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Mertens’ Second Theorem

I Mertens’ Second Theorem (1874) gives us an estimate for the
partial harmonic sums of primes:∑

p≤x

1

p
= log log x + B + O

(
1

log x

)
,

where B = 0.2614972128 . . . is the Mertens constant.

I D. Popa (2014):∑
pq≤x

1

pq
= (log log x + B)2 − ζ(2) + O

(
log log x

log x

)
.

Here, the sum is over all ordered pairs (p, q) of primes.
I Proof uses the hyperbola method for primes (the sum is over

points in the first quadrant of the pq-plane with prime coords.
pq ≤ x).
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Generalizations

I Let L = log log x for convenience.

I D. Popa (2014):

S2(x) def=
∑
pq≤x

1

pq
= (L + B)2 − ζ(2) + ε,

where ε� (log log x)/ log x .
D. Popa (2016):

S3(x) def=
∑

pqr≤x

1

pqr
= (L + B)3 − 3ζ(2)(L + B) + 2ζ(3) + ε,

where ε� (log log x)2/ log x .
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Tenenbaum’s Theorem

I Tenenbaum (2016):

Sk(x) def=
∑

p1...pk≤x

1

p1 . . . pk
= Pk(log log x) + ε,

where Pk is a degree k polynomial and ε� (log log x)k/ log x .

I Pk(X ) =
∑

0≤j≤k λj ,kX
j ,

λj ,k =
∑

0≤m≤k−j

(
k

m, j , k −m − j

)
(B − γ)k−m−j

(
1

Γ

)(m)

(1).

Here γ = 0.577215 . . . is Euler’s constant.
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I Tenenbaum’s proof follows the Selberg-Delange method from
complex analysis, writing

Sk(x) =
1

2πi

∫
c+iR

P(s + 1)kx s
ds

s
,

c > 0, x ∈ R+ \ N. P(s) =
∑

p p
−s is the prime zeta

function of s.

I The sum in Tenenbaum’s theorem is over all ordered k-tuples
of primes (p1, . . . , pk). Thus some terms are counted multiple
times.

I 1/30 = 1/(2 · 3 · 5) is counted 6 times, 1/12 = 1/(223) is
counted three times, and 1/8 = 1/23 is counted only once.
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Almost Primes

I Big Omega Function: Ω(pa11 . . . pamm ) = a1 + . . .+ am.

I A k-almost prime is a number n such that Ω(n) = k .

I Let Nk = {n ∈ N : Ω(n) = k}, and let
τk(x) = |{n ∈ Nk : n ≤ x}|.

I Landau (1900): Let k ∈ N.

τk(x) =
x

log x

(log log x)k−1

(k − 1)!

(
1 + O

(
1

log log x

))
.
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Almost Primes (Continued)

I Dusart and others have established explicit bounds for
τ1(x) = π(x).

I Bayless, K, Klyve (2019): The squarefree analogue πk(x) of
τk(x) satisfies

πk(x) <
1.028x

log x

(log log x + 0.26153)k−1

(k − 1)!
(k ≥ 2, x ≥ 3).

I K (2019): We have

τ3(x) >
x

log x

(log log x)2

2
(x ≥ 500194).

This and similar results improve on some of my previous
Maine/Quebec talks.
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A Combinatorial Formula

I Let Rk(x) def=
∑
n∈Nk

n≤x

1

n
∼ (log log x)k

k!
.

I This is like Tenenbaum’s sum, but it counts each term only
once.

I We build on his estimate via a combinatorial formula for the
almost prime zeta function Pk(s) =

∑
n∈Nk

n−s (see preprints
of R. J. Mathar, 2009, and J. Lichtman, 2019).

I P2(s) = (P(s)2 + P(2s))/2!,
P3(s) = (P(s)3 + 3P(2s)P(s) + 2P(3s))/3!,
P4(s) = (P(s)4 + 6P(2s)P(s)2 + 3P(2s)2 + 8P(3s)P(s) +
6P(4s))/4!, . . . .

