \sim 10^{48}$.

Picture taken from Neal Koblitz's Introduction to Elliptic Curves and Modular Forms

So we want to find indirect ways of determining C_{t} is nonzero.

A few of the approaches we've considered involve decomposing the sum as a product of less complicated sums that we can approach through spectral methods.

A few of the approaches we've considered involve decomposing the sum as a product of less complicated sums that we can approach through spectral methods.

For example, let χ, ψ be Dirichlet characters modulo some large prime, Q, then let

$$
S_{1}(X ; \chi, \psi)=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) \chi(m+n) \psi(m)
$$

A few of the approaches we've considered involve decomposing the sum as a product of less complicated sums that we can approach through spectral methods.

For example, let χ, ψ be Dirichlet characters modulo some large prime, Q, then let

$$
S_{1}(X ; \chi, \psi)=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) \chi(m+n) \psi(m)
$$

and

$$
S_{2}(X ; t, \chi, \psi)=\sum_{n<X} r_{1}(t n) \bar{\chi}(m+n) \bar{\psi}(m)
$$

A few of the approaches we've considered involve decomposing the sum as a product of less complicated sums that we can approach through spectral methods.

For example, let χ, ψ be Dirichlet characters modulo some large prime, Q, then let

$$
S_{1}(X ; \chi, \psi)=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) \chi(m+n) \psi(m)
$$

and

$$
S_{2}(X ; t, \chi, \psi)=\sum_{n<X} r_{1}(t n) \bar{\chi}(m+n) \bar{\psi}(m)
$$

Then we would have that when $Q>X$,

$$
\sum_{\chi, \psi(Q)} S_{1}(X ; \chi, \psi) S_{2}(X ; t, \chi, \psi)=\sum_{m, n<X} r_{1}(m+n) r_{1}(m-n) r_{1}(m) r_{1}(t n)
$$

With this approach in mind, we investigate a considerably simpler partial sum as something of a proof of concept:

With this approach in mind, we investigate a considerably simpler partial sum as something of a proof of concept:

$$
H(X, Y)=\sum_{m, n=1}^{\infty} W\left(\frac{m}{X}\right) W\left(\frac{n}{Y}\right) r_{1}(n) r_{1}(m) r_{1}(2 m-n)
$$

where $W(x)$ is a weight function.

With this approach in mind, we investigate a considerably simpler partial sum as something of a proof of concept:

$$
H(X, Y)=\sum_{m, n=1}^{\infty} W\left(\frac{m}{X}\right) W\left(\frac{n}{Y}\right) r_{1}(n) r_{1}(m) r_{1}(2 m-n)
$$

where $W(x)$ is a weight function.
With a change of variables $n \rightarrow m-n$ we get a more recognizable sum.

$$
H(X, Y)=\sum_{m=1}^{\infty} \sum_{n=-m}^{m} W\left(\frac{m}{X}\right) W\left(\frac{m-n}{Y}\right) r_{1}(m-n) r_{1}(m) r_{1}(m+n)
$$

With this approach in mind, we investigate a considerably simpler partial sum as something of a proof of concept:

$$
H(X, Y)=\sum_{m, n=1}^{\infty} W\left(\frac{m}{X}\right) W\left(\frac{n}{Y}\right) r_{1}(n) r_{1}(m) r_{1}(2 m-n)
$$

where $W(x)$ is a weight function.
With a change of variables $n \rightarrow m-n$ we get a more recognizable sum.

$$
H(X, Y)=\sum_{m=1}^{\infty} \sum_{n=-m}^{m} W\left(\frac{m}{X}\right) W\left(\frac{m-n}{Y}\right) r_{1}(m-n) r_{1}(m) r_{1}(m+n)
$$

This sum is not restricted by the condition that t is the square-free part of n and so does not obviously give information about congruent numbers.

