The Arithmetic of Modular Grids

Grant Molnar

Dartmouth College
October 5, 2019

Joint Work with M. Griffin, P. Jenkins

What is Zagier duality?

Let $f_{k, m}(z)$ be the unique weakly holomorphic modular form of weight k over $\mathrm{SL}_{2}(\mathbb{Z})$ with Fourier expansion

$$
f_{k, m}(z)=q^{-m}+O\left(q^{\ell+1}\right)
$$

$$
\begin{aligned}
& f_{0,0}(z)=1 \\
& f_{0,1}(z)=q^{-1}+196884 q \quad+21493760 q^{2} \quad+\ldots \\
& f_{0,2}(z)=q^{-2}+42987520 q+40491909396 q^{2}+\ldots \\
& f_{2,1}(z)=q^{-1}-196884 q-42987520 q^{2} \quad+\ldots \\
& f_{2,2}(z)=q^{-2}-21493760 q-40491909396 q^{2}+\ldots
\end{aligned}
$$

What is Zagier duality?

Let $f_{k, m}(z)$ be the unique weakly holomorphic modular form of weight k over $\mathrm{SL}_{2}(\mathbb{Z})$ with Fourier expansion

$$
f_{k, m}(z)=q^{-m}+O\left(q^{\ell+1}\right)
$$

$$
\begin{aligned}
& f_{0,0}(z)=1 \\
& f_{0,1}(z)=q^{-1}+196884 q \quad+21493760 q^{2} \quad+\ldots \\
& f_{0,2}(z)=q^{-2}+42987520 q+40491909396 q^{2}+\ldots \\
& f_{2,1}(z)=q^{-1}-196884 q-42987520 q^{2} \quad+\ldots \\
& f_{2,2}(z)=q^{-2}-21493760 q-40491909396 q^{2}+\ldots
\end{aligned}
$$

What is Zagier duality?

Let $f_{k, m}(z)$ be the unique weakly holomorphic modular form of weight k over $\mathrm{SL}_{2}(\mathbb{Z})$ with Fourier expansion

$$
f_{k, m}(z)=q^{-m}+O\left(q^{\ell+1}\right)
$$

$$
\begin{aligned}
& f_{0,0}(z)=1 \\
& f_{0,1}(z)=q^{-1}+196884 q+21493760 q^{2}+\ldots \\
& f_{0,2}(z)=q^{-2}+42987520 q+40491909396 q^{2}+\ldots \\
& f_{2,1}(z)=q^{-1}-196884 q-42987520 q^{2}+\ldots \\
& f_{2,2}(z)=q^{-2}-21493760 q-40491909396 q^{2}+\ldots
\end{aligned}
$$

What is a modular form?

Let G and H be subgroups of $\mathrm{SL}_{2}(\mathbb{R})$
We say G and H are commensurable if

$$
[G: G \cap H]<\infty \text { and }[H: G \cap H]<\infty
$$

What is a modular form?

Let G and H be subgroups of $\mathrm{SL}_{2}(\mathbb{R})$

We say G and H are commensurable if

$$
[G: G \cap H]<\infty \text { and }[H: G \cap H]<\infty
$$

Let Γ be commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$

What is a modular form?

Let G and H be subgroups of $\mathrm{SL}_{2}(\mathbb{R})$
We say G and H are commensurable if

$$
[G: G \cap H]<\infty \text { and }[H: G \cap H]<\infty
$$

Let Γ be commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$
Define $\mathbb{H}=\{x+\mathrm{i} y \in \mathbb{C} \mid y>0\}$
A function $f: \mathbb{H} \rightarrow \mathbb{C}$ is modular for Γ (of weight k with multiplier ν) if it is symmetric with respect to Γ

What is a modular form?

