A Variation of Mertens' Theorem for Almost Primes

Paul Kinlaw (Husson University) Joint work with Jonathan Bayless (Husson University)

Maine/Quebec Number Theory Conference

October 5, 2019

|| (同) || (三) || (-) ||

Mertens' Second Theorem

Mertens' Second Theorem (1874) gives us an estimate for the partial harmonic sums of primes:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right),$$

where B = 0.2614972128... is the Mertens constant.

イロト イポト イヨト イヨト

Mertens' Second Theorem

Mertens' Second Theorem (1874) gives us an estimate for the partial harmonic sums of primes:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right),$$

where *B* = 0.2614972128... is the Mertens constant. ► D. Popa (2014):

$$\sum_{pq \le x} \frac{1}{pq} = (\log \log x + B)^2 - \zeta(2) + O\left(\frac{\log \log x}{\log x}\right).$$

イロト イポト イヨト イヨト

Mertens' Second Theorem

Mertens' Second Theorem (1874) gives us an estimate for the partial harmonic sums of primes:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right),$$

where *B* = 0.2614972128... is the Mertens constant. ► D. Popa (2014):

$$\sum_{pq \le x} \frac{1}{pq} = (\log \log x + B)^2 - \zeta(2) + O\left(\frac{\log \log x}{\log x}\right).$$

Here, the sum is over all ordered pairs (p, q) of primes.

ヘロト ヘヨト ヘヨト ヘヨト

Mertens' Second Theorem

Mertens' Second Theorem (1874) gives us an estimate for the partial harmonic sums of primes:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right),$$

where *B* = 0.2614972128... is the Mertens constant. ► D. Popa (2014):

$$\sum_{pq \le x} \frac{1}{pq} = (\log \log x + B)^2 - \zeta(2) + O\left(\frac{\log \log x}{\log x}\right).$$

Here, the sum is over all ordered pairs (p, q) of primes.
Proof uses the hyperbola method for primes (the sum is over points in the first quadrant of the pq-plane with prime coords. pq ≤ x).

Generalizations

• Let $L = \log \log x$ for convenience.

イロト イヨト イヨト イヨト

臣

Generalizations

- Let $L = \log \log x$ for convenience.
- ▶ D. Popa (2014):

$$S_2(x) \stackrel{\text{\tiny def}}{=} \sum_{pq \leq x} \frac{1}{pq} = (L+B)^2 - \zeta(2) + \epsilon,$$

where $\epsilon \ll (\log \log x) / \log x$. D. Popa (2016):

$$S_3(x) \stackrel{\text{def}}{=} \sum_{pqr \leq x} \frac{1}{pqr} = (L+B)^3 - 3\zeta(2)(L+B) + 2\zeta(3) + \epsilon,$$

where $\epsilon \ll (\log \log x)^2 / \log x$.

Image: A image: A

- ∢ ⊒ ⇒

Tenenbaum's Theorem

▶ Tenenbaum (2016):

$$S_k(x) \stackrel{\text{def}}{=} \sum_{p_1 \dots p_k \leq x} \frac{1}{p_1 \dots p_k} = P_k(\log \log x) + \epsilon,$$

where P_k is a degree k polynomial and $\epsilon \ll (\log \log x)^k / \log x$.

Tenenbaum's Theorem

Tenenbaum (2016):

$$S_k(x) \stackrel{\text{\tiny def}}{=} \sum_{p_1 \dots p_k \leq x} \frac{1}{p_1 \dots p_k} = P_k(\log \log x) + \epsilon,$$

where P_k is a degree k polynomial and $\epsilon \ll (\log \log x)^k / \log x$. $P_k(X) = \sum_{0 \le j \le k} \lambda_{j,k} X^j$,

$$\lambda_{j,k} = \sum_{0 \le m \le k-j} \binom{k}{m,j,k-m-j} (B-\gamma)^{k-m-j} \left(\frac{1}{\Gamma}\right)^{(m)} (1).$$

Here $\gamma = 0.577215...$ is Euler's constant.

