The Arithmetic of Modular Grids

Grant Molnar

Dartmouth College

October 5, 2019

Joint Work with M. Griffin, P. Jenkins

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality?
 Image: Conclusion
 Image: Conclusion</td

Let $f_{k,m}(z)$ be the unique weakly holomorphic modular form of weight k over $SL_2(\mathbb{Z})$ with Fourier expansion

$$f_{k,m}(z)=q^{-m}+O(q^{\ell+1})$$

$$f_{0,0}(z) = 1$$

$$f_{0,1}(z) = q^{-1} + 196884q + 21493760q^2 + \dots$$

$$f_{0,2}(z) = q^{-2} + 42987520q + 40491909396q^2 + \dots$$

$$f_{2,1}(z) = q^{-1} - 196884q - 42987520q^2 + \dots$$

$$f_{2,2}(z) = q^{-2} - 21493760q - 40491909396q^2 + \dots$$

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality?
 Image: Conclusion
 Image: Conclusion</td

Let $f_{k,m}(z)$ be the unique weakly holomorphic modular form of weight k over $SL_2(\mathbb{Z})$ with Fourier expansion

$$f_{k,m}(z)=q^{-m}+O(q^{\ell+1})$$

$$f_{0,0}(z) = 1$$

$$f_{0,1}(z) = q^{-1} + 196884q + 21493760q^2 + \dots$$

$$f_{0,2}(z) = q^{-2} + 42987520q + 40491909396q^2 + \dots$$

$$f_{2,1}(z) = q^{-1} - 196884q - 42987520q^2 + \dots$$

$$f_{2,2}(z) = q^{-2} - 21493760q - 40491909396q^2 + \dots$$

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality?
 Image: Conclusion
 Image: Conclusion</td

Let $f_{k,m}(z)$ be the unique weakly holomorphic modular form of weight k over $SL_2(\mathbb{Z})$ with Fourier expansion

$$f_{k,m}(z)=q^{-m}+O(q^{\ell+1})$$

$$f_{0,0}(z) = 1$$

$$f_{0,1}(z) = q^{-1} + 196884q + 21493760q^2 + \dots$$

$$f_{0,2}(z) = q^{-2} + 42987520q + 40491909396q^2 + \dots$$

$$f_{2,1}(z) = q^{-1} - 196884q - 42987520q^2 + \dots$$

$$f_{2,2}(z) = q^{-2} - 21493760q - 40491909396q^2 + \dots$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a modular form?				

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a mo	dular form?			

Modular forms are periodic!

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a mo	dular form?			

Modular forms are periodic!

If f(z) is a weakly holomorphic modular form of weight k with multiplier ν , then we may write

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a mo	dular form?			

Modular forms are periodic!

If f(z) is a weakly holomorphic modular form of weight k with multiplier ν , then we may write

$$f(z) = \sum_{n \gg -\infty} a_n q^n$$

where $q = e^{2\pi \mathrm{i} z}$

Historical background Proof sketch Introduction What is a modular form? For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and z arbitrary, define $\gamma z = \frac{az+b}{cz+d}$ Define $j(\gamma, z) = cz + d$

Introduction Historical background Main theorem Proof sketch Conclusion What is a modular form? For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and z arbitrary, define $\gamma z = \frac{az+b}{cz+d}$ Define $i(\gamma, z) = cz + d$ A map $\nu: \Gamma \to \mathbb{C}^{\times}$ is a weight k multiplier if $\nu(\gamma_1)\nu(\gamma_2)i(\gamma_1,\gamma_2z)^ki(\gamma_2,z)^k = \nu(\gamma_1\gamma_2)i(\gamma_1\gamma_2,z)^k$ A function $f : \mathbb{H} \to \mathbb{C}$ is modular of weight k for Γ with multiplier ν if $f(\gamma z) = \nu(\gamma) j(\gamma, z)^k f(z)$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a mo	dular form?			

Definition

A weight k weakly holomorphic modular form is a function $f: \mathbb{H} \to \mathbb{C}$ such that:

- f is modular of weight k
- *f* is holomorphic
- *f* is meromorphic at its cusps Ω(Γ)

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What is a mo	dular form?			

