On the classification of rigid meromorphic cocycles

I. Negrini

McGill University

Maine-Quebec Number Theory Conference 2019
Define the p-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$.

I. Negrini (McGill University)
The setup

- Define the p-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$.
- Let $\Gamma := \text{SL}_2(\mathbb{Z}[1/p])$ and let \mathcal{M}^\times be the multiplicative group of rigid meromorphic functions on \mathcal{H}_p.

A rigid meromorphic cocycle is a class in $H^1_f(\Gamma, \mathcal{M}^\times)$, i.e. a class assuming constant values on $\text{Stab}(\infty)$.

The values of these cocycles at \mathcal{M} points were studied by Darmon and Vonk in the paper *Singular moduli for real quadratic fields: a rigid analytic approach*.
The setup

- Define the p-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$.
- Let $\Gamma := \text{SL}_2(\mathbb{Z}[1/p])$ and let \mathcal{M}^\times be the multiplicative group of rigid meromorphic functions on \mathcal{H}_p.
- A rigid meromorphic cocycle is a class in $H^1_f(\Gamma, \mathcal{M}^\times)$, i.e. a class assuming constant values on $\text{Stab}(\infty)$.
The setup

- Define the p-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$.
- Let $\Gamma := \text{SL}_2(\mathbb{Z}[1/p])$ and let \mathcal{M}^\times be the multiplicative group of rigid meromorphic functions on \mathcal{H}_p.
- A \textit{rigid meromorphic cocycle} is a class in $H^1_f(\Gamma, \mathcal{M}^\times)$, i.e. a class assuming constant values on $\text{Stab}(\infty)$.
- The values of these cocycles at RM points were studied by Darmon and Vonk in the paper \textit{Singular moduli for real quadratic fields: a rigid analytic approach}.
The values at RM points

- Let τ be an RM point on \mathcal{H}_p and $\mathcal{O}_\tau := \mathbb{Z}\tau + \mathbb{Z}$.
The values at RM points

- Let τ be an RM point on H_p and $\mathcal{O}_\tau := \mathbb{Z} \tau + \mathbb{Z}$.

- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\text{Stab}(\tau)$ and $(\mathcal{O}_\tau[1/p])^1$, the group of norm one units in $\mathcal{O}_\tau[1/p]^{\times}$.

- Conjecture (Darmon, Vonk) $J[\tau]$ is an algebraic number in $H_\tau \cdot H_J$, where H_τ is the narrow ring class field associated to \mathcal{O}_τ and H_J is the compositum of the fields H_τ for $j(\tau) = \infty$.

I. Negrini (McGill University)
Let τ be an RM point on \mathcal{H}_p and $\mathcal{O}_\tau := \mathbb{Z}\tau + \mathbb{Z}$.

The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\text{Stab}(\tau)$ and $(\mathcal{O}_\tau[1/p])^1$, the group of norm one units in $\mathcal{O}_\tau[1/p]^\times$.

Hence $\text{Stab}(\tau)$ is generated by a fundamental unit γ_τ.
The values at RM points

- Let τ be an RM point on \mathcal{H}_p and $\mathcal{O}_\tau := \mathbb{Z}\tau + \mathbb{Z}$.

- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\text{Stab}(\tau)$ and $(\mathcal{O}_\tau[1/p])^1$, the group of norm one units in $\mathcal{O}_\tau[1/p]^\times$.

- Hence $\text{Stab}(\tau)$ is generated by a fundamental unit γ_τ.

- Given $J \in H^1_f(\Gamma, \mathcal{M}^\times)$ we define $J[\tau] := J(\gamma_\tau)(\tau)$.

The values at RM points

- Let τ be an RM point on H_p and $O_\tau := \mathbb{Z}\tau + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\text{Stab}(\tau)$ and $(O_\tau[1/p])^1$, the group of norm one units in $O_\tau[1/p]^\times$.
- Hence $\text{Stab}(\tau)$ is generated by a fundamental unit γ_τ.
- Given $J \in H^1_f(\Gamma, M^\times)$ we define $J[\tau] := J(\gamma_\tau)(\tau)$.
- Let j be a rigid meromorphic period function associated to J.

Conjecture (Darmon, Vonk): $J[\tau]$ is an algebraic number in $H_\tau \cdot H_J$, where H_τ is the narrow ring class field associated to O_τ and H_J is the compositum of the fields H_τ for $j(\tau) = \infty$.

I. Negrini (McGill University)

Maine-Québec Conference 2019 3 / 8
The values at RM points

- Let \(\tau \) be an RM point on \(\mathcal{H}_p \) and \(\mathcal{O}_\tau := \mathbb{Z} \tau + \mathbb{Z} \).
- The map \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d \) gives an isomorphism between \(\text{Stab}(\tau) \) and \((\mathcal{O}_\tau[1/p])^1 \), the group of norm one units in \(\mathcal{O}_\tau[1/p]^\times \).
- Hence \(\text{Stab}(\tau) \) is generated by a fundamental unit \(\gamma_\tau \).
- Given \(J \in H^1_f(\Gamma, \mathcal{M}^\times) \) we define \(J[\tau] := J(\gamma_\tau)(\tau) \).
- Let \(j \) be a rigid meromorphic period function associated to \(J \).

