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What is Zagier duality?

Let fk,m(z) be the unique weakly holomorphic modular form of
weight k over SL2(Z) with Fourier expansion

fk,m(z) = q−m + O(q`+1)

f0,0(z) = 1

f0,1(z) = q−1 + 196884q + 21493760q2 + . . .

f0,2(z) = q−2 + 42987520q + 40491909396q2 + . . .

f2,1(z) = q−1 − 196884q − 42987520q2 + . . .

f2,2(z) = q−2 − 21493760q − 40491909396q2 + . . .
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What is a modular form?

Let G and H be subgroups of SL2(R)

We say G and H are commensurable if

[G : G ∩ H] <∞ and [H : G ∩ H] <∞

Let Γ be commensurable with SL2(Z)

Define H = { x + iy ∈ C | y > 0 }

A function f : H→ C is modular for Γ (of weight k with multiplier
ν) if it is symmetric with respect to Γ
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What is a modular form?

What kinds of symmetries?

Modular forms are periodic!

If f (z) is a weakly holomorphic modular form of weight k with
multiplier ν, then we may write

f (z) =
∑

n�−∞
anq

n

where q = e2πiz
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What is a modular form?

For γ =
(
a b
c d

)
∈ SL2(R) and z arbitrary, define γz = az+b

cz+d

Define j(γ, z) = cz + d

A map ν : Γ→ C× is a weight k multiplier if

ν(γ1)ν(γ2)j(γ1, γ2z)k j(γ2, z)k = ν(γ1γ2)j(γ1γ2, z)k
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What is a modular form?

Definition

A weight k weakly holomorphic modular form is a function
f : H→ C such that:

• f is modular of weight k

• f is holomorphic

• f is meromorphic at its cusps Ω(Γ)

M !
k(Γ, ν) = the space of weakly holomorphic forms



Introduction Historical background Main theorem Proof sketch Conclusion

What is a modular form?

Definition

A weight k weakly holomorphic modular form is a function
f : H→ C such that:

• f is modular of weight k

• f is holomorphic

• f is meromorphic at its cusps Ω(Γ)

M !
k(Γ, ν) = the space of weakly holomorphic forms



Introduction Historical background Main theorem Proof sketch Conclusion

What is Zagier duality? (revisited)

{
fm(z) = q−m +

∑
n
a(m, n)qn

}
m

and{
gm(z) = q−m +

∑
n
b(m, n)qn

}
m

exhibit Zagier duality if

a(m, n) = −b(n,m)
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Historical background

2002

Don Zagier published Traces of Singular Moduli

He constructed bases for level 4 weakly holomorphic forms of
weights 1/2 and 3/2 which satisfied the Kohnen plus space
condition



Introduction Historical background Main theorem Proof sketch Conclusion

Historical background

2002

Don Zagier published Traces of Singular Moduli

He constructed bases for level 4 weakly holomorphic forms of
weights 1/2 and 3/2 which satisfied the Kohnen plus space
condition



Introduction Historical background Main theorem Proof sketch Conclusion

Historical background

2002

a1/2(m, n) = −a3/2(n,m)
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Historical background

2002

One proof using recurrences

One proof by observing the constant term of fmgn is

a1/2(m, n) + a3/2(n,m) = 0
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Historical background

1997

Tetsuya Asai, Masanobu Kaneko, and Hirohito Ninomiya published
Zeros of certain modular functions and an application

They proved duality between bases for level 1 spaces with weights
k and 2− k for k ∈ { 0, 4, 6, 8, 10, 14 }

2006

Jeremy Rouse published Zagier duality for the exponents of
Borcherds products for Hilbert modular forms

He proved duality between bases for certain weight 0 and weight 2
spaces with nontrivial multipliers
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Historical background

Bill Duke Paul Jenkins

2007

Bill Duke and Paul Jenkins published On the zeros and
coefficients of certain weakly holomorphic modular forms

They constructed bases for level 1 weakly holomorphic modular
forms of weights k and 2− k
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Historical background

Bill Duke Paul Jenkins

2007

For all even k,
ak(m, n) = −a2−k(n,m)
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Historical background

2008

Ahmad El-Guindy published Fourier expansions with modular
form coefficients

He proved that in certain levels, any form could be used as the first
term in a sequence exhibiting Zagier duality

2013

SoYoung Choi and Chang Heon Kim published Basis for the
space of weakly holomorphic modular forms in higher level
cases

