On the classification of rigid meromorphic cocycles

I. Negrini

McGill University

Maine-Quebec Number Theory Conference 2019

I. Negrini (McGill University)

2019 1/8

• Define the *p*-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Define the *p*-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$.
- Let Γ := SL₂(ℤ[1/p]) and let M[×] be the multiplicative group of rigid meromorphic functions on H_p.

- Define the *p*-adic upper-half plane $\mathcal{H}_{p} = \mathbb{P}^{1}(\mathbb{C}_{p}) \mathbb{P}^{1}(\mathbb{Q}_{p})$.
- Let Γ := SL₂(ℤ[1/p]) and let M[×] be the multiplicative group of rigid meromorphic functions on H_p.
- A rigid meromorphic cocycle is a class in H¹_f(Γ, M[×]), i.e. a class assuming constant values on Stab(∞).

- Define the *p*-adic upper-half plane $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$.
- Let Γ := SL₂(ℤ[1/p]) and let M[×] be the multiplicative group of rigid meromorphic functions on H_p.
- A rigid meromorphic cocycle is a class in H¹_f(Γ, M[×]), i.e. a class assuming constant values on Stab(∞).
- The values of these cocycles at RM points were studied by Darmon and Vonk in the paper *Singular moduli for real quadratic fields: a rigid analytic approach*.

• Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.

∃ ► < ∃ ►

- Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\operatorname{Stab}(\tau)$ and $(\mathcal{O}_{\tau}[1/\rho])^1$, the group of norm one units in $\mathcal{O}_{\tau}[1/\rho]^{\times}$.

- Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\operatorname{Stab}(\tau)$ and $(\mathcal{O}_{\tau}[1/\rho])^1$, the group of norm one units in $\mathcal{O}_{\tau}[1/\rho]^{\times}$.
- Hence $\mathsf{Stab}(\tau)$ is generated by a fundamental unit γ_τ .

- Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\operatorname{Stab}(\tau)$ and $(\mathcal{O}_{\tau}[1/\rho])^1$, the group of norm one units in $\mathcal{O}_{\tau}[1/\rho]^{\times}$.
- Hence $\mathsf{Stab}(\tau)$ is generated by a fundamental unit γ_τ .
- Given $J \in H^1_f(\Gamma, \mathcal{M}^{\times})$ we define $J[\tau] := J(\gamma_{\tau})(\tau)$.

- Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\operatorname{Stab}(\tau)$ and $(\mathcal{O}_{\tau}[1/\rho])^1$, the group of norm one units in $\mathcal{O}_{\tau}[1/\rho]^{\times}$.
- Hence $\mathsf{Stab}(\tau)$ is generated by a fundamental unit γ_τ .
- Given $J \in H^1_f(\Gamma, \mathcal{M}^{\times})$ we define $J[\tau] := J(\gamma_{\tau})(\tau)$.
- Let *j* be a rigid meromorphic period function associated to *J*.

- Let au be an RM point on \mathcal{H}_p and $\mathcal{O}_{ au} := \mathbb{Z} au + \mathbb{Z}$.
- The map $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto c\tau + d$ gives an isomorphism between $\operatorname{Stab}(\tau)$ and $(\mathcal{O}_{\tau}[1/\rho])^1$, the group of norm one units in $\mathcal{O}_{\tau}[1/\rho]^{\times}$.
- Hence $\mathsf{Stab}(\tau)$ is generated by a fundamental unit γ_τ .
- Given $J \in H^1_f(\Gamma, \mathcal{M}^{\times})$ we define $J[\tau] := J(\gamma_{\tau})(\tau)$.
- Let *j* be a rigid meromorphic period function associated to *J*.

Conjecture (Darmon, Vonk)

 $J[\tau]$ is an algebraic number in $H_{\tau} \cdot H_J$, where H_{τ} is the narrow ring class field associated to \mathcal{O}_{τ} and H_J is the compositum of the fields H_{τ} for $j(\tau) = \infty$.

• We want to classify rigid meromorphic cocycles.

- 3 ▶

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ : $f|_2\gamma = (c\tau + d)^{-2}f(\gamma\tau)$ where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ : $f|_2\gamma = (c\tau + d)^{-2}f(\gamma\tau)$ where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- A rigid meromorphic cocycle of weight two is a class in H¹_{par}(Γ, M₂),
 i.e. vanishing on Stab(∞).

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ : $f|_2\gamma = (c\tau + d)^{-2}f(\gamma\tau)$ where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- A rigid meromorphic cocycle of weight two is a class in H¹_{par}(Γ, M₂),
 i.e. vanishing on Stab(∞).
- The logaritmic derivative induces a map $H^1_f(\Gamma, \mathcal{M}^{\times}) \to H^1_{par}(\Gamma, \mathcal{M}_2)$.

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ : $f|_2\gamma = (c\tau + d)^{-2}f(\gamma\tau)$ where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- A rigid meromorphic cocycle of weight two is a class in H¹_{par}(Γ, M₂),
 i.e. vanishing on Stab(∞).
- The logaritmic derivative induces a map $H^1_f(\Gamma, \mathcal{M}^{\times}) \to H^1_{par}(\Gamma, \mathcal{M}_2)$.
- Hence we first compute $H^1_{par}(\Gamma, \mathcal{M}_2)$.