Let G and H be subgroups of $\mathrm{SL}_{2}(\mathbb{R})$
We say G and H are commensurable if

$$
[G: G \cap H]<\infty \text { and }[H: G \cap H]<\infty
$$

Let Γ be commensurable with $\mathrm{SL}_{2}(\mathbb{Z})$
Define $\mathbb{H}=\{x+\mathrm{i} y \in \mathbb{C} \mid y>0\}$
A function $f: \mathbb{H} \rightarrow \mathbb{C}$ is modular for Γ (of weight k with multiplier
ν) if it is symmetric with respect to Γ

What is a modular form?

What kinds of symmetries?

What is a modular form?

What kinds of symmetries?

Modular forms are periodic!

What is a modular form?

What kinds of symmetries?

Modular forms are periodic!
If $f(z)$ is a weakly holomorphic modular form of weight k with multiplier ν, then we may write

What is a modular form?

What kinds of symmetries?

Modular forms are periodic!
If $f(z)$ is a weakly holomorphic modular form of weight k with multiplier ν, then we may write

$$
f(z)=\sum_{n \gg-\infty} a_{n} q^{n}
$$

where $q=e^{2 \pi \mathrm{i} z}$

What is a modular form?

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and z arbitrary, define $\gamma z=\frac{a z+b}{c z+d}$
Define $j(\gamma, z)=c z+d$

What is a modular form?

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and z arbitrary, define $\gamma z=\frac{a z+b}{c z+d}$
Define $j(\gamma, z)=c z+d$
A map $\nu: \Gamma \rightarrow \mathbb{C}^{\times}$is a weight k multiplier if

$$
\nu\left(\gamma_{1}\right) \nu\left(\gamma_{2}\right) j\left(\gamma_{1}, \gamma_{2} z\right)^{k} j\left(\gamma_{2}, z\right)^{k}=\nu\left(\gamma_{1} \gamma_{2}\right) j\left(\gamma_{1} \gamma_{2}, z\right)^{k}
$$

What is a modular form?

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and z arbitrary, define $\gamma z=\frac{a z+b}{c z+d}$
Define $j(\gamma, z)=c z+d$
A map $\nu: \Gamma \rightarrow \mathbb{C}^{\times}$is a weight k multiplier if

$$
\nu\left(\gamma_{1}\right) \nu\left(\gamma_{2}\right) j\left(\gamma_{1}, \gamma_{2} z\right)^{k} j\left(\gamma_{2}, z\right)^{k}=\nu\left(\gamma_{1} \gamma_{2}\right) j\left(\gamma_{1} \gamma_{2}, z\right)^{k}
$$

What is a modular form?

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and z arbitrary, define $\gamma z=\frac{a z+b}{c z+d}$
Define $j(\gamma, z)=c z+d$
A map $\nu: \Gamma \rightarrow \mathbb{C}^{\times}$is a weight k multiplier if

$$
\nu\left(\gamma_{1}\right) \nu\left(\gamma_{2}\right) j\left(\gamma_{1}, \gamma_{2} z\right)^{k} j\left(\gamma_{2}, z\right)^{k}=\nu\left(\gamma_{1} \gamma_{2}\right) j\left(\gamma_{1} \gamma_{2}, z\right)^{k}
$$

A function $f: \mathbb{H} \rightarrow \mathbb{C}$ is modular of weight k for Γ with multiplier ν if

$$
f(\gamma z)=\nu(\gamma) j(\gamma, z)^{k} f(z)
$$

What is a modular form?

Definition

A weight k weakly holomorphic modular form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

- f is modular of weight k
- f is holomorphic
- f is meromorphic at its cusps $\Omega(\Gamma)$

What is a modular form?