With this approach in mind, we investigate a considerably simpler partial sum as something of a proof of concept:

$$
H(X, Y)=\sum_{m, n=1}^{\infty} W\left(\frac{m}{X}\right) W\left(\frac{n}{Y}\right) r_{1}(n) r_{1}(m) r_{1}(2 m-n)
$$

where $W(x)$ is a weight function.
With a change of variables $n \rightarrow m-n$ we get a more recognizable sum.

$$
H(X, Y)=\sum_{m=1}^{\infty} \sum_{n=-m}^{m} W\left(\frac{m}{X}\right) W\left(\frac{m-n}{Y}\right) r_{1}(m-n) r_{1}(m) r_{1}(m+n)
$$

This sum is not restricted by the condition that t is the square-free part of n and so does not obviously give information about congruent numbers.

When $W(x)$ is a bump function around $x=1$, the above sum counts the number of arithmetic triples of squares where the middle square has size $O(X)$ and one of the other squares has size $O(Y)$.

We will want to get information about the analytic properties of the shifted multiple Dirichlet series:

We will want to get information about the analytic properties of the shifted multiple Dirichlet series:

$$
D(s, w):=\sum_{m, n=1}^{\infty} \frac{r_{1}(h) r_{1}(m) r_{1}(2 m-h)}{m^{s-\frac{1}{2}} h^{w}}
$$

so we can then take an inverse Mellin transform to get the asymptotics of $H(X, Y)$.

We will want to get information about the analytic properties of the shifted multiple Dirichlet series:

$$
D(s, w):=\sum_{m, n=1}^{\infty} \frac{r_{1}(h) r_{1}(m) r_{1}(2 m-h)}{m^{s-\frac{1}{2}} h^{w}}
$$

so we can then take an inverse Mellin transform to get the asymptotics of $H(X, Y)$.

To do this, we will take advantage of the automorphic properties of theta functions.

Theta Functions

Let $\mathbb{H} \subset \mathbb{C}$ denote the upper-half plane, $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$.

Theta Functions

Let $\mathbb{H} \subset \mathbb{C}$ denote the upper-half plane, $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$.
For $N \in \mathbb{N}$, let $\Gamma_{0}(N)$ denote the congruence subgroup:

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S L_{2}(\mathbb{Z})|N| C\right\} .
$$

Theta Functions

Let $\mathbb{H} \subset \mathbb{C}$ denote the upper-half plane, $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$.
For $N \in \mathbb{N}$, let $\Gamma_{0}(N)$ denote the congruence subgroup:

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S L_{2}(\mathbb{Z})|N| C\right\} .
$$

It is easy to show that $\Gamma_{0}(N)$ acts on \mathbb{H} by Möbius Maps:

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) z=\frac{A z+B}{C z+D}
$$

Suppose for $z \in \mathbb{H}$ we define the theta function:

Suppose for $z \in \mathbb{H}$ we define the theta function:

$$
\theta(z):=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} z}=\sum_{n=0}^{\infty} r_{1}(n) e^{2 \pi i n z}=1+\sum_{n=1}^{\infty} r_{1}(n) e^{2 \pi i n z}
$$

which is uniformly convergent on compact subsets of \mathbb{H}.

Suppose for $z \in \mathbb{H}$ we define the theta function:

$$
\theta(z):=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} z}=\sum_{n=0}^{\infty} r_{1}(n) e^{2 \pi i n z}=1+\sum_{n=1}^{\infty} r_{1}(n) e^{2 \pi i n z}
$$

which is uniformly convergent on compact subsets of \mathbb{H}.
For $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(4)$, applying Poisson's summation formula on the generators of $\Gamma_{0}(4)$ allows us to prove that

$$
\theta(\gamma z)=\left(\frac{C}{D}\right) \epsilon_{D}^{-1} \sqrt{C z+D} \theta(z)
$$

where $\left(\frac{C}{D}\right)$ denotes Shimura's extension of the Jacobi symbol and $\epsilon_{D}=1$ or i depending on if $D \equiv 1$ or $3(\bmod 4)$, respectively. ${ }^{[4]}$

Suppose for $z \in \mathbb{H}$ we define the theta function:

$$
\theta(z):=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} z}=\sum_{n=0}^{\infty} r_{1}(n) e^{2 \pi i n z}=1+\sum_{n=1}^{\infty} r_{1}(n) e^{2 \pi i n z}
$$

which is uniformly convergent on compact subsets of \mathbb{H}.
For $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(4)$, applying Poisson's summation formula on the generators of $\Gamma_{0}(4)$ allows us to prove that

$$
\theta(\gamma z)=\left(\frac{C}{D}\right) \epsilon_{D}^{-1} \sqrt{C z+D} \theta(z)
$$

where $\left(\frac{C}{D}\right)$ denotes Shimura's extension of the Jacobi symbol and $\epsilon_{D}=1$ or i depending on if $D \equiv 1$ or $3(\bmod 4)$, respectively. ${ }^{[4]}$

We refer to $\theta(z)$ as a weight $1 / 2$ holomorphic form of $\Gamma_{0}(4)$.