- We want to classify rigid meromorphic cocycles.
- Let \mathcal{M}_2 be the additive group \mathcal{M} with the weight two action of Γ : $f|_2\gamma = (c\tau + d)^{-2}f(\gamma\tau)$ where $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- A rigid meromorphic cocycle of weight two is a class in H¹_{par}(Γ, M₂),
 i.e. vanishing on Stab(∞).
- The logaritmic derivative induces a map $H^1_f(\Gamma, \mathcal{M}^{\times}) \to H^1_{par}(\Gamma, \mathcal{M}_2)$.
- Hence we first compute $H^1_{par}(\Gamma, \mathcal{M}_2)$.
- Inspiration comes from the classification of $H^1_{par}(PSL_2(\mathbb{Z}), M)$, where M are rational functions (Choie, Zagier).

A rational period function (RPF) for PSL₂(ℤ) is a rational function q such that q|₂(1 + T) = 0 = q|₂(1 + U + U²), where T and U are the order 2 and 3 generators of PSL₂(ℤ).

- A rational period function (RPF) for PSL₂(ℤ) is a rational function q such that q|₂(1 + T) = 0 = q|₂(1 + U + U²), where T and U are the order 2 and 3 generators of PSL₂(ℤ).
- $H^1_{par}(PSL_2(\mathbb{Z}), M)$ is isomorphic to the group of RPFs.

- A rational period function (RPF) for PSL₂(ℤ) is a rational function q such that q|₂(1 + T) = 0 = q|₂(1 + U + U²), where T and U are the order 2 and 3 generators of PSL₂(ℤ).
- $H^1_{par}(PSL_2(\mathbb{Z}), M)$ is isomorphic to the group of RPFs.
- All poles of RPFs have order 1 and are simple real quadratic irrationalities, so one concludes:

- A rational period function (RPF) for PSL₂(ℤ) is a rational function q such that q|₂(1 + T) = 0 = q|₂(1 + U + U²), where T and U are the order 2 and 3 generators of PSL₂(ℤ).
- $H^1_{par}(PSL_2(\mathbb{Z}), M)$ is isomorphic to the group of RPFs.
- All poles of RPFs have order 1 and are simple real quadratic irrationalities, so one concludes:

Theorem (Choie, Zagier)

Any RPF is a linear combination of the functions

$$rac{1}{z} ext{ and } \phi_{ au}(z) = \sum ext{sgn}(\omega) rac{1}{z-\omega},$$

where $\omega \in PSL_2(\mathbb{Z})\tau$ for τ ranging through $PSL_2(\mathbb{Z})$ -representatives of simple real quadratic irrationalities.

イロト イボト イヨト イヨト

Back to the classification of the cocycles

• Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H^{1}_{par}(\Gamma, \mathcal{M}_{2})$, getting:

Back to the classification of the cocycles

• Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H_{par}^{1}(\Gamma, \mathcal{M}_{2})$, getting:

Theorem (Darmon, Vonk)

Any RMPF is a linear combination of a rigid analytic period function and of the functions

$$\psi_{\tau}(z) = \sum \operatorname{sgn}(\omega) \frac{1}{z-\omega},$$

where $\tau \in \Gamma \setminus \mathcal{H}_{p}^{RM}$, $\omega \in \Gamma \tau$ and ω is simple.

Back to the classification of the cocycles

• Similarly one can define *rigid meromorphic period functions* (RMPF) and use them to classify $H_{par}^{1}(\Gamma, \mathcal{M}_{2})$, getting:

Theorem (Darmon, Vonk)

Any RMPF is a linear combination of a rigid analytic period function and of the functions

$$\psi_{\tau}(z) = \sum \operatorname{sgn}(\omega) \frac{1}{z-\omega},$$

where $\tau \in \Gamma \setminus \mathcal{H}_p^{RM}$, $\omega \in \Gamma \tau$ and ω is simple.

• Using the logarithmic derivative one gets:

Theorem (Darmon, Vonk)

For all primes p, the group $H^1_f(\Gamma, \mathcal{M}^{\times})$ is of infinite rank over \mathbb{Z} .

• We can ask what happens if Δ is a congruence subgroup of Γ , for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.

- We can ask what happens if Δ is a congruence subgroup of Γ , for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.
- We still have dlog: $H^1_f(\Delta, \mathcal{M}^{\times}) \to H^1_{par}(\Delta, \mathcal{M}_2).$

- We can ask what happens if Δ is a congruence subgroup of Γ , for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.
- We still have dlog: $H^1_f(\Delta, \mathcal{M}^{\times}) \to H^1_{\mathsf{par}}(\Delta, \mathcal{M}_2).$
- Using RPFs is probably not the right approach anymore.

- We can ask what happens if Δ is a congruence subgroup of Γ , for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.
- We still have dlog: $H^1_f(\Delta, \mathcal{M}^{\times}) \to H^1_{par}(\Delta, \mathcal{M}_2).$
- Using RPFs is probably not the right approach anymore.
- Moreover, the sum used to define $\psi_{\tau}(z)$ does not converge anymore (the intersection of $\Delta \tau$ and any affinoid does not have the same number of positive and negative elements).

- We can ask what happens if Δ is a congruence subgroup of Γ , for example $\Delta = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma, \ c = 0 \pmod{q}, \ q \neq p \text{ prime} \right\}$.
- We still have dlog: $H^1_f(\Delta, \mathcal{M}^{\times}) \to H^1_{par}(\Delta, \mathcal{M}_2).$
- Using RPFs is probably not the right approach anymore.
- Moreover, the sum used to define $\psi_{\tau}(z)$ does not converge anymore (the intersection of $\Delta \tau$ and any affinoid does not have the same number of positive and negative elements).
- A possible source of inspiration might be the work of Ash, who classified H¹_{par}(G, M), where G is any congruence subgroup of SL₂(ℤ).

Thank you!

æ

< □ > < □ > < □ > < □ > < □ >