Definition

A weight k weakly holomorphic modular form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

- f is modular of weight k
- f is holomorphic
- f is meromorphic at its cusps $\Omega(\Gamma)$
$M_{k}^{!}(\Gamma, \nu)=$ the space of weakly holomorphic forms

What is Zagier duality? (revisited)

$$
\left\{f_{m}(z)=q^{-m}+\sum_{n} a(m, n) q^{n}\right\}_{m}
$$

What is Zagier duality? (revisited)

$$
\begin{aligned}
& \left\{f_{m}(z)=q^{-m}+\sum_{n} a(m, n) q^{n}\right\}_{m} \text { and } \\
& \left\{g_{m}(z)=q^{-m}+\sum_{n} b(m, n) q^{n}\right\}_{m}
\end{aligned}
$$

What is Zagier duality? (revisited)

$$
\begin{aligned}
& \left\{f_{m}(z)=q^{-m}+\sum_{n} a(m, n) q^{n}\right\}_{m} \text { and } \\
& \left\{g_{m}(z)=q^{-m}+\sum_{n} b(m, n) q^{n}\right\}_{m}
\end{aligned}
$$

exhibit Zagier duality if

$$
a(m, n)=-b(n, m)
$$

Historical background

2002
Don Zagier published Traces of Singular Moduli

Historical background

2002

Don Zagier published Traces of Singular Moduli

He constructed bases for level 4 weakly holomorphic forms of weights $1 / 2$ and $3 / 2$ which satisfied the Kohnen plus space condition

Historical background

2002

$$
a_{1 / 2}(m, n)=-a_{3 / 2}(n, m)
$$

Historical background

2002
One proof using recurrences

Historical background

2002

One proof using recurrences
One proof by observing the constant term of $f_{m} g_{n}$ is

$$
a_{1 / 2}(m, n)+a_{3 / 2}(n, m)=0
$$

Historical background

1997
Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published Zeros of certain modular functions and an application

Historical background

1997

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published Zeros of certain modular functions and an application

They proved duality between bases for level 1 spaces with weights k and $2-k$ for $k \in\{0,4,6,8,10,14\}$

Historical background

1997

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published Zeros of certain modular functions and an application

They proved duality between bases for level 1 spaces with weights k and $2-k$ for $k \in\{0,4,6,8,10,14\}$

2006

Jeremy Rouse published Zagier duality for the exponents of Borcherds products for Hilbert modular forms

Historical background

1997

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published Zeros of certain modular functions and an application

They proved duality between bases for level 1 spaces with weights k and $2-k$ for $k \in\{0,4,6,8,10,14\}$

2006

Jeremy Rouse published Zagier duality for the exponents of Borcherds products for Hilbert modular forms

He proved duality between bases for certain weight 0 and weight 2 spaces with nontrivial multipliers

Historical background

Bill Duke

Paul Jenkins

2007

Bill Duke and Paul Jenkins published On the zeros and coefficients of certain weakly holomorphic modular forms

Historical background

Bill Duke

Paul Jenkins

2007

Bill Duke and Paul Jenkins published On the zeros and coefficients of certain weakly holomorphic modular forms

They constructed bases for level 1 weakly holomorphic modular forms of weights k and $2-k$

Historical background

Bill Duke

Paul Jenkins

2007

For all even k,

$$
a_{k}(m, n)=-a_{2-k}(n, m)
$$

Historical background

2008

Ahmad El-Guindy published Fourier expansions with modular form coefficients

Historical background

2008

Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

Historical background

2008

Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

2013

SoYoung Choi and Chang Heon Kim published Basis for the space of weakly holomorphic modular forms in higher level cases

Historical background

2008

Ahmad El-Guindy published Fourier expansions with modular form coefficients

He proved that in certain levels, any form could be used as the first term in a sequence exhibiting Zagier duality

2013

SoYoung Choi and Chang Heon Kim published Basis for the space of weakly holomorphic modular forms in higher level cases

They extended Duke's and Jenkins' proof to establish duality between bases for forms over $\Gamma_{0}^{+}(p)$ with genus 0

Historical background

2014
Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

Historical background

2014

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

Historical background

2014

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

2017

Victoria Iba, Paul Jenkins, and Merrill Warnick published Congruences for coefficients of modular functions in genus zero levels

Historical background

2014

Andrew Haddock and Paul Jenkins published Zeros of weakly holomorphic modular forms of level 4