They extended Duke’s and Jenkins’ proof to establish duality
between bases for forms over Γ+

0 (p) with genus 0
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Historical background

2014

Andrew Haddock and Paul Jenkins published Zeros of weakly
holomorphic modular forms of level 4

They extended Duke’s and Jenkins’ proof to establish duality
between bases for level 4 forms of every even weight

2017

Victoria Iba, Paul Jenkins, and Merrill Warnick published
Congruences for coefficients of modular functions in genus
zero levels

They extended Duke’s and Jenkins’ proof to establish duality
between bases for forms with levels 6, 10, 12, 18 of every even
weight
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2017

Daniel Adams published Spaces of weakly holomorphic modular
forms in level 52

He extended Duke’s and Jenkins’ proof to establish duality
between bases for level 52 forms of every even weight

2017

Kit Vander Wilt published Weakly holomorphic modular forms
in level 64

He extended Duke’s and Jenkins’ proof to establish duality
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Historical background

2017

Paul Jenkins and DJ Thornton published Weakly holomorphic
modular forms in prime power levels of genus zero

They extended Duke’s and Jenkins’ proof to establish duality
between bases for forms with levels 2, 3, 4, 5, 7, 8, 9, 16, and 25,
of every even weight

2017

Paul Jenkins and the author published Zagier duality for level p
weakly holomorphic modular forms

They proved that duality holds for between weight 0 and weight 2
forms for an infinite class of primes, and that duality holds between
weight k and 2− k forms for every prime ≤ 37 of nonzero genus
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A few definitions

Define M
(∞)
k (Γ, ν) to be the space of weakly holomorphic modular

forms with poles only at ∞

Define M̂
(∞)
k (Γ, ν) to be the space of weakly holomorphic modular

forms with poles only at ∞ which vanish at each other cusp



Introduction Historical background Main theorem Proof sketch Conclusion

A few definitions

Define M
(∞)
k (Γ, ν) to be the space of weakly holomorphic modular

forms with poles only at ∞

Define M̂
(∞)
k (Γ, ν) to be the space of weakly holomorphic modular

forms with poles only at ∞ which vanish at each other cusp



Introduction Historical background Main theorem Proof sketch Conclusion

Main theorem

Write

{
f

(ν)
k,m(z) = q−m +

∑
n
a

(ν)
k (m, n)qn

}
m

for the

reduced-echelon basis for M
(∞)
k (Γ, ν)

Write

{
g

(ν)
k,m(z) = q−m +

∑
n
b

(ν)
k (m, n)qn

}
m

for the

reduced-echelon basis for M̂
(∞)
k (Γ, ν)

Theorem (Griffin-Jenkins-M.)

a
(ν)
k (m, n) = −b(ν)

2−k(n,m)
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Main theorem

Write F (ν)
k (z , τ) =

∑
m

f
(ν)
k,m(τ)qm

Write G(ν)
k (z , τ) =

∑
m

g
(ν)
k,m(τ)qm

Corollary (Griffin-Jenkins-M.)

F (ν)
k (z , τ) = −G(ν)

2−k(τ, z)
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An example

The first few basis elements f
(11)

2,m of M
(∞)
2 (Γ0(11)) are:

f
(11)

2,−1(z) = q − 2q2 − q3 + 2q4 + q5 + ...

f
(11)

2,0 (z) = 1 + 12q2 + 12q3 + 12q4 + 12q5 + ...

f
(11)

2,1 (z) = q−1 − 5q2 − 2q3 − 6q4 + 14q5 + ...

f
(11)

2,2 (z) = q−2 − 8q2 − 2q3 − 3q4 + 16q5 + ...

The first few basis elements g
(11)
0,m of M̂

(∞)
0 (Γ0(11)) are:

g
(11)
0,2 (z) = q−2 + 2q−1 − 12 + 5q + 8q2 + ...

g
(11)
0,3 (z) = q−3 + 1q−1 − 12 + 2q + 2q2 + ...

g
(11)
0,4 (z) = q−4 − 2q−1 − 12 + 6q + 3q2 + ...

g
(11)
0,5 (z) = q−5 − 1q−1 − 12 − 14q − 16q2 + ...
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A modest extension

Let U t V t {∞ } be a partition of the set of cusps Ω(Γ)