Definition

A weight k weakly holomorphic modular form is a function $f:\mathbb{H}\to\mathbb{C}$ such that:

- f is modular of weight k
- *f* is holomorphic
- *f* is meromorphic at its cusps Ω(Γ)

 $M_k^!(\Gamma,\nu)$ = the space of weakly holomorphic forms

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality? (revisited)
 (revisited)

$$\left\{ f_m(z) = q^{-m} + \sum_n a(m,n)q^n \right\}_m$$

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality? (revisited)
 (revisited)

$$\left\{ f_m(z) = q^{-m} + \sum_n a(m, n)q^n \right\}_m \text{ and} \\ \left\{ g_m(z) = q^{-m} + \sum_n b(m, n)q^n \right\}_m$$

 Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 What is Zagier duality? (revisited)
 (revisited)

$$\begin{cases} f_m(z) = q^{-m} + \sum_n a(m, n)q^n \\ g_m(z) = q^{-m} + \sum_n b(m, n)q^n \end{cases}_m^m \text{ and } \end{cases}$$

exhibit Zagier duality if

$$a(m,n)=-b(n,m)$$

2002

Don Zagier published Traces of Singular Moduli

2002

Don Zagier published Traces of Singular Moduli

He constructed bases for level 4 weakly holomorphic forms of weights 1/2 and 3/2 which satisfied the Kohnen plus space condition

2002

$$a_{1/2}(m,n) = -a_{3/2}(n,m)$$

2002

One proof using recurrences

2002

One proof using recurrences

One proof by observing the constant term of $f_m g_n$ is

$$a_{1/2}(m,n) + a_{3/2}(n,m) = 0$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published **Zeros of certain modular functions and an application**

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published **Zeros of certain modular functions and an application**

They proved duality between bases for level 1 spaces with weights k and 2 - k for $k \in \{0, 4, 6, 8, 10, 14\}$

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published **Zeros of certain modular functions and an application**

They proved duality between bases for level 1 spaces with weights k and 2 - k for $k \in \{0, 4, 6, 8, 10, 14\}$

2006

Jeremy Rouse published Zagier duality for the exponents of Borcherds products for Hilbert modular forms

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published **Zeros of certain modular functions and an application**

They proved duality between bases for level 1 spaces with weights k and 2 - k for $k \in \{0, 4, 6, 8, 10, 14\}$

2006

Jeremy Rouse published Zagier duality for the exponents of Borcherds products for Hilbert modular forms

He proved duality between bases for certain weight 0 and weight 2 spaces with nontrivial multipliers

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Bill Duke

Paul Jenkins

2007

Bill Duke and Paul Jenkins published **On the zeros and** coefficients of certain weakly holomorphic modular forms

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Bill Duke

Paul Jenkins

2007

Bill Duke and Paul Jenkins published **On the zeros and** coefficients of certain weakly holomorphic modular forms

They constructed bases for level 1 weakly holomorphic modular forms of weights k and 2 - k

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Bill Duke

2007

For all even k,

$$a_k(m,n) = -a_{2-k}(n,m)$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Ahmad El-Guindy published Fourier expansions with modular form coefficients

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

2013

SoYoung Choi and Chang Heon Kim published **Basis for the** space of weakly holomorphic modular forms in higher level cases
Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

2013

SoYoung Choi and Chang Heon Kim published **Basis for the** space of weakly holomorphic modular forms in higher level cases

They extended Duke's and Jenkins' proof to establish duality between bases for forms over $\Gamma_0^+(p)$ with genus 0

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

2017

Victoria Iba, Paul Jenkins, and Merrill Warnick published Congruences for coefficients of modular functions in genus zero levels

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

2017

Victoria Iba, Paul Jenkins, and Merrill Warnick published Congruences for coefficients of modular functions in genus zero levels

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels 6, 10, 12, 18 of every even weight

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Daniel Adams published **Spaces of weakly holomorphic modular** forms in level 52