They extended Duke's and Jenkins' proof to establish duality between bases for level 4 forms of every even weight

2017

Victoria Iba, Paul Jenkins, and Merrill Warnick published Congruences for coefficients of modular functions in genus zero levels

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels $6,10,12,18$ of every even weight

Historical background

2017

Daniel Adams published Spaces of weakly holomorphic modular forms in level 52

Historical background

2017

Daniel Adams published Spaces of weakly holomorphic modular forms in level 52

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

Historical background

2017

Daniel Adams published Spaces of weakly holomorphic modular forms in level 52

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

2017

Kit Vander Wilt published Weakly holomorphic modular forms in level 64

Historical background

2017

Daniel Adams published Spaces of weakly holomorphic modular forms in level 52

He extended Duke's and Jenkins' proof to establish duality between bases for level 52 forms of every even weight

2017

Kit Vander Wilt published Weakly holomorphic modular forms in level 64

He extended Duke's and Jenkins' proof to establish duality between bases for level 64 forms of every even weight

Historical background

2017

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

Historical background

2017

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels $2,3,4,5,7,8,9,16$, and 25 , of every even weight

Historical background

2017

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels $2,3,4,5,7,8,9,16$, and 25 , of every even weight

2017

Paul Jenkins and the author published Zagier duality for level p weakly holomorphic modular forms

Historical background

2017

Paul Jenkins and DJ Thornton published Weakly holomorphic modular forms in prime power levels of genus zero

They extended Duke's and Jenkins' proof to establish duality between bases for forms with levels $2,3,4,5,7,8,9,16$, and 25 , of every even weight

2017

Paul Jenkins and the author published Zagier duality for level p weakly holomorphic modular forms

They proved that duality holds for between weight 0 and weight 2 forms for an infinite class of primes, and that duality holds between weight k and $2-k$ forms for every prime ≤ 37 of nonzero genus

A few definitions

Define $M_{k}^{(\infty)}(\Gamma, \nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞

A few definitions

Define $M_{k}^{(\infty)}(\Gamma, \nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞

Define $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish at each other cusp

Main theorem

Write $\left\{f_{k, m}^{(\nu)}(z)=q^{-m}+\sum_{n} a_{k}^{(\nu)}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $M_{k}^{(\infty)}(\Gamma, \nu)$

Main theorem

Write $\left\{f_{k, m}^{(\nu)}(z)=q^{-m}+\sum_{n} a_{k}^{(\nu)}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $M_{k}^{(\infty)}(\Gamma, \nu)$

Write $\left\{g_{k, m}^{(\nu)}(z)=q^{-m}+\sum_{n} b_{k}^{(\nu)}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu)$

Main theorem

Write $\left\{f_{k, m}^{(\nu)}(z)=q^{-m}+\sum_{n} a_{k}^{(\nu)}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $M_{k}^{(\infty)}(\Gamma, \nu)$

Write $\left\{g_{k, m}^{(\nu)}(z)=q^{-m}+\sum_{n} b_{k}^{(\nu)}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu)$

Theorem (Griffin-Jenkins-M.)

$$
a_{k}^{(\nu)}(m, n)=-b_{2-k}^{(\bar{\nu})}(n, m)
$$

Main theorem

Write $\mathcal{F}_{k}^{(\nu)}(z, \tau)=\sum_{m} f_{k, m}^{(\nu)}(\tau) q^{m}$

Main theorem

Write $\mathcal{F}_{k}^{(\nu)}(z, \tau)=\sum_{m} f_{k, m}^{(\nu)}(\tau) q^{m}$
Write $\mathcal{G}_{k}^{(\nu)}(z, \tau)=\sum_{m} g_{k, m}^{(\nu)}(\tau) q^{m}$

Main theorem

Write $\mathcal{F}_{k}^{(\nu)}(z, \tau)=\sum_{m} f_{k, m}^{(\nu)}(\tau) q^{m}$
Write $\mathcal{G}_{k}^{(\nu)}(z, \tau)=\sum_{m} g_{k, m}^{(\nu)}(\tau) q^{m}$