イロト イポト イヨト イヨト

Almost Primes

 Tenenbaum's proof follows the Selberg-Delange method from complex analysis, writing

$$S_k(x) = rac{1}{2\pi i} \int_{c+i\mathbb{R}} P(s+1)^k x^s rac{ds}{s},$$

 $c>0, x\in \mathbb{R}^+\setminus \mathbb{N}.$ $P(s)=\sum_p p^{-s}$ is the prime zeta function of s.

<ロ> (四) (四) (三) (三) (三)

Almost Primes

 Tenenbaum's proof follows the Selberg-Delange method from complex analysis, writing

$$S_k(x) = rac{1}{2\pi i} \int_{c+i\mathbb{R}} P(s+1)^k x^s rac{ds}{s},$$

 $c>0, x\in \mathbb{R}^+\setminus \mathbb{N}.$ $P(s)=\sum_p p^{-s}$ is the prime zeta function of s.

The sum in Tenenbaum's theorem is over all ordered k-tuples of primes (p₁,..., p_k). Thus some terms are counted multiple times.

イロン イボン イモン イモン 三日

Almost Primes

 Tenenbaum's proof follows the Selberg-Delange method from complex analysis, writing

$$S_k(x) = rac{1}{2\pi i} \int_{c+i\mathbb{R}} P(s+1)^k x^s rac{ds}{s},$$

 $c>0, x\in \mathbb{R}^+\setminus \mathbb{N}.$ $P(s)=\sum_p p^{-s}$ is the prime zeta function of s.

- The sum in Tenenbaum's theorem is over all ordered k-tuples of primes (p₁,..., p_k). Thus some terms are counted multiple times.
- ▶ $1/30 = 1/(2 \cdot 3 \cdot 5)$ is counted 6 times, $1/12 = 1/(2^23)$ is counted three times, and $1/8 = 1/2^3$ is counted only once.

Almost Primes

• Big Omega Function: $\Omega(p_1^{a_1} \dots p_m^{a_m}) = a_1 + \dots + a_m$.

イロン イボン イモン イモン 三日

Almost Primes

- Big Omega Function: $\Omega(p_1^{a_1} \dots p_m^{a_m}) = a_1 + \dots + a_m$.
- A k-almost prime is a number n such that $\Omega(n) = k$.

イロン 不同 とくほど 不同 とう

Almost Primes

- ► Big Omega Function: $\Omega(p_1^{a_1} \dots p_m^{a_m}) = a_1 + \dots + a_m$.
- A *k*-almost prime is a number *n* such that $\Omega(n) = k$.

• Let
$$\mathbb{N}_k = \{n \in \mathbb{N} : \Omega(n) = k\}$$
, and let $\tau_k(x) = |\{n \in \mathbb{N}_k : n \le x\}|.$

イロン 不同 とくほど 不同 とう

Almost Primes

- ► Big Omega Function: $\Omega(p_1^{a_1} \dots p_m^{a_m}) = a_1 + \dots + a_m$.
- A *k*-almost prime is a number *n* such that $\Omega(n) = k$.

• Let
$$\mathbb{N}_k = \{n \in \mathbb{N} : \Omega(n) = k\}$$
, and let $\tau_k(x) = |\{n \in \mathbb{N}_k : n \le x\}|.$

▶ Landau (1900): Let $k \in \mathbb{N}$.

$$\tau_k(x) = \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!} \left(1 + O\left(\frac{1}{\log \log x}\right) \right).$$

イロン 不同 とくほど 不同 とう

Almost Primes (Continued)

• Dusart and others have established explicit bounds for $\tau_1(x) = \pi(x)$.