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Daniel Adams published **Spaces of weakly holomorphic modular forms in level 52**

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

Daniel Adams published **Spaces of weakly holomorphic modular** forms in level 52

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

2017

Kit Vander Wilt published Weakly holomorphic modular forms in level 64

Daniel Adams published **Spaces of weakly holomorphic modular** forms in level 52

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

2017

Kit Vander Wilt published Weakly holomorphic modular forms in level 64

He extended Duke's and Jenkins' proof to establish duality between bases for level 64 forms of every even weight

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Historical bac	kground			

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels 2, 3, 4, 5, 7, 8, 9, 16, and 25, of every even weight

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels 2, 3, 4, 5, 7, 8, 9, 16, and 25, of every even weight

2017

Paul Jenkins and the author published Zagier duality for level p weakly holomorphic modular forms

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels 2, 3, 4, 5, 7, 8, 9, 16, and 25, of every even weight

2017

Paul Jenkins and the author published Zagier duality for level p weakly holomorphic modular forms

They proved that duality holds for between weight 0 and weight 2 forms for an infinite class of primes, and that duality holds between weight k and 2 - k forms for every prime ≤ 37 of nonzero genus

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A few defin	nitions			
Define	$M^{(\infty)}(\Gamma, u)$ to be the	character of woold	holomorphic m	dular

Define $M_k^{\infty}(1,\nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A few definiti	ons			

Define $M_k^{(\infty)}(\Gamma, \nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞

Define $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish at each other cusp

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	1			

Write
$$\left\{ f_{k,m}^{(\nu)}(z) = q^{-m} + \sum_{n} a_{k}^{(\nu)}(m,n)q^{n} \right\}_{m}$$
 for the reduced-echelon basis for $M_{k}^{(\infty)}(\Gamma,\nu)$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	n			

Write
$$\left\{ f_{k,m}^{(\nu)}(z) = q^{-m} + \sum_{n} a_{k}^{(\nu)}(m,n)q^{n} \right\}_{m}$$
 for the reduced-echelon basis for $M_{k}^{(\infty)}(\Gamma,\nu)$
Write $\left\{ g_{k,m}^{(\nu)}(z) = q^{-m} + \sum_{n} b_{k}^{(\nu)}(m,n)q^{n} \right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma,\nu)$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	1			

Write
$$\begin{cases} f_{k,m}^{(\nu)}(z) = q^{-m} + \sum_{n} a_{k}^{(\nu)}(m,n)q^{n} \\ m \end{cases} \text{ for the} \\ \text{reduced-echelon basis for } M_{k}^{(\infty)}(\Gamma,\nu) \\ \text{Write } \begin{cases} g_{k,m}^{(\nu)}(z) = q^{-m} + \sum_{n} b_{k}^{(\nu)}(m,n)q^{n} \\ m \end{cases} \text{ for the} \end{cases}$$

reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu)$

Theorem (Griffin-Jenkins-M.)

$$a_k^{(\nu)}(m,n) = -b_{2-k}^{(\overline{\nu})}(n,m)$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	1			

Write
$$\mathcal{F}_{k}^{(\nu)}(z,\tau) = \sum_{m} f_{k,m}^{(\nu)}(\tau) q^{m}$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	1			

Write
$$\mathcal{F}_{k}^{(\nu)}(z,\tau) = \sum_{m} f_{k,m}^{(\nu)}(\tau)q^{m}$$

Write $\mathcal{G}_{k}^{(\nu)}(z,\tau) = \sum_{m} g_{k,m}^{(\nu)}(\tau)q^{m}$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Main theorem	ı			

Write
$$\mathcal{F}_{k}^{(\nu)}(z,\tau) = \sum_{m} f_{k,m}^{(\nu)}(\tau)q^{m}$$

Write $\mathcal{G}_{k}^{(\nu)}(z,\tau) = \sum_{m} g_{k,m}^{(\nu)}(\tau)q^{m}$

Corollary (Griffin-Jenkins-M.)