Conjecture (Darmon, Vonk)

\(J[\tau] \) is an algebraic number in \(H_\tau \cdot H_J \), where \(H_\tau \) is the narrow ring class field associated to \(\mathcal{O}_\tau \) and \(H_J \) is the compositum of the fields \(H_\tau \) for \(j(\tau) = \infty \).
We want to classify rigid meromorphic cocycles.
Classification of the cocycles

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ:
 $$f|_2 \gamma = (c\tau + d)^{-2} f(\gamma \tau) \text{ where } \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$
We want to classify rigid meromorphic cocycles.

Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ:

$$f|_2 \gamma = (c \tau + d)^{-2} f(\gamma \tau)$$

where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

A *rigid meromorphic cocycle of weight two* is a class in $H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$, i.e. vanishing on $\text{Stab}(\infty)$.
We want to classify rigid meromorphic cocycles.

Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ:

$$f|_2 \gamma = (c \tau + d)^{-2} f(\gamma \tau)$$

where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

A *rigid meromorphic cocycle of weight two* is a class in $H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$, i.e. vanishing on $\text{Stab}(\infty)$.

The logarithmic derivative induces a map $H^1_f(\Gamma, \mathcal{M}^\times) \to H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$.
We want to classify rigid meromorphic cocycles.

Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ:
\[f|_2 \gamma = (c\tau + d)^{-2}f(\gamma \tau) \] where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

A rigid meromorphic cocycle of weight two is a class in $H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$, i.e. vanishing on $\text{Stab}(\infty)$.

The logarithmic derivative induces a map $H^1_f(\Gamma, \mathcal{M}^\times) \to H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$.

Hence we first compute $H^1_{\text{par}}(\Gamma, \mathcal{M}_2)$.
We want to classify rigid meromorphic cocycles.

Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ:

$$ f|_{2\gamma} = (c\tau + d)^{-2}f(\gamma\tau) \quad \text{where} \quad \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. $$

A rigid meromorphic cocycle of weight two is a class in $\mathbb{H}^1_{\text{par}}(\Gamma, \mathcal{M}_2)$, i.e. vanishing on $\text{Stab}(\infty)$.

The logarithmic derivative induces a map $\mathbb{H}^1_{f}(\Gamma, \mathcal{M}^{\times}) \to \mathbb{H}^1_{\text{par}}(\Gamma, \mathcal{M}_2)$.

Hence we first compute $\mathbb{H}^1_{\text{par}}(\Gamma, \mathcal{M}_2)$.

Inspiration comes from the classification of $\mathbb{H}^1_{\text{par}}(\text{PSL}_2(\mathbb{Z}), M)$, where M are rational functions (Choie, Zagier).
A rational period function (RPF) for $\text{PSL}_2(\mathbb{Z})$ is a rational function q such that $q|_2(1 + T) = 0 = q|_2(1 + U + U^2)$, where T and U are the order 2 and 3 generators of $\text{PSL}_2(\mathbb{Z})$.
A rational period function (RPF) for \(\text{PSL}_2(\mathbb{Z}) \) is a rational function \(q \) such that
\[q|_2(1 + T) = 0 = q|_2(1 + U + U^2), \]
where \(T \) and \(U \) are the order 2 and 3 generators of \(\text{PSL}_2(\mathbb{Z}) \).

\(\text{H}^1_{\text{par}}(\text{PSL}_2(\mathbb{Z}), M) \) is isomorphic to the group of RPFs.
A *rational period function* (RPF) for $\text{PSL}_2(\mathbb{Z})$ is a rational function q such that $q|_2(1 + T) = 0 = q|_2(1 + U + U^2)$, where T and U are the order 2 and 3 generators of $\text{PSL}_2(\mathbb{Z})$.

$H^1_{\text{par}}(\text{PSL}_2(\mathbb{Z}), M)$ is isomorphic to the group of RPFs.

All poles of RPFs have order 1 and are simple real quadratic irrationalities, so one concludes:
A \textit{rational period function} (RPF) for $\text{PSL}_2(\mathbb{Z})$ is a rational function q such that $q\vert_2(1 + T) = 0 = q\vert_2(1 + U + U^2)$, where T and U are the order 2 and 3 generators of $\text{PSL}_2(\mathbb{Z})$.

$H^1_{\text{par}}(\text{PSL}_2(\mathbb{Z}), M)$ is isomorphic to the group of RPFs.