I Mathar and Lichtman computed Pk(s) and
∑

n∈Nk
1/(n log n)

to high precision, k ≤ 20, extending work of H. Cohen.
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A Combinatorial Formula for Rk(x)

I Rk(x)→∞, but we have:

R2(x) =
1

2!

S2(x) +
∑
p2≤x

1

p2



R3(x) =
1

3!

S3(x) + 3
∑

p2q≤x

1

p2q
+ 2

∑
p3≤x

1

p3


R4(x) =

1

4!

S4(x) + 6
∑

p2qr≤x

1

p2qr
+ 3

∑
p2q2≤x

1

p2q2
+ 8

∑
p3q≤x

1

p3q
+ 6

∑
p4≤x

1

p4


. . . .

Coefficients are multinomial numbers of integer partitions, see work of R.
J. Mathar, and J. Lichtman. See also https://oeis.org/A102189.
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Estimating the Terms

I We can estimate the sums, for instance,∑
p2qr≤x

1

p2qr
=
∑

p≤
√

x
4

1

p2

∑
qr≤ x

p2

1

qr
=
∑

p≤
√

x
4

1

p2
S2

(
x

p2

)

=
∑

p≤
√

x
4

1

p2

((
log log

x

p2
+ B

)2

− ζ(2) + O

(
1

log x
p2

))

Good bounds are known on s(t) def=
∑

p≤t p
−2. Pomerance

and Nguyen (2019):

0 < P(2)−
∑
p≤t

p−2 < (t log t)−1.
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Estimating a Typical Term

I By partial summation,

∑
p≤
√

x
4

1

p2

(
log log

x

p2

)2

= s

(√
x

4

)
(log log 4)2 +

∫ √ x
4

2

4s(t) log log x
t2

t log x
t2

dt

= P(2)(log log 4)2 − ε−
[
P(2)

(
log log

x

t2

)2]√ x
4

2

+ O

(∫ √ x
4

2

4 log log x
t2

t2 log t log x
t2

dt

)

= P(2)(log log x)2 + O

(
log log x

log x

)
.

Here we estimate the integral by splitting the interval at x1/3. The
technique for this term can be generalized to the others.
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Results
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Results

We can also expand in powers of L = log log x in place of L + B, to
determine an estimate which is polynomial in L with a constant
term, generalizing Mertens’ constant B.
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Heuristics

Heuristic argument for the general case. We should have

Rk(x) =
∑

n+2n2+...+knk=k

Sn(x)

n!

k∏
j=2

1

nj !

(
P(j)

j

)nj

+O

(
(log log x)k

log x

)
,

where the sum is over integer partitions of k . This would lead to

Rk(x) = Tk(log log x + B) + O

(
(log log x)k

log x

)
,

Tk(X ) =
∑

n+2n2+...+knk=k

∑
0≤i≤n

ai ,n
n!

k∏
j=2

1

nj !

(
P(j)

j

)nj

X i ,

ai ,n =
∑

0≤m≤n−i

(
n

m, i , n −m − i

)
(−γ)n−m−i

(
1

Γ

)(m)

(1).
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Heuristics

Assuming the above, the following characterization of Tk provides
a practical recursive formula.

Corollary

Tk satisfies T ′k = Tk−1, and

Tk(0) =
∑

n+2n2+...+knk=k

a0,n
n!

k∏
j=2

1

nj !

(
P(j)

j

)nj

,

where

a0,n =
∑

0≤m≤n

(
n

m

)
(−γ)n−m

(
1

Γ

)(m)

(1).
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Some Remarks

I We believe we are close to completing details for the
estimates of Rk(x) for all k ∈ N.

I A similar version gives estimates for the squarefree sums
R∗k (x).

I We have explicit bounds for the error term in R2(x) as well as
the squarefree counterpart R∗2 (x) and this can be extended, as
well as estimates for similar sums.

I G. Robin (1983): The error term in Mertens’ second theorem
changes sign infinitely often.

I This isn’t the case for R2(x). The error is between 0.8/ log x
and 2.2/ log x , x ≥ 4.
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The End

Thank You!
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