$$\mathcal{F}_{k}^{(\nu)}(z,\tau) = -\mathcal{G}_{2-k}^{(\overline{\nu})}(\tau,z)$$

Introduction Historical background Main theorem Proof sketch Conclusion
An example

The first few basis elements $f_{2,m}^{(11)}$ of $M_2^{(\infty)}(\Gamma_0(11))$ are:

$$\begin{split} & f_{2,-1}^{(11)}(z) = q & -2q^2 & -q^3 & +2q^4 & +q^5 + \dots \\ & f_{2,0}^{(11)}(z) = 1 & +12q^2 & +12q^3 & +12q^4 & +12q^5 + \dots \\ & f_{2,1}^{(11)}(z) = q^{-1} & -5q^2 & -2q^3 & -6q^4 & +14q^5 + \dots \\ & f_{2,2}^{(11)}(z) = q^{-2} & -8q^2 & -2q^3 & -3q^4 & +16q^5 + \dots \\ \end{split}$$

The first few basis elements $g_{0,m}^{(11)}$ of $\widehat{M}_0^{(\infty)}(\Gamma_0(11))$ are:

$$\begin{array}{ll} g_{0,2}^{(11)}(z) = q^{-2} & +2q^{-1} & -12 & +5q & +8q^2 + \dots \\ g_{0,3}^{(11)}(z) = q^{-3} & +1q^{-1} & -12 & +2q & +2q^2 + \dots \\ g_{0,4}^{(11)}(z) = q^{-4} & -2q^{-1} & -12 & +6q & +3q^2 + \dots \\ g_{0,5}^{(11)}(z) = q^{-5} & -1q^{-1} & -12 & -14q & -16q^2 + \dots \end{array}$$

Introduction Historical background Main theorem Proof sketch Conclusion
An example

The first few basis elements $f_{2,m}^{(11)}$ of $M_2^{(\infty)}(\Gamma_0(11))$ are:

 $\begin{array}{ll} f_{2,-1}^{(11)}(z) = q & -2q^2 & -q^3 & +2q^4 & +q^5 + \dots \\ f_{2,0}^{(11)}(z) = 1 & +12q^2 & +12q^3 & +12q^4 & +12q^5 + \dots \\ f_{2,1}^{(11)}(z) = q^{-1} & -5q^2 & -2q^3 & -6q^4 & +14q^5 + \dots \\ f_{2,2}^{(11)}(z) = q^{-2} & -8q^2 & -2q^3 & -3q^4 & +16q^5 + \dots \end{array}$

The first few basis elements $g_{0,m}^{(11)}$ of $\widehat{M}_0^{(\infty)}(\Gamma_0(11))$ are:

$$g_{0,2}^{(11)}(z) = q^{-2} + 2q^{-1} - 12 + 5q + 8q^{2} + \dots$$

$$g_{0,3}^{(11)}(z) = q^{-3} + 1q^{-1} - 12 + 2q + 2q^{2} + \dots$$

$$g_{0,4}^{(11)}(z) = q^{-4} - 2q^{-1} - 12 + 6q + 3q^{2} + \dots$$

$$g_{0,5}^{(11)}(z) = q^{-5} - 1q^{-1} - 12 - 14q - 16q^{2} + \dots$$

Introduction Historical background Main theorem Proof sketch Conclusion
An example

The first few basis elements $f_{2,m}^{(11)}$ of $M_2^{(\infty)}(\Gamma_0(11))$ are:

 $\begin{array}{ll} f_{2,-1}^{(11)}(z) = q & -2q^2 & -q^3 & +2q^4 & +q^5+\dots \\ f_{2,0}^{(11)}(z) = 1 & +12q^2 & +12q^3 & +12q^4 & +12q^5+\dots \\ f_{2,1}^{(11)}(z) = q^{-1} & -5q^2 & -2q^3 & -6q^4 & +14q^5+\dots \\ f_{2,2}^{(11)}(z) = q^{-2} & -8q^2 & -2q^3 & -3q^4 & +16q^5+\dots \end{array}$