Suppose for $z \in \mathbb{H}$ we define the theta function:

$$
\theta(z):=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} z}=\sum_{n=0}^{\infty} r_{1}(n) e^{2 \pi i n z}=1+\sum_{n=1}^{\infty} r_{1}(n) e^{2 \pi i n z}
$$

which is uniformly convergent on compact subsets of \mathbb{H}.
For $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(4)$, applying Poisson's summation formula on the generators of $\Gamma_{0}(4)$ allows us to prove that

$$
\theta(\gamma z)=\left(\frac{C}{D}\right) \epsilon_{D}^{-1} \sqrt{C z+D} \theta(z)
$$

where $\left(\frac{C}{D}\right)$ denotes Shimura's extension of the Jacobi symbol and $\epsilon_{D}=1$ or i depending on if $D \equiv 1$ or $3(\bmod 4)$, respectively. ${ }^{[4]}$

We refer to $\theta(z)$ as a weight $1 / 2$ holomorphic form of $\Gamma_{0}(4)$. It turns out that $\theta(2 z)$ is also a holomorphic form of $\Gamma_{0}(8)$ with nebentypus $\chi(d):=\left(\frac{2}{d}\right)$.

Let

$$
\langle f, g\rangle=\iint_{\Gamma_{0}(8) \backslash \mathbb{H}} f(z) \overline{g(z)} \frac{d x d y}{y^{2}}
$$

denote the Petersson Inner product.

Let

$$
\langle f, g\rangle=\iint_{\Gamma_{0}(8) \backslash \mathbb{H}} f(z) \overline{g(z)} \frac{d x d y}{y^{2}}
$$

denote the Petersson Inner product.
We say $f \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ if f is an automorphic L-function of level 8 and character χ such that $\langle f, f\rangle<\infty$.

Let

$$
\langle f, g\rangle=\iint_{\Gamma_{0}(8) \backslash \mathbb{H}} f(z) \overline{g(z)} \frac{d x d y}{y^{2}}
$$

denote the Petersson Inner product.
We say $f \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ if f is an automorphic L-function of level 8 and character χ such that $\langle f, f\rangle<\infty$.

Let

$$
P_{h}(z, s ; \chi):=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(8)} \chi(\gamma) \Im(\gamma z)^{s} e(h \gamma z)
$$

denote the level 8, twisted Poincaré series.

We have that $V(z):=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$ is a weightless automorphic function on $\Gamma_{0}(8)$ with nebentypus χ, and so we would like to be able to expand:

We have that $V(z):=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$ is a weightless automorphic function on $\Gamma_{0}(8)$ with nebentypus χ, and so we would like to be able to expand:

$$
\sum_{h=1}^{\infty} \frac{\left\langle V, P_{h}(\cdot, \bar{s} ; \chi)\right\rangle}{h^{w}}=\frac{\Gamma\left(s-\frac{1}{2}\right)}{(8 \pi)^{s-\frac{1}{2}}} \sum_{m=1}^{\infty} \frac{r_{1}(h) r_{1}(m) r_{1}(2 m-h)}{m^{s-\frac{1}{2}} h^{w}}
$$

via the conventional Rankin-Selberg unfolding method.

We have that $V(z):=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$ is a weightless automorphic function on $\Gamma_{0}(8)$ with nebentypus χ, and so we would like to be able to expand:

$$
\sum_{h=1}^{\infty} \frac{\left\langle V, P_{h}(\cdot, \bar{s} ; \chi)\right\rangle}{h^{w}}=\frac{\Gamma\left(s-\frac{1}{2}\right)}{(8 \pi)^{s-\frac{1}{2}}} \sum_{m=1}^{\infty} \frac{r_{1}(h) r_{1}(m) r_{1}(2 m-h)}{m^{s-\frac{1}{2}} h^{w}}
$$

via the conventional Rankin-Selberg unfolding method.
From there we wish to take a spectral expansion of $P_{h}(\cdot, \bar{s} ; \chi)$ and rewrite the left-hand side of the above equation as a sum of eigenfunctions and so obtain a meromorphic continuation of the Dirichlet series.