Define M
(∞)
k (Γ, ν,U) to be the space of weakly holomorphic

modular forms with poles only at ∞ which vanish on U

Define M̂
(∞)
k (Γ, ν,U) to be the space of weakly holomorphic

modular forms with poles only at ∞ which vanish on V
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A modest extension

Write

{
f Uν,k,m(z) = q−m +

∑
n
aUν,k(m, n)qn

}
m

for the

reduced-echelon basis for M∞k (Γ, ν,U)

Write

{
gU
ν,k,m(z) = q−m +

∑
n
bUν,k(m, n)qn

}
m

for the

reduced-echelon basis for M̂
(∞)
k (Γ, ν,U)

Theorem (Griffin-Jenkins-M.)

aUν,k(m, n) = −bUν,2−k(n,m)
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Some notation

We say f =
(
fλ
)
λ
∈ C((q))Γ,ν if

• Each fλ is a formal Laurent series in q

• When λ∞ = λ′∞, fλ and fλ
′

are compatible

M !
k(Γ, ν) ↪→C((q))Γ,ν via f 7→ (f |kλ)λ

Write fλ =
∑
n
aλ(n)qn, and gλ =

∑
n
bλ(n)qn

Write ωρ for the cuspidal width of ρ

Choose γρ so that γρ∞ = ρ
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The Borcherds–Bruinier–Funke pairing

{•, •}Γ : C((q))Γ,ν × C((q))Γ,ν → C

{ f , g }Γ =
∑

ρ∈Ω(Γ)

ωρ
∑
n
aγρ(n)bγρ(−n)

Theorem (Bruinier-Funke)

If f ∈ M !
k(Γ, ν) and g ∈ M !

2−k(Γ, ν) then

{ f , g }Γ = 0



Introduction Historical background Main theorem Proof sketch Conclusion

The Borcherds–Bruinier–Funke pairing

{•, •}Γ : C((q))Γ,ν × C((q))Γ,ν → C

{ f , g }Γ =
∑

ρ∈Ω(Γ)

ωρ
∑
n
aγρ(n)bγρ(−n)

Theorem (Bruinier-Funke)

If f ∈ M !
k(Γ, ν) and g ∈ M !

2−k(Γ, ν) then

{ f , g }Γ = 0



Introduction Historical background Main theorem Proof sketch Conclusion

The Borcherds–Bruinier–Funke pairing

{•, •}Γ : C((q))Γ,ν × C((q))Γ,ν → C

{ f , g }Γ =
∑

ρ∈Ω(Γ)

ωρ
∑
n
aγρ(n)bγρ(−n)

Theorem (Bruinier-Funke)

If f ∈ M !
k(Γ, ν) and g ∈ M !

2−k(Γ, ν) then

{ f , g }Γ = 0



Introduction Historical background Main theorem Proof sketch Conclusion

The Borcherds–Bruinier–Funke pairing

{•, •}Γ : C((q))Γ,ν × C((q))Γ,ν → C

{ f , g }Γ =
∑

ρ∈Ω(Γ)

ωρ
∑
n
aγρ(n)bγρ(−n)

Theorem (Borcherds)

For f =
(
fλ
)
λ
∈ C((q))Γ,ν , TFAE:

• There exists f ∈ M !
k(Γ, ν) such that for each λ, we have that

f λ = fλ + o(1)

• For every holomorphic modular form g ∈ M2−k(Γ, ν), we have
{f, g}Γ = 0



Introduction Historical background Main theorem Proof sketch Conclusion

Proof of main theorem

Proof Sketch{
f

(ν)
k,m, g

(ν)
2−k,n

}
= 0 as both forms are weakly holomorphic

∑
n
a
ν,γρ
k (n)b

ν,γρ
2−k (−n) = 0 for ρ 6=∞

a
(ν)
k (m, n) + b

(ν)
2−k(n,m) +

∑̀
a

(ν)
k (m, `)b

(ν)
2−k(n,−`) = 0

But
∑̀

a
(ν)
k (m, `)b

(ν)
2−k(n,−`) = 0

Then a
(ν)
k (m, n) + b

(ν)
2−k(n,m) = 0
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What comes next?

Question

What can we say about F (ν)
k (z , τ) and G(ν)

k (z , τ)?

Question

Zagier duality gives us grids of coefficients. Do linear combinations
of these modular grids produce interesting families of forms?

Question

What about harmonic Maass forms?
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Thank you for your attention!
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