The first few basis elements $g_{0,m}^{(11)}$ of $\widehat{M}_0^{(\infty)}(\Gamma_0(11))$ are:

$$g_{0,2}^{(11)}(z) = q^{-2} + 2q^{-1} - 12 + 5q + 8q^{2} + \dots$$

$$g_{0,3}^{(11)}(z) = q^{-3} + 1q^{-1} - 12 + 2q + 2q^{2} + \dots$$

$$g_{0,4}^{(11)}(z) = q^{-4} - 2q^{-1} - 12 + 6q + 3q^{2} + \dots$$

$$g_{0,5}^{(11)}(z) = q^{-5} - 1q^{-1} - 12 - 14q - 16q^{2} + \dots$$

Introd	uction	Historical background	Main theorem	Proof sketch	Conclusion
A n	nodest ext	ension			
	Let $U \sqcup V$	$\sqcup \set{\infty}$ be a partition	on of the set of c	usps Ω(Γ)	

Define $M_k^{(\infty)}(\Gamma,\nu,U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on U

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A modest	extension			
Let $U \sqcup$	$\sqcup V \sqcup \set{\infty}$ be a par	tition of the set	of cusps Ω(Γ)	
	()			

Define $M_k^{(\infty)}(\Gamma, \nu, U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on U

Define $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu, U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on V

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A modest e	extension			

Write
$$\left\{ f_{\nu,k,m}^{U}(z) = q^{-m} + \sum_{n} a_{\nu,k}^{U}(m,n)q^{n} \right\}_{m}$$
 for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma,\nu,U)$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A modest	extension			

Write
$$\left\{ f_{\nu,k,m}^{U}(z) = q^{-m} + \sum_{n} a_{\nu,k}^{U}(m,n)q^{n} \right\}_{m}$$
 for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma,\nu,U)$
Write $\left\{ g_{\nu,k,m}^{U}(z) = q^{-m} + \sum_{n} b_{\nu,k}^{U}(m,n)q^{n} \right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma,\nu,U)$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
A modest	extension			

Write
$$\left\{ f_{\nu,k,m}^{U}(z) = q^{-m} + \sum_{n} a_{\nu,k}^{U}(m,n)q^{n} \right\}_{m}$$
 for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma,\nu,U)$
Write $\left\{ g_{\nu,k,m}^{U}(z) = q^{-m} + \sum_{n} b_{\nu,k}^{U}(m,n)q^{n} \right\}_{m}$ for the

reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu, U)$

Theorem (Griffin-Jenkins-M.)

$$a^U_{
u,k}(m,n) = -b^U_{\overline{
u},2-k}(n,m)$$

Introd	uction	Historical background	Main theorem	Proof sketch	Conclusion		
Some notation							
	We say f =	$= ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\Gamma, u}$ i	f				

Introd	uction	Historical background	Main theorem	Proof sketch	Conclusion	
Some notation						
	We say f =	$= \left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\lambda}$	-,ν if			
	• Each	t^ is a formal Lai	urent series in <i>q</i>			

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Some nota	tion			

We say
$$\mathbf{f} = ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\mathsf{\Gamma},
u}$$
 if

• Each \mathbf{f}^{λ} is a formal Laurent series in q

• When
$$\lambda \infty = \lambda' \infty$$
, \mathbf{f}^{λ} and $\mathbf{f}^{\lambda'}$ are compatible

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Some notatio	n			

We say
$$\mathbf{f} = ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\mathsf{\Gamma},
u}$$
 if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty = \lambda' \infty$, \mathbf{f}^{λ} and $\mathbf{f}^{\lambda'}$ are compatible

 $M_k^!(\Gamma,
u) \hookrightarrow \mathbb{C}((q))_{\Gamma,
u}$ via $f \mapsto (f|_k \lambda)_\lambda$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Some notatio	n			

We say
$$\mathbf{f} = ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\mathsf{\Gamma},
u}$$
 if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda\infty=\lambda'\infty$, \mathbf{f}^{λ} and $\mathbf{f}^{\lambda'}$ are compatible

$$M_k^!(\Gamma,
u) \hookrightarrow \mathbb{C}((q))_{\Gamma,
u}$$
 via $f \mapsto (f|_k \lambda)_{\lambda}$