We have that $V(z):=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$ is a weightless automorphic function on $\Gamma_{0}(8)$ with nebentypus χ, and so we would like to be able to expand:

$$
\sum_{h=1}^{\infty} \frac{\left\langle V, P_{h}(\cdot, \bar{s} ; \chi)\right\rangle}{h^{w}}=\frac{\Gamma\left(s-\frac{1}{2}\right)}{(8 \pi)^{s-\frac{1}{2}}} \sum_{m=1}^{\infty} \frac{r_{1}(h) r_{1}(m) r_{1}(2 m-h)}{m^{s-\frac{1}{2}} h^{w}}
$$

via the conventional Rankin-Selberg unfolding method.
From there we wish to take a spectral expansion of $P_{h}(\cdot, \bar{s} ; \chi)$ and rewrite the left-hand side of the above equation as a sum of eigenfunctions and so obtain a meromorphic continuation of the Dirichlet series.

However we require $V(z)$ to be in $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ to guarantee this spectral expansion. Thus we have to regularize $V(z)$.

The Vanishing Spectrum

Now $\Gamma_{0}(8)$ has four cusps, $\infty, 0, \frac{1}{2}$ and $\frac{1}{4}$ and $V(z)$ has polynomial growth at only ∞ and 0 .

The Vanishing Spectrum

Now $\Gamma_{0}(8)$ has four cusps, $\infty, 0, \frac{1}{2}$ and $\frac{1}{4}$ and $V(z)$ has polynomial growth at only ∞ and 0 .

Let $E(z, s ; \chi)$ denote the weight 0 , level 8 Eisenstein series with character $\chi:=\left(\frac{2}{d}\right)$,

$$
E(z, s ; \chi)=\frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(8)} \bar{\chi}(\gamma) \Im(\gamma z)^{s}
$$

The Vanishing Spectrum

Now $\Gamma_{0}(8)$ has four cusps, $\infty, 0, \frac{1}{2}$ and $\frac{1}{4}$ and $V(z)$ has polynomial growth at only ∞ and 0 .

Let $E(z, s ; \chi)$ denote the weight 0 , level 8 Eisenstein series with character $\chi:=\left(\frac{2}{d}\right)$,

$$
E(z, s ; \chi)=\frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(8)} \bar{\chi}(\gamma) \Im(\gamma z)^{s}
$$

It turns out that $E\left(z, \frac{1}{2} ; \chi\right)$ also only has polynomial growth at ∞ and 0 , and it matches that of $y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$ at each cusp. What remains has exponential decay and so we have that:

$$
\widetilde{V}(z):=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}-E\left(z, \frac{1}{2} ; \chi\right) \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)
$$

We can confirm this through numerical approximation:

We can confirm this through numerical approximation:

Image generated by Alexander Walker using Mathematica.

We can confirm this through numerical approximation:

Image generated by Alexander Walker using Mathematica.
The above is a heat map of $|\widetilde{V}(z)|$ on the fundamental domain of $\Gamma_{0}(8)$ in \mathbb{H}. Red indicates the value is close to zero, and we notice the function becomes increasingly red as we approach each of the cusps.

From the spectral decomposition of $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, as summarized by Michel ${ }^{[2]}$, if $f \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ we have that

From the spectral decomposition of $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, as summarized by Michel ${ }^{[2]}$, if $f \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ we have that

$$
f(z)=\sum_{j}\left\langle f, \mu_{j}\right\rangle \mu_{j}(z)+\sum_{\mathfrak{a}} \frac{1}{4 \pi} \int_{\mathbb{R}}\left\langle f, E_{\mathfrak{a}}\left(\cdot, \frac{1}{2}+i t ; \chi\right)\right\rangle E_{\mathfrak{a}}\left(z, \frac{1}{2}+i t ; \chi\right) d t
$$

in which $\left\{\mu_{j}\right\}$ denotes an orthonormal basis of Maass cusp forms in $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, the discrete spectrum, and $E_{\mathfrak{a}}(s, z ; \chi)$ is the Eisenstein series for level $\Gamma_{0}(8)$ with character χ for the singular cusp \mathfrak{a}, which correspond to the continuous spectrum.