イロン 不同 とくほど 不同 とう

Almost Primes (Continued)

- Dusart and others have established explicit bounds for $\tau_1(x) = \pi(x)$.
- Bayless, K, Klyve (2019): The squarefree analogue $\pi_k(x)$ of $\tau_k(x)$ satisfies 1.028x (log log x + 0.26153)^{k-1}

$$\pi_k(x) < \frac{1.028x}{\log x} \frac{(\log\log x + 0.26153)^{k-1}}{(k-1)!} \quad (k \ge 2, x \ge 3).$$

イロト イヨト イヨト イヨト

Almost Primes (Continued)

- Dusart and others have established explicit bounds for $\tau_1(x) = \pi(x)$.
- Bayless, K, Klyve (2019): The squarefree analogue $\pi_k(x)$ of $\tau_k(x)$ satisfies

$$\pi_k(x) < \frac{1.028x}{\log x} \frac{(\log\log x + 0.26153)^{k-1}}{(k-1)!} \quad (k \ge 2, x \ge 3).$$

► K (2019): We have

$$\tau_3(x) > \frac{x}{\log x} \frac{(\log \log x)^2}{2}$$
 (x ≥ 500194).
This and similar results improve on some of my previous
Maine/Quebec talks.

イロト イポト イヨト イヨト

A Combinatorial Formula

• Let
$$R_k(x) \stackrel{\text{def}}{=} \sum_{\substack{n \in \mathbb{N}_k \\ n \leq x}} \frac{1}{n} \sim \frac{(\log \log x)^k}{k!}.$$

ヘロア 人間 アメヨア 人間 アー

æ,

A Combinatorial Formula

• Let
$$R_k(x) \stackrel{\text{def}}{=} \sum_{\substack{n \in \mathbb{N}_k \\ n \leq x}} \frac{1}{n} \sim \frac{(\log \log x)^k}{k!}.$$

This is like Tenenbaum's sum, but it counts each term only once.

イロト イヨト イヨト イヨト

臣

A Combinatorial Formula

• Let
$$R_k(x) \stackrel{\text{def}}{=} \sum_{\substack{n \in \mathbb{N}_k \\ n \leq x}} \frac{1}{n} \sim \frac{(\log \log x)^k}{k!}$$

- This is like Tenenbaum's sum, but it counts each term only once.
- We build on his estimate via a combinatorial formula for the almost prime zeta function P_k(s) = ∑_{n∈ℕk} n^{-s} (see preprints of R. J. Mathar, 2009, and J. Lichtman, 2019).

・ 同 ト ・ ヨ ト ・ ヨ ト

A Combinatorial Formula

• Let
$$R_k(x) \stackrel{\text{def}}{=} \sum_{\substack{n \in \mathbb{N}_k \\ n \leq x}} \frac{1}{n} \sim \frac{(\log \log x)^k}{k!}$$

- This is like Tenenbaum's sum, but it counts each term only once.
- We build on his estimate via a combinatorial formula for the almost prime zeta function P_k(s) = ∑_{n∈ℕk} n^{-s} (see preprints of R. J. Mathar, 2009, and J. Lichtman, 2019).

►
$$P_2(s) = (P(s)^2 + P(2s))/2!,$$

 $P_3(s) = (P(s)^3 + 3P(2s)P(s) + 2P(3s))/3!,$
 $P_4(s) = (P(s)^4 + 6P(2s)P(s)^2 + 3P(2s)^2 + 8P(3s)P(s) + 6P(4s))/4!, \dots$

・ 同 ト ・ ヨ ト ・ ヨ ト

A Combinatorial Formula

• Let
$$R_k(x) \stackrel{\text{def}}{=} \sum_{\substack{n \in \mathbb{N}_k \\ n \leq x}} \frac{1}{n} \sim \frac{(\log \log x)^k}{k!}.$$

- This is like Tenenbaum's sum, but it counts each term only once.
- We build on his estimate via a combinatorial formula for the almost prime zeta function P_k(s) = ∑_{n∈ℕk} n^{-s} (see preprints of R. J. Mathar, 2009, and J. Lichtman, 2019).

►
$$P_2(s) = (P(s)^2 + P(2s))/2!,$$

 $P_3(s) = (P(s)^3 + 3P(2s)P(s) + 2P(3s))/3!,$
 $P_4(s) = (P(s)^4 + 6P(2s)P(s)^2 + 3P(2s)^2 + 8P(3s)P(s) + 6P(4s))/4!, \dots$

Mathar and Lichtman computed P_k(s) and ∑_{n∈N_k} 1/(n log n) to high precision, k ≤ 20, extending work of H. Cohen.