Corollary (Griffin-Jenkins-M.)

$$
\mathcal{F}_{k}^{(\nu)}(z, \tau)=-\mathcal{G}_{2-k}^{(\bar{\nu})}(\tau, z)
$$

An example

The first few basis elements $f_{2, m}^{(11)}$ of $M_{2}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
f_{2,-1}^{(11)}(z)=q & -2 q^{2} & -q^{3} & +2 q^{4} & +q^{5}+\ldots \\
f_{2,0}^{(11)}(z)=1 & +12 q^{2} & +12 q^{3} & +12 q^{4} & +12 q^{5}+\ldots \\
f_{2,1}^{(11)}(z)=q^{-1} & -5 q^{2} & -2 q^{3} & -6 q^{4} & +14 q^{5}+\ldots \\
f_{2,2}^{(11)}(z)=q^{-2} & -8 q^{2} & -2 q^{3} & -3 q^{4} & +16 q^{5}+\ldots
\end{array}
$$

The first few basis elements $g_{0, m}^{(11)}$ of $\widehat{M}_{0}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
g_{0,2}^{(11)}(z)=q^{-2} & +2 q^{-1} & -12 & +5 q & +8 q^{2}+\ldots \\
g_{0,3}^{(11)}(z)=q^{-3} & +1 q^{-1} & -12 & +2 q & +2 q^{2}+\ldots \\
g_{0,4}^{(11)}(z)=q^{-4} & -2 q^{-1} & -12 & +6 q & +3 q^{2}+\ldots \\
g_{0,5}^{(11)}(z)=q^{-5} & -1 q^{-1} & -12 & -14 q & -16 q^{2}+\ldots
\end{array}
$$

An example

The first few basis elements $f_{2, m}^{(11)}$ of $M_{2}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
f_{2,-1}^{(11)}(z)=q & -2 q^{2} & -q^{3} & +2 q^{4} & +q^{5}+\ldots \\
f_{2,0}^{(11)}(z)=1 & +12 q^{2} & +12 q^{3} & +12 q^{4} & +12 q^{5}+\ldots \\
f_{2,1}^{(11)}(z)=q^{-1} & -5 q^{2} & -2 q^{3} & -6 q^{4} & +14 q^{5}+\ldots \\
f_{2,2}^{(11)}(z)=q^{-2} & -8 q^{2} & -2 q^{3} & -3 q^{4} & +16 q^{5}+\ldots
\end{array}
$$

The first few basis elements $g_{0, m}^{(11)}$ of $\widehat{M}_{0}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
g_{0,2}^{(11)}(z)=q^{-2} & +2 q^{-1} & -12 & +5 q & +8 q^{2}+\ldots \\
g_{0,3}^{(11)}(z)=q^{-3} & +1 q^{-1} & -12 & +2 q & +2 q^{2}+\ldots \\
g_{0,4}^{(11)}(z)=q^{-4} & -2 q^{-1} & -12 & +6 q & +3 q^{2}+\ldots \\
g_{0,5}^{(11)}(z)=q^{-5} & -1 q^{-1} & -12 & -14 q & -16 q^{2}+\ldots
\end{array}
$$

An example

The first few basis elements $f_{2, m}^{(11)}$ of $M_{2}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
f_{2,-1}^{(11)}(z)=q & -2 q^{2} & -q^{3} & +2 q^{4} & +q^{5}+\ldots \\
f_{2,0}^{(11)}(z)=1 & +12 q^{2} & +12 q^{3} & +12 q^{4} & +12 q^{5}+\ldots \\
f_{2,1}^{(11)}(z)=q^{-1} & -5 q^{2} & -2 q^{3} & -6 q^{4} & +14 q^{5}+\ldots \\
f_{2,2}^{(11)}(z)=q^{-2} & -8 q^{2} & -2 q^{3} & -3 q^{4} & +16 q^{5}+\ldots
\end{array}
$$