From the spectral decomposition of $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, as summarized by Michel ${ }^{[2]}$, if $f \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$ we have that

$$
f(z)=\sum_{j}\left\langle f, \mu_{j}\right\rangle \mu_{j}(z)+\sum_{\mathfrak{a}} \frac{1}{4 \pi} \int_{\mathbb{R}}\left\langle f, E_{\mathfrak{a}}\left(\cdot, \frac{1}{2}+i t ; \chi\right)\right\rangle E_{\mathfrak{a}}\left(z, \frac{1}{2}+i t ; \chi\right) d t
$$

in which $\left\{\mu_{j}\right\}$ denotes an orthonormal basis of Maass cusp forms in $\mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, the discrete spectrum, and $E_{\mathfrak{a}}(s, z ; \chi)$ is the Eisenstein series for level $\Gamma_{0}(8)$ with character χ for the singular cusp \mathfrak{a}, which correspond to the continuous spectrum.
Since $\widetilde{V}(z) \in \mathcal{L}^{2}\left(\Gamma_{0}(8), \chi\right)$, it has a spectral decomposition.

Since $\Gamma_{0}(8)$ with $\chi(d)=\left(\frac{2}{d}\right)$ only has two singular cusps, 0 and ∞, the continuous spectrum only has summands arising from those cusps. Furthermore $\left\langle\widetilde{V}(z), E_{\mathfrak{a}}\left(\cdot, \frac{1}{2}+i t ; \chi\right)\right\rangle=0$ for both cusps since the constant term of the Fourier expansion of $\widetilde{V}(z)$ is zero at both cusps.

Since $\Gamma_{0}(8)$ with $\chi(d)=\left(\frac{2}{d}\right)$ only has two singular cusps, 0 and ∞, the continuous spectrum only has summands arising from those cusps. Furthermore $\left\langle\widetilde{V}(z), E_{\mathfrak{a}}\left(\cdot, \frac{1}{2}+i t ; \chi\right)\right\rangle=0$ for both cusps since the constant term of the Fourier expansion of $\widetilde{V}(z)$ is zero at both cusps.

So the continuous part of the spectrum appears to vanish.

Since $\Gamma_{0}(8)$ with $\chi(d)=\left(\frac{2}{d}\right)$ only has two singular cusps, 0 and ∞, the continuous spectrum only has summands arising from those cusps. Furthermore $\left\langle\widetilde{V}(z), E_{\mathfrak{a}}\left(\cdot, \frac{1}{2}+i t ; \chi\right)\right\rangle=0$ for both cusps since the constant term of the Fourier expansion of $\widetilde{V}(z)$ is zero at both cusps.

So the continuous part of the spectrum appears to vanish.
Furthermore, $\left\langle E\left(z, \frac{1}{2} ; \chi\right), \mu_{j}\right\rangle=0$ for all but the constant μ_{0} and so the spectral expansion simplifies to

$$
\widetilde{V}(z)=\sum_{j \neq 0}\left\langle V, \mu_{j}\right\rangle \mu_{j}(z)+\left\langle\widetilde{V}, \mu_{0}\right\rangle \mu_{0}(z)
$$

where we recall that $V(z)=y^{\frac{1}{2}} \theta(2 z) \overline{\theta(z)}$.

In a 2016 preprint by Paul Nelson ${ }^{[3]}$ was able to show that $\theta_{1} \overline{\theta_{2}}$ will be orthogonal to any cusp form where $\theta_{1} \overline{\theta_{2}}$ is the product of unary theta series such as those obtained by imposing congruence conditions in the summation defining $\theta(z)$.

In a 2016 preprint by Paul Nelson ${ }^{[3]}$ was able to show that $\theta_{1} \overline{\theta_{2}}$ will be orthogonal to any cusp form where $\theta_{1} \overline{\theta_{2}}$ is the product of unary theta series such as those obtained by imposing congruence conditions in the summation defining $\theta(z)$.