A Combinatorial Formula for $R_k(x)$

▶ $R_k(x) \rightarrow \infty$, but we have:

$$R_2(x) = rac{1}{2!} \left(S_2(x) + \sum_{p^2 \leq x} rac{1}{p^2}
ight)$$

イロン 不同 とうほう 不同 とう

A Combinatorial Formula for $R_k(x)$

▶ $R_k(x) \to \infty$, but we have:

$$R_{2}(x) = \frac{1}{2!} \left(S_{2}(x) + \sum_{p^{2} \le x} \frac{1}{p^{2}} \right)$$
$$R_{3}(x) = \frac{1}{3!} \left(S_{3}(x) + 3 \sum_{p^{2}q \le x} \frac{1}{p^{2}q} + 2 \sum_{p^{3} \le x} \frac{1}{p^{3}} \right)$$

イロン 不同 とうほう 不同 とう

A Combinatorial Formula for $R_k(x)$

▶ $R_k(x) \to \infty$, but we have:

$$R_{2}(x) = \frac{1}{2!} \left(S_{2}(x) + \sum_{p^{2} \le x} \frac{1}{p^{2}} \right)$$
$$R_{3}(x) = \frac{1}{3!} \left(S_{3}(x) + 3 \sum_{p^{2}q \le x} \frac{1}{p^{2}q} + 2 \sum_{p^{3} \le x} \frac{1}{p^{3}} \right)$$
$$R_{4}(x) = \frac{1}{4!} \left(S_{4}(x) + 6 \sum_{p^{2}qr \le x} \frac{1}{p^{2}qr} + 3 \sum_{p^{2}q^{2} \le x} \frac{1}{p^{2}q^{2}} + 8 \sum_{p^{3}q \le x} \frac{1}{p^{3}q} + 6 \sum_{p^{4} \le x} \frac{1}{p^{4}} \right)$$
....

イロン 不同 とうほう 不同 とう

A Combinatorial Formula for $R_k(x)$

• $R_k(x) \to \infty$, but we have:

ŀ

$$R_{2}(x) = \frac{1}{2!} \left(S_{2}(x) + \sum_{p^{2} \le x} \frac{1}{p^{2}} \right)$$
$$R_{3}(x) = \frac{1}{3!} \left(S_{3}(x) + 3 \sum_{p^{2}q \le x} \frac{1}{p^{2}q} + 2 \sum_{p^{3} \le x} \frac{1}{p^{3}} \right)$$
$$R_{4}(x) = \frac{1}{4!} \left(S_{4}(x) + 6 \sum_{p^{2}qr \le x} \frac{1}{p^{2}qr} + 3 \sum_{p^{2}q^{2} \le x} \frac{1}{p^{2}q^{2}} + 8 \sum_{p^{3}q \le x} \frac{1}{p^{3}q} + 6 \sum_{p^{4} \le x} \frac{1}{p^{4}} \right)$$

Coefficients are multinomial numbers of integer partitions, see work of R. J. Mathar, and J. Lichtman. See also https://oeis.org/A102189.

Estimating the Terms

We can estimate the sums, for instance,

$$\sum_{p^2 qr \le x} \frac{1}{p^2 qr} = \sum_{p \le \sqrt{\frac{x}{4}}} \frac{1}{p^2} \sum_{qr \le \frac{x}{p^2}} \frac{1}{qr} = \sum_{p \le \sqrt{\frac{x}{4}}} \frac{1}{p^2} S_2\left(\frac{x}{p^2}\right)$$
$$= \sum_{p \le \sqrt{\frac{x}{4}}} \frac{1}{p^2} \left(\left(\log \log \frac{x}{p^2} + B\right)^2 - \zeta(2) + O\left(\frac{1}{\log \frac{x}{p^2}}\right) \right)$$