Write
$$\mathbf{f}^{\lambda} = \sum_{n} a^{\lambda}(n)q^{n}$$
, and $\mathbf{g}^{\lambda} = \sum_{n} b^{\lambda}(n)q^{n}$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Some notatio	n			

We say
$$\mathbf{f} = ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\mathsf{\Gamma},
u}$$
 if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty = \lambda' \infty$, \mathbf{f}^{λ} and $\mathbf{f}^{\lambda'}$ are compatible

$$M_k^!(\Gamma,
u) \hookrightarrow \mathbb{C}((q))_{\Gamma,
u}$$
 via $f \mapsto (f|_k \lambda)_{\lambda}$

Write
$$\mathbf{f}^{\lambda} = \sum_{n} a^{\lambda}(n)q^{n}$$
, and $\mathbf{g}^{\lambda} = \sum_{n} b^{\lambda}(n)q^{n}$

Write ω_ρ for the cuspidal width of ρ
Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Some notatio	n			

We say
$$\mathbf{f} = ig(\mathbf{f}^\lambdaig)_\lambda \in \mathbb{C}((q))_{\mathsf{\Gamma},
u}$$
 if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty = \lambda' \infty$, \mathbf{f}^{λ} and $\mathbf{f}^{\lambda'}$ are compatible

$$M_k^!(\Gamma,
u) \hookrightarrow \mathbb{C}((q))_{\Gamma,
u}$$
 via $f \mapsto (f|_k \lambda)_\lambda$

Write
$$\mathbf{f}^{\lambda} = \sum_{n} a^{\lambda}(n)q^{n}$$
, and $\mathbf{g}^{\lambda} = \sum_{n} b^{\lambda}(n)q^{n}$

Write $\omega_{
ho}$ for the cuspidal width of ho

Choose γ_{ρ} so that $\gamma_{\rho}\infty = \rho$

$$\{ullet,ullet\}_{\mathsf{\Gamma}}:\mathbb{C}((q))_{\mathsf{\Gamma},
u} imes\mathbb{C}((q))_{\mathsf{\Gamma},\overline{
u}} o\mathbb{C}$$

$$\{\bullet, \bullet\}_{\Gamma} : \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \overline{\nu}} \to \mathbb{C}$$
$$\{ f, g \}_{\Gamma} = \sum_{\rho \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)$$

Introduction
 Historical background
 Main theorem
 Proof sketch
 Conclusion

 The Borcherds–Bruinier–Funke pairing

$$\{\bullet, \bullet\}_{\Gamma} : \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \overline{\nu}} \to \mathbb{C}$$
 $\{f, g\}_{\Gamma} = \sum_{\rho \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)$
Theorem (Bruinier-Funke)

 If $f \in M_k^!(\Gamma, \nu)$ and $g \in M_{2-k}^!(\Gamma, \nu)$ then

 $\{f, g\}_{\Gamma} = 0$

The Borcherds–Bruinier–Funke pairing $\{\bullet,\bullet\}_{\Gamma}: \mathbb{C}((q))_{\Gamma,\nu} \times \mathbb{C}((q))_{\Gamma,\overline{\nu}} \to \mathbb{C}$ $\{f,g\}_{\Gamma} = \sum_{\rho \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)$ Theorem (Borcherds) For $\mathbf{f} = (\mathbf{f}^{\lambda})_{\lambda} \in \mathbb{C}((q))_{\Gamma,\nu}$, TFAE: • There exists $f \in M^!_{\nu}(\Gamma, \nu)$ such that for each λ , we have that $f^{\lambda} = \mathbf{f}^{\lambda} + o(1)$ • For every holomorphic modular form $g \in M_{2-k}(\Gamma, \overline{\nu})$, we have $\{\mathbf{f}, g\}_{\Gamma} = 0$