The first few basis elements $g_{0, m}^{(11)}$ of $\widehat{M}_{0}^{(\infty)}\left(\Gamma_{0}(11)\right)$ are:

$$
\begin{array}{lllll}
g_{0,2}^{(11)}(z)=q^{-2} & +2 q^{-1} & -12 & +5 q & +8 q^{2}+\ldots \\
g_{0,3}^{(11)}(z)=q^{-3} & +1 q^{-1} & -12 & +2 q & +2 q^{2}+\ldots \\
g_{0,4}^{(11)}(z)=q^{-4} & -2 q^{-1} & -12 & +6 q & +3 q^{2}+\ldots \\
g_{0,5}^{(11)}(z)=q^{-5} & -1 q^{-1} & -12 & -14 q & -16 q^{2}+\ldots
\end{array}
$$

A modest extension

Let $U \sqcup V \sqcup\{\infty\}$ be a partition of the set of cusps $\Omega(\Gamma)$

A modest extension

Let $U \sqcup V \sqcup\{\infty\}$ be a partition of the set of cusps $\Omega(\Gamma)$
Define $M_{k}^{(\infty)}(\Gamma, \nu, U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on U

A modest extension

Let $U \sqcup V \sqcup\{\infty\}$ be a partition of the set of cusps $\Omega(\Gamma)$
Define $M_{k}^{(\infty)}(\Gamma, \nu, U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on U

Define $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu, U)$ to be the space of weakly holomorphic modular forms with poles only at ∞ which vanish on V

A modest extension

Write $\left\{f_{\nu, k, m}^{U}(z)=q^{-m}+\sum_{n} a_{\nu, k}^{U}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma, \nu, U)$

A modest extension

Write $\left\{f_{\nu, k, m}^{U}(z)=q^{-m}+\sum_{n} a_{\nu, k}^{U}(m, n) q^{n}\right\}_{m} \quad$ for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma, \nu, U)$

Write $\left\{g_{\nu, k, m}^{U}(z)=q^{-m}+\sum_{n} b_{\nu, k}^{U}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu, U)$

A modest extension

Write $\left\{f_{\nu, k, m}^{U}(z)=q^{-m}+\sum_{n} a_{\nu, k}^{U}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $M_{k}^{\infty}(\Gamma, \nu, U)$

Write $\left\{g_{\nu, k, m}^{U}(z)=q^{-m}+\sum_{n} b_{\nu, k}^{U}(m, n) q^{n}\right\}_{m}$ for the reduced-echelon basis for $\widehat{M}_{k}^{(\infty)}(\Gamma, \nu, U)$

Theorem (Griffin-Jenkins-M.)

$$
a_{\nu, k}^{U}(m, n)=-b_{\bar{\nu}, 2-k}^{U}(n, m)
$$

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty=\lambda^{\prime} \infty, \mathbf{f}^{\lambda}$ and $\mathbf{f}^{\lambda^{\prime}}$ are compatible

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty=\lambda^{\prime} \infty, \mathbf{f}^{\lambda}$ and $\mathbf{f}^{\lambda^{\prime}}$ are compatible
$M_{k}^{!}(\Gamma, \nu) \hookrightarrow \mathbb{C}((q))_{\Gamma, \nu}$ via $f \mapsto\left(\left.f\right|_{k} \lambda\right)_{\lambda}$

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty=\lambda^{\prime} \infty, \mathbf{f}^{\lambda}$ and $\mathbf{f}^{\lambda^{\prime}}$ are compatible
$M_{k}^{!}(\Gamma, \nu) \hookrightarrow \mathbb{C}((q))_{\Gamma, \nu}$ via $f \mapsto\left(\left.f\right|_{k} \lambda\right)_{\lambda}$
Write $\mathbf{f}^{\lambda}=\sum_{n} a^{\lambda}(n) q^{n}$, and $\mathbf{g}^{\lambda}=\sum_{n} b^{\lambda}(n) q^{n}$