Good bounds are known on $s(t) \stackrel{\text{def}}{=} \sum_{p \leq t} p^{-2}$. Pomerance and Nguyen (2019):

$$0 < P(2) - \sum_{p \le t} p^{-2} < (t \log t)^{-1}.$$

イロン 不同 とうほう 不同 とう

Estimating a Typical Term

By partial summation,

$$\sum_{p \le \sqrt{\frac{x}{4}}} \frac{1}{p^2} \left(\log \log \frac{x}{p^2} \right)^2 = s \left(\sqrt{\frac{x}{4}} \right) \left(\log \log 4 \right)^2 + \int_2^{\sqrt{\frac{x}{4}}} \frac{4s(t) \log \log \frac{x}{t^2}}{t \log \frac{x}{t^2}} dt$$
$$= P(2) (\log \log 4)^2 - \epsilon - \left[P(2) \left(\log \log \frac{x}{t^2} \right)^2 \right]_2^{\sqrt{\frac{x}{4}}} + O \left(\int_2^{\sqrt{\frac{x}{4}}} \frac{4 \log \log \frac{x}{t^2}}{t^2 \log t \log \frac{x}{t^2}} dt \right)$$
$$= P(2) (\log \log x)^2 + O \left(\frac{\log \log x}{\log x} \right).$$

Here we estimate the integral by splitting the interval at $x^{1/3}$. The technique for this term can be generalized to the others.

Results

Recall that $L = \log \log x$, and let ϵ 's denote small error terms. $P(x) = \frac{1}{2}(L+B)^2 + \frac{P(2) - \zeta(2)}{2} + \epsilon$,

イロン 不同 とくほど 不同 とう

臣

Results

Recall that $L = \log \log x$, and let ϵ 's denote small error terms. $R_2(x) = \frac{1}{2}(L+B)^2 + \frac{P(2) - \zeta(2)}{2} + \epsilon,$ $R_3(x) = \frac{1}{6}(L+B)^3 + \frac{P(2) - \zeta(2)}{2}(L+B) + \frac{P(3) + \zeta(3)}{3} + \epsilon,$

イロン イヨン イヨン イヨン

Results

Recall that
$$L = \log \log x$$
, and let ϵ 's denote small error terms.

$$R_2(x) = \frac{1}{2}(L+B)^2 + \frac{P(2)-\zeta(2)}{2} + \epsilon,$$

$$R_3(x) = \frac{1}{6}(L+B)^3 + \frac{P(2)-\zeta(2)}{2}(L+B) + \frac{P(3)+\zeta(3)}{3} + \epsilon,$$

$$R_4(x) = \frac{1}{24}(L+B)^4 + \frac{P(2)-\zeta(2)}{4}(L+B)^2 + \frac{P(3)+\zeta(3)}{3}(L+B)$$

$$+ \frac{P(4)}{4} + \frac{\zeta(4)}{16} + \frac{P(2)^2}{8} - \frac{P(2)\zeta(2)}{4} + \epsilon, \dots$$

・ロト ・回ト ・ヨト ・ヨト 三日

Results

We can also expand in powers of $L = \log \log x$ in place of L + B, to determine an estimate which is polynomial in L with a constant term, generalizing Mertens' constant B.

$$\blacktriangleright B_1 = B$$

イロン イヨン イヨン イヨン

Results

We can also expand in powers of $L = \log \log x$ in place of L + B, to determine an estimate which is polynomial in L with a constant term, generalizing Mertens' constant B.

•
$$B_1 = B$$

• $B_2 = \frac{1}{2}B^2 + \frac{P(2) - \zeta(2)}{2}$

イロト イヨト イヨト イヨト

Results

We can also expand in powers of $L = \log \log x$ in place of L + B, to determine an estimate which is polynomial in L with a constant term, generalizing Mertens' constant B.