This would include our case where $\theta_{1}(z)=\theta(2 z)$ and $\theta_{2}(z)=\theta(z)$.

In a 2016 preprint by Paul Nelson ${ }^{[3]}$ was able to show that $\theta_{1} \overline{\theta_{2}}$ will be orthogonal to any cusp form where $\theta_{1} \overline{\theta_{2}}$ is the product of unary theta series such as those obtained by imposing congruence conditions in the summation defining $\theta(z)$.

This would include our case where $\theta_{1}(z)=\theta(2 z)$ and $\theta_{2}(z)=\theta(z)$.
This makes heuristic sense, if we replace either $\theta(2 z)$ or $\theta(z)$ with the residue of the appropriate half-integral weight Eisenstein series. Indeed, we find that unfolding the Eisenstein series before taking the residue produces an analytic symmetric square L-function of μ_{j}, and so since there is no pole, the residue is zero. Some work would be required to make this rigorous, but it would be expected to push through with a regularization argument.

So we have that

$$
\tilde{V}(z)=\left\langle\widetilde{V}, \mu_{0}\right\rangle \mu_{0}(z)
$$

which gives that $\widetilde{V}(z)$ is constant.

So we have that

$$
\widetilde{V}(z)=\left\langle\widetilde{V}, \mu_{0}\right\rangle \mu_{0}(z)
$$

which gives that $\widetilde{V}(z)$ is constant.
Except we know it's not constant, since we saw its heat map earlier. More precisely, we can very accurately estimate the individual Fourier coefficients of $\widetilde{V}(z)$ and verify that they are not zero.

So we have that

$$
\widetilde{V}(z)=\left\langle\widetilde{V}, \mu_{0}\right\rangle \mu_{0}(z)
$$

which gives that $\widetilde{V}(z)$ is constant.
Except we know it's not constant, since we saw its heat map earlier. More precisely, we can very accurately estimate the individual Fourier coefficients of $\widetilde{V}(z)$ and verify that they are not zero.

Somewhere we made at least one mistake. Can you find it?

So we have that

$$
\widetilde{V}(z)=\left\langle\widetilde{V}, \mu_{0}\right\rangle \mu_{0}(z)
$$

which gives that $\widetilde{V}(z)$ is constant.
Except we know it's not constant, since we saw its heat map earlier. More precisely, we can very accurately estimate the individual Fourier coefficients of $\widetilde{V}(z)$ and verify that they are not zero.

Somewhere we made at least one mistake. Can you find it?
I hope so, because we haven't yet.

Ultimately it is important for us to find the spectral expansion of $\widetilde{V}(z)$ to obtain asymptotic information about

$$
H(X, Y)=\sum_{m=1}^{\infty} \sum_{n=-m}^{m} W\left(\frac{m}{X}\right) W\left(\frac{m-n}{Y}\right) r_{1}(m-n) r_{1}(m) r_{1}(m+n)
$$

Ultimately it is important for us to find the spectral expansion of $\widetilde{V}(z)$ to obtain asymptotic information about

$$
H(X, Y)=\sum_{m=1}^{\infty} \sum_{n=-m}^{m} W\left(\frac{m}{X}\right) W\left(\frac{m-n}{Y}\right) r_{1}(m-n) r_{1}(m) r_{1}(m+n)
$$

Unfortunately, we can't have confidence in our estimates of $H(X, Y)$ until this contradiction is resolved.

Thanks!

[1] T. A. Hulse, C. I. Kuan, D. Lowry-Duda, and A. Walker.
A shifted sum for the congruent number problem.
The Ramanujan Journal, May 2019.
[2] P. Michel.
Analytic Number Theory and Families of Automorphic L-functions, pages 179-295.
052007.
[3] P. Nelson.
The Spectral Decomposition of $|\theta|^{2}$.
Available as an arXiv preprint: https://arxiv.org/pdf/1601.02529.pdf, 2016.
[4] G. Shimura.
On modular forms of half integral weight.
The Annals of Mathematics, 97(3):pp. 440-481, 1973.