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty=\lambda^{\prime} \infty, \mathbf{f}^{\lambda}$ and $\mathbf{f}^{\lambda^{\prime}}$ are compatible
$M_{k}^{!}(\Gamma, \nu) \hookrightarrow \mathbb{C}((q))_{\Gamma, \nu} \operatorname{via} f \mapsto\left(\left.f\right|_{k} \lambda\right)_{\lambda}$
Write $\mathbf{f}^{\lambda}=\sum_{n} a^{\lambda}(n) q^{n}$, and $\mathbf{g}^{\lambda}=\sum_{n} b^{\lambda}(n) q^{n}$
Write ω_{ρ} for the cuspidal width of ρ

Some notation

We say $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$ if

- Each \mathbf{f}^{λ} is a formal Laurent series in q
- When $\lambda \infty=\lambda^{\prime} \infty, \mathbf{f}^{\lambda}$ and $\mathbf{f}^{\lambda^{\prime}}$ are compatible
$M_{k}^{!}(\Gamma, \nu) \hookrightarrow \mathbb{C}((q))_{\Gamma, \nu}$ via $f \mapsto\left(\left.f\right|_{k} \lambda\right)_{\lambda}$
Write $\mathbf{f}^{\lambda}=\sum_{n} a^{\lambda}(n) q^{n}$, and $\mathbf{g}^{\lambda}=\sum_{n} b^{\lambda}(n) q^{n}$
Write ω_{ρ} for the cuspidal width of ρ
Choose γ_{ρ} so that $\gamma_{\rho} \infty=\rho$

The Borcherds-Bruinier-Funke pairing

$\{\bullet, \bullet\}_{\Gamma}: \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \bar{\nu}} \rightarrow \mathbb{C}$

The Borcherds-Bruinier-Funke pairing
$\{\bullet, \bullet\}_{\Gamma}: \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \bar{\nu}} \rightarrow \mathbb{C}$
$\{f, g\}_{\Gamma}=\sum_{p \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)$

The Borcherds-Bruinier-Funke pairing

$$
\begin{aligned}
& \{\bullet, \bullet\}_{\Gamma}: \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \bar{\nu}} \rightarrow \mathbb{C} \\
& \{f, g\}_{\Gamma}=\sum_{\rho \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)
\end{aligned}
$$

Theorem (Bruinier-Funke)

If $f \in M_{k}^{!}(\Gamma, \nu)$ and $g \in M_{2-k}^{!}(\Gamma, \nu)$ then

$$
\{f, g\}_{\Gamma}=0
$$

The Borcherds-Bruinier-Funke pairing
$\{\bullet \bullet \bullet\}_{\Gamma}: \mathbb{C}((q))_{\Gamma, \nu} \times \mathbb{C}((q))_{\Gamma, \bar{\nu}} \rightarrow \mathbb{C}$
$\{f, g\}_{\Gamma}=\sum_{\rho \in \Omega(\Gamma)} \omega_{\rho} \sum_{n} a^{\gamma_{\rho}}(n) b^{\gamma_{\rho}}(-n)$

Theorem (Borcherds)

For $\mathbf{f}=\left(\mathbf{f}^{\lambda}\right)_{\lambda} \in \mathbb{C}((q))_{\Gamma, \nu}$, TFAE:

- There exists $f \in M_{k}^{!}(\Gamma, \nu)$ such that for each λ, we have that $f^{\lambda}=\mathbf{f}^{\lambda}+o(1)$
- For every holomorphic modular form $g \in M_{2-k}(\Gamma, \bar{\nu})$, we have $\{\mathbf{f}, g\}_{\Gamma}=0$

Proof of main theorem

Proof Sketch

$\left\{f_{k, m}^{(\nu)}, g_{2-k, n}^{(\bar{\nu})}\right\}=0$ as both forms are weakly holomorphic