All poles of RPFs have order 1 and are simple real quadratic irrationalities, so one concludes:

\textbf{Theorem (Choie, Zagier)}

Any RPF is a linear combination of the functions

$$\frac{1}{z} \quad \text{and} \quad \phi_\tau(z) = \sum \text{sgn}(\omega) \frac{1}{z - \omega},$$

where $\omega \in \text{PSL}_2(\mathbb{Z})_\tau$ for τ ranging through $\text{PSL}_2(\mathbb{Z})$-representatives of simple real quadratic irrationalities.
Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H^1_{par}(\Gamma, \mathcal{M}_2)$, getting:

Theorem (Darmon, Vonk)

Any RMPF is a linear combination of a rigid analytic period function and of the functions

$$\psi_{\tau}(z) = \sum \text{sgn}(\omega) \frac{1}{z - \omega},$$

where $\tau \in \Gamma \setminus \text{RM}_p$, $\omega \in \Gamma \tau$ and ω is simple.

Using the logarithmic derivative one gets:

Theorem (Darmon, Vonk)

For all primes p, the group $H^1_{f}(\Gamma, \mathcal{M}_2)$ is of infinite rank over \mathbb{Z}.
Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H^1_{par}(\Gamma, \mathcal{M}_2)$, getting:

Theorem (Darmon, Vonk)

Any RMPF is a linear combination of a rigid analytic period function and of the functions

$$\psi_\tau(z) = \sum \text{sgn}(\omega) \frac{1}{z - \omega},$$

where $\tau \in \Gamma \setminus \mathcal{H}_p^{\text{RM}}, \omega \in \Gamma \tau$ and ω is simple.
Back to the classification of the cocycles

- Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H_{par}^1(\Gamma, \mathcal{M}_2)$, getting:

Theorem (Darmon, Vonk)

Any RMPF is a linear combination of a rigid analytic period function and of the functions

$$
\psi_\tau(z) = \sum \text{sgn}(\omega) \frac{1}{z - \omega},
$$

where $\tau \in \Gamma \setminus \mathcal{H}_p^{RM}$, $\omega \in \Gamma \tau$ and ω is simple.

- Using the logarithmic derivative one gets:

Theorem (Darmon, Vonk)

For all primes p, the group $H_f^1(\Gamma, \mathcal{M}^\times)$ is of infinite rank over \mathbb{Z}.
We can ask what happens if Δ is a congruence subgroup of Γ, for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \ (\text{mod} \ q), \ q \neq p \ \text{prime} \right\}$.

Using RPFs is probably not the right approach anymore. Moreover, the sum used to define $\psi_\tau(z)$ does not converge anymore (the intersection of Δ_τ and any affinoid does not have the same number of positive and negative elements). A possible source of inspiration might be the work of Ash, who classified $H_1^{\text{par}}(G, M)$, where G is any congruence subgroup of $\text{SL}_2(\mathbb{Z})$.

I. Negrini (McGill University)
We can ask what happens if Δ is a congruence subgroup of Γ, for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.

We still have $d\log: H^1_f(\Delta, \mathcal{M}^\times) \to H^1_{\text{par}}(\Delta, \mathcal{M}_2)$. Using RPFs is probably not the right approach anymore. Moreover, the sum used to define $\psi_\tau(z)$ does not converge anymore (the intersection of Δ_τ and any affinoid does not have the same number of positive and negative elements).

A possible source of inspiration might be the work of Ash, who classified $H^1_{\text{par}}(G, \mathcal{M})$, where G is any congruence subgroup of $\text{SL}_2(Z)$.

I. Negrini (McGill University)
Maine-Québec Conference 2019
Generalization

- We can ask what happens if Δ is a congruence subgroup of Γ, for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \; c \equiv 0 \pmod{q}, \; q \neq p \text{ prime} \right\}$.
- We still have $\text{dlog}: H^1_f(\Delta, \mathcal{M}^\times) \to H^1_{\text{par}}(\Delta, \mathcal{M}_2)$.
- Using RPFs is probably not the right approach anymore.
We can ask what happens if Δ is a congruence subgroup of Γ, for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.

We still have $\text{dlog}: H^1_{f}(\Delta, \mathcal{M}^\times) \to H^1_{\text{par}}(\Delta, \mathcal{M}_2)$.

Using RPFs is probably not the right approach anymore.

Moreover, the sum used to define $\psi_{\tau}(z)$ does not converge anymore (the intersection of Δ^τ and any affinoid does not have the same number of positive and negative elements).
We can ask what happens if \(\Delta \) is a congruence subgroup of \(\Gamma \), for example \(\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \ (\text{mod } q), \ q \neq p \text{ prime} \right\} \).

We still have \(\text{dlog}: \, H^1_f(\Delta, \mathcal{M}^\times) \to H^1_{\text{par}}(\Delta, \mathcal{M}_2) \).

Using RPFs is probably not the right approach anymore.

Moreover, the sum used to define \(\psi_\tau(z) \) does not converge anymore (the intersection of \(\Delta \tau \) and any affinoid does not have the same number of positive and negative elements).

A possible source of inspiration might be the work of Ash, who classified \(H^1_{\text{par}}(G, \mathcal{M}) \), where \(G \) is any congruence subgroup of \(\text{SL}_2(\mathbb{Z}) \).
Thank you!