Main theorem

Proof sketch

Conclusion

Introduction

Historical background

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Proof of main	theorem			

 $\left\{ f_{k,m}^{(
u)}, g_{2-k,n}^{(\overline{
u})}
ight\} = 0$ as both forms are weakly holomorphic

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Proof of main	theorem			

 $\left\{ f_{k,m}^{(
u)}, g_{2-k,n}^{(\overline{
u})}
ight\} = 0$ as both forms are weakly holomorphic

$$\sum_{n} a_{k}^{\nu,\gamma_{\rho}}(n) b_{2-k}^{\overline{\nu},\gamma_{\rho}}(-n) = 0 \text{ for } \rho \neq \infty$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Proof of main	theorem			

 $\left\{ \, f_{k,m}^{(
u)}, g_{2-k,n}^{(\overline{
u})} \,
ight\} = 0$ as both forms are weakly holomorphic

$$\sum\limits_{n}a_{k}^{
u,\gamma_{
ho}}(n)b_{2-k}^{\overline{
u},\gamma_{
ho}}(-n)=0 ext{ for }
ho
eq\infty$$

$$a_k^{(\nu)}(m,n) + b_{2-k}^{(\overline{\nu})}(n,m) + \sum_{\ell} a_k^{(\nu)}(m,\ell) b_{2-k}^{(\overline{\nu})}(n,-\ell) = 0$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Proof of main	theorem			

$$\left\{ \, f_{k,m}^{(
u)}, g_{2-k,n}^{(\overline{
u})} \,
ight\} = 0$$
 as both forms are weakly holomorphic

$$\sum_{n}a_{k}^{
u,\gamma_{
ho}}(n)b_{2-k}^{
u,\gamma_{
ho}}(-n)=0 ext{ for }
ho
eq\infty$$

$$a_k^{(\nu)}(m,n) + b_{2-k}^{(\overline{\nu})}(n,m) + \sum_{\ell} a_k^{(\nu)}(m,\ell) b_{2-k}^{(\overline{\nu})}(n,-\ell) = 0$$

But
$$\sum_{\ell} a_k^{(\nu)}(m,\ell) b_{2-k}^{(\overline{\nu})}(n,-\ell) = 0$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
Proof of main	theorem			

$$\left\{ \, f_{k,m}^{(
u)}, g_{2-k,n}^{(\overline{
u})} \,
ight\} = 0$$
 as both forms are weakly holomorphic

$$\sum\limits_{n}a_{k}^{
u,\gamma
ho}(n)b_{2-k}^{\overline{
u},\gamma
ho}(-n)=0 ext{ for }
ho
eq\infty$$

$$a_k^{(\nu)}(m,n) + b_{2-k}^{(\overline{\nu})}(n,m) + \sum_{\ell} a_k^{(\nu)}(m,\ell) b_{2-k}^{(\overline{\nu})}(n,-\ell) = 0$$

But
$$\sum_{\ell} a_k^{(\nu)}(m,\ell) b_{2-k}^{(\overline{\nu})}(n,-\ell) = 0$$

Then
$$a_k^{(\nu)}(m,n) + b_{2-k}^{(\overline{\nu})}(n,m) = 0$$

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What comes	next?			

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What comes	next?			

Question

What can we say about
$$\mathcal{F}_{k}^{(
u)}(z, au)$$
 and $\mathcal{G}_{k}^{(
u)}(z, au)$?

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What comes	next?			

Question

What can we say about
$$\mathcal{F}_k^{(
u)}(z, au)$$
 and $\mathcal{G}_k^{(
u)}(z, au)$?

Question

Zagier duality gives us grids of coefficients. Do linear combinations of these modular grids produce interesting families of forms?

Introduction	Historical background	Main theorem	Proof sketch	Conclusion
What comes	next?			

Question

What can we say about
$$\mathcal{F}_k^{(
u)}(z, au)$$
 and $\mathcal{G}_k^{(
u)}(z, au)$?

Question

Zagier duality gives us grids of coefficients. Do linear combinations of these modular grids produce interesting families of forms?

Question

What about harmonic Maass forms?

Thank you for your attention!