Proof of main theorem

Proof Sketch

$\left\{f_{k, m}^{(\nu)}, g_{2-k, n}^{(\bar{\nu})}\right\}=0$ as both forms are weakly holomorphic

$$
\sum_{n} a_{k}^{\nu, \gamma_{\rho}}(n) b_{2-k}^{\bar{\nu}, \gamma_{\rho}}(-n)=0 \text { for } \rho \neq \infty
$$

Proof of main theorem

Proof Sketch

$\left\{f_{k, m}^{(\nu)}, g_{2-k, n}^{(\bar{\nu})}\right\}=0$ as both forms are weakly holomorphic
$\sum_{n} a_{k}^{\nu, \gamma_{\rho}}(n) b_{2-k}^{\bar{\nu}, \gamma_{\rho}}(-n)=0$ for $\rho \neq \infty$
$a_{k}^{(\nu)}(m, n)+b_{2-k}^{(\bar{\nu})}(n, m)+\sum_{\ell} a_{k}^{(\nu)}(m, \ell) b_{2-k}^{(\bar{\nu})}(n,-\ell)=0$

Proof of main theorem

Proof Sketch

$\left\{f_{k, m}^{(\nu)}, g_{2-k, n}^{(\bar{\nu})}\right\}=0$ as both forms are weakly holomorphic

$$
\begin{aligned}
& \sum_{n} a_{k}^{\nu, \gamma_{\rho}}(n) b_{2-k}^{\bar{\nu}, \gamma_{\rho}}(-n)=0 \text { for } \rho \neq \infty \\
& a_{k}^{(\nu)}(m, n)+b_{2-k}^{(\bar{\nu})}(n, m)+\sum_{\ell} a_{k}^{(\nu)}(m, \ell) b_{2-k}^{(\bar{\nu})}(n,-\ell)=0
\end{aligned}
$$

But $\sum_{\ell} a_{k}^{(\nu)}(m, \ell) b_{2-k}^{(\nu)}(n,-\ell)=0$

Proof of main theorem

Proof Sketch

$\left\{f_{k, m}^{(\nu)}, g_{2-k, n}^{(\bar{\nu})}\right\}=0$ as both forms are weakly holomorphic

$$
\begin{aligned}
& \sum_{n} a_{k}^{\nu, \gamma_{\rho}}(n) b_{2-k}^{\bar{\nu}, \gamma_{\rho}}(-n)=0 \text { for } \rho \neq \infty \\
& a_{k}^{(\nu)}(m, n)+b_{2-k}^{(\bar{\nu})}(n, m)+\sum_{\ell} a_{k}^{(\nu)}(m, \ell) b_{2-k}^{(\bar{\nu})}(n,-\ell)=0
\end{aligned}
$$

$$
\text { But } \sum_{\ell} a_{k}^{(\nu)}(m, \ell) b_{2-k}^{(\nu)}(n,-\ell)=0
$$

Then $a_{k}^{(\nu)}(m, n)+b_{2-k}^{(\bar{\nu})}(n, m)=0$

What comes next?

Question

What can we say about $\mathcal{F}_{k}^{(\nu)}(z, \tau)$ and $\mathcal{G}_{k}^{(\nu)}(z, \tau)$?

What comes next?

Question

What can we say about $\mathcal{F}_{k}^{(\nu)}(z, \tau)$ and $\mathcal{G}_{k}^{(\nu)}(z, \tau)$?

Question

Zagier duality gives us grids of coefficients. Do linear combinations of these modular grids produce interesting families of forms?

What comes next?

Question

What can we say about $\mathcal{F}_{k}^{(\nu)}(z, \tau)$ and $\mathcal{G}_{k}^{(\nu)}(z, \tau)$?

Question

Zagier duality gives us grids of coefficients. Do linear combinations of these modular grids produce interesting families of forms?

Question

What about harmonic Maass forms?

Thank you for your attention!