►
$$B_1 = B$$

► $B_2 = \frac{1}{2}B^2 + \frac{P(2) - \zeta(2)}{2}$
► $B_3 = \frac{1}{6}B^3 + \frac{P(2) - \zeta(2)}{2}B + \frac{P(3) + \zeta(3)}{3}$

イロン イヨン イヨン イヨン

Results

We can also expand in powers of $L = \log \log x$ in place of L + B, to determine an estimate which is polynomial in L with a constant term, generalizing Mertens' constant B.

$$B_{1} = B$$

$$B_{2} = \frac{1}{2}B^{2} + \frac{P(2)-\zeta(2)}{2}$$

$$B_{3} = \frac{1}{6}B^{3} + \frac{P(2)-\zeta(2)}{2}B + \frac{P(3)+\zeta(3)}{3}$$

$$B_{4} = \frac{1}{24}B^{4} + \frac{P(2)-\zeta(2)}{4}B^{2} + \frac{P(3)+\zeta(3)}{3}B + \frac{P(4)}{4} + \frac{\zeta(4)}{16} + \frac{P(2)^{2}}{8} - \frac{P(2)\zeta(2)}{4}, \dots$$

イロン 不同 とうほう 不同 とう

Heuristics

Heuristic argument for the general case. We should have

$$R_k(x) = \sum_{n+2n_2+\ldots+kn_k=k} \frac{S_n(x)}{n!} \prod_{j=2}^k \frac{1}{n_j!} \left(\frac{P(j)}{j}\right)^{n_j} + O\left(\frac{(\log\log x)^k}{\log x}\right),$$

where the sum is over integer partitions of k. This would lead to

$$R_k(x) = T_k(\log \log x + B) + O\left(\frac{(\log \log x)^k}{\log x}\right),$$

$$T_{k}(X) = \sum_{n+2n_{2}+\ldots+kn_{k}=k} \sum_{0 \le i \le n} \frac{a_{i,n}}{n!} \prod_{j=2}^{k} \frac{1}{n_{j}!} \left(\frac{P(j)}{j}\right)^{n_{j}} X^{i},$$

$$a_{i,n} = \sum_{0 \le m \le n-i} \binom{n}{m, i, n-m-i} (-\gamma)^{n-m-i} \left(\frac{1}{\Gamma}\right)^{(m)} (1).$$

Heuristics

Assuming the above, the following characterization of T_k provides a practical recursive formula.

Corollary

 T_k satisfies $T'_k = T_{k-1}$, and

$$T_k(0) = \sum_{n+2n_2+\ldots+kn_k=k} \frac{a_{0,n}}{n!} \prod_{j=2}^k \frac{1}{n_j!} \left(\frac{P(j)}{j}\right)^{n_j},$$

where

$$a_{0,n} = \sum_{0 \le m \le n} \binom{n}{m} (-\gamma)^{n-m} \left(\frac{1}{\Gamma}\right)^{(m)} (1).$$

イロン 不同 とうほう 不同 とう

Some Remarks

- We believe we are close to completing details for the estimates of R_k(x) for all k ∈ N.
- A similar version gives estimates for the squarefree sums $R_k^*(x)$.
- We have explicit bounds for the error term in R₂(x) as well as the squarefree counterpart R^{*}₂(x) and this can be extended, as well as estimates for similar sums.

イロト イヨト イヨト イヨト

Some Remarks

- We believe we are close to completing details for the estimates of R_k(x) for all k ∈ N.
- A similar version gives estimates for the squarefree sums $R_k^*(x)$.
- ► We have explicit bounds for the error term in R₂(x) as well as the squarefree counterpart R^{*}₂(x) and this can be extended, as well as estimates for similar sums.
- G. Robin (1983): The error term in Mertens' second theorem changes sign infinitely often.
- This isn't the case for R₂(x). The error is between 0.8/log x and 2.2/log x, x ≥ 4.

<ロ> (四) (四) (三) (三) (三)

Thank You!

Some Sources:

- 1. Lichtman, Jared Duker. "Almost primes and the Banks-Martin conjecture." arXiv preprint arXiv:1909.00804 (2019).
- Popa, Dumitru. "A triple Mertens evaluation." Journal of Mathematical Analysis and Applications 444.1 (2016): 464-474.
- 3. Tenenbaum, Gérald. "Generalized Mertens sums." Gainesville International Number Theory Conference. Springer, Cham, 2016. http://www.iecl.univ-lorraine.fr/~Gerald.Tenenbaum/ PUBLIC/PPP/Mertens.pdf