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Definition
Equivalence relations
The Chow group

Let X be a smooth projective variety over a field k .

Definition

An algebraic cycle of codimension r is a formal finite sum∑
Z⊂X

nZ · Z

where Z is a subvariety of X of codimension r and nZ ∈ Z. The
set of such objects forms a group denoted Zr (X )(k).

Example (E is an elliptic curve over Q)

Z1(E )(Q̄) = Div(E ) =
{∑

P∈E(Q̄) nP · P : nP ∈ Z, finite sum
}
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Rational and Algebraic Equivalence

Homological Equivalence

Zr (X )(k)0 := ker(Zr (X )(k)
clp−→H2r

et (Xk̄ ,Qp)(r)Gk ).

(independent of p if char(k) = 0)
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Zr (X )(k)rat ⊂ Zr (X )(k)alg ⊂ Zr (X )(k)0 ⊂ Zr (X )(k)

By taking the quotient by Zr (X )(k)rat one gets the associated
filtration of the Chow group:

0 ⊂ CHr (X )(k)alg ⊂ CHr (X )(k)0 ⊂ CHr (X )(k).

The graded piece Grr (X )(k) := CHr (X )(k)0/CHr (X )(k)alg is
called the Griffiths group.

Example (E is an elliptic curve)

•CH1(E )(Q̄) = Div(E )/P(E ) = Pic(E )
•CH1(E )(Q̄)0 = Pic0(E ) = E (Q̄)
•CH1(E )(Q̄)alg = Pic0(E ) = E (Q̄)
•Gr1(E )(Q̄) = 0.
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Beilinson-Bloch conjecture
Hodge and Tate conjectures

Let X be a smooth projective variety over a number field K .
For each n ≥ 0, one can associate to X a complex L-function

L(Hn
et(XK̄ ), s).

Beilinson-Bloch Conjecture

For each 0 ≤ j ≤ dim(X ), CHj(X )(K )0 is a finitely generated
abelian group and

dimQ CHj(X )(K )0 ⊗Q = ords=j L(H2j−1
et (XK̄ ), s).

In the case of an elliptic curve E over Q, this is the Birch and
Swinnerton-Dyer conjecture

rank(E (Q)) = ords=1 L(E/Q, s).
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Let X be a smooth projective variety over C. One can define the
complex cycle class map

clC : CHr (X )(C) −→ H2r (X (C),Z).
[Z ] 7→

(
ω 7→

∫
Z ω
)
.

The image of this map lies in the subgroup of Hodge classes

Hdg2r (X (C)) := H2r (X (C),Z) ∩ H r ,r (X (C)).

Hodge Conjecture

The image of clC⊗Q is equal to Hdg2r (X (C))⊗Q.

The Tate conjecture is the arithmetic analog of the Hodge
conjecture and is concerned with the p-adic étale cycle class map.
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A brief history
Generalised Heegner cycles
Our result

Recall the Griffiths group

Grj(X )(k) = CHj(X )(k)0/CHj(X )(k)alg.

Griffiths (’69), Clemens (’83) and Ceresa (’83): first results -
transcendental methods over C.

Harris (’83) and Bloch (’84): first example of non-triviality for
varieties over number fields - the Ceresa cycle on the Fermat
quartic T 4

0 + T 4
1 = T 4

2 .

Schoen (’86): infinite rank over Q̄ for Kuga-Sato threefold
using Heegner cycles.

BDP (’17): non-torsion elements using generalised Heegner
cycles.
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K = imaginary quadratic field with ring of integers OK ,
satisfying Heegner hypothesis

H = Hilbert class field of K

A = elliptic curve over H with EndH(A) ∼= OK , A(C) = C/OK

Wr = r th Kuga-Sato variety over X1(N).

Wr × Ar smooth proper variety over H of dimension 2r + 1,
naturally fibered over X1(N), with fibre over an elliptic curve
E equal to E r × Ar .

Definition

Generalised Heegner cycles are a distinguished collection of cycles

∆ϕ ∈ CHr+1(Wr × Ar )(Fϕ)0

indexed by ϕ ∈ IsogN(A) with Fϕ a finite extension of H.
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Theorem (Bertolini-Darmon-L.-Prasanna ’19)

For all r ≥ 0,

dimQ CHr+1(Wr × Ar )(Q̄)0 ⊗Q =∞.

Furthermore, for all r ≥ 2,

dimQ Grr+1(Wr × Ar )(Q̄)⊗Q =∞.

Theorem (Schoen ’86)

dimQ Gr2(W2)(Q̄)⊗Q =∞.
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The proof is an adaptation of the arguments of Schoen to the
setting of generalised Heegner cycles.

1 Massage the variety and the cycles using algebraic idempotent
correspondences.

2 Complex analytic and Hodge theoretic arguments involving
the complex Abel-Jacobi map.

3 Arithmetic input using étale cohomology.

4 Linear independence using Galois theory.

Thank you for your